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Introduction

This thesis describes results in algorithmic information theory, a field of research also known
as Kolmogorov—Chaitin complexity. The thesis is divided into three chapters.

In the first chapter, the Kolmogorov—Chaitin definition of complexity is extended to
include time complexity. This allows the absolute randomness of a binary string, as defined
by its Kolmogorov—Chaitin complexity, to be distinguished from its apparent randomness, as
measured by some bounded amount of computation. We show that under any computable
bound on the amount of calculation allowed, there are binary strings of arbitrarily low
complexity that appear totally chaotic. Further, we show that apparently random binary
strings are a non-vanishing fraction of all binary strings of sufficient length.

In the second chapter, we study the Kolmogorov—Chaitin complexity of a class of infinite
binary strings that arise naturally in computability theory. We begin with the halting oracle
for Turing machines, and define a hierarchy of halting oracles for relativized computations.
We show that the higher order oracles are of much greater Kolmogorov—Chaitin complexity
than the first order oracle.

In the third chapter, we combine the results and techniques of the first two chapters to
prove a strong result about the time complexity of extracting information from a compressed
version of the halting oracle. We show that although the halting oracle is of low randomness;,
all significantly compressed versions are of high apparent randomness under all computable

time bounds.



Chapter 1

On Time Bounded Kolmogorov—Chaitin Complexity

The average computer user is unwilling to wait 10'° years for a computation to yield a
result. This impatience puts limitations on the algorithms such a person will use. In this
chapter, we investigate the price the user must pay (in extra program length) to get results

quickly. We show that the price can be very steep, and that it must be paid quite often.

1. Notation and Definitions

We will be working over the input alphabet ¥ = {0,1}, and we write # for the blank
symbol. We write s to denote a string in £* (the set of all finite binary strings), and
A to denote the empty string. Binary strings can be put in lezicographic order thus:
A,0,1,00,01,10,11,000,.... If s € B" (that is, s is a binary string of length n) we write
|s| = n. Note that the binary strings of length k can be interpreted as the binary represen-
tations of the integers from 0 to 2* — 1 if we simply ignore leading zeros.
Formally, a Turing Machine is a triple (Q, X, §), where:
(1) Q is a finite set of states, including two distinguished states go (the start state) and ¢;
(the halt state).
(2) Z is a finite alphabet, including the blank symbol #.
(8) 6 is a function from Q x X to Q x (XU {L, R}), where L and R denote move left and
move right, respectively. Further, once the machine enters the halt state, it never leaves

it. That is, for any ¢ € X, §(¢1,0) = (q1,0).



The machine is equipped with a single two-way infinite tape. Throughout this thesis,
the tape alphabet is taken to be {#,0,1}.

Informally, a Turing machine is a finite control that reads and writes symbols of a
finite alphabet to and from a finite collection of infinite tapes. Changing the number of
symbols or tapes allowed does nothing to enhance the computational power of the Turing
machine, except to make it run faster or slower. It will be convenient to describe Turing
machines in an informal manner throughout this thesis; everything presented can be made
excruciatingly formal. Excellent expositions of the formal mechanics of Turing machines
may be found in Turing’s original paper [16], or in introductory texts such as Davis and
Weyuker (5], Lewis and Papadimitriou [13], or Hopcroft and Ullman [9].

All functions are taken to have domain and range in the natural numbers. A function
[ is computable if there is a fixed Turing machine which will print the binary representation
of f(n) when started on the binary representation of n, for any value of n. Since there are
only countably many Turing machines, but uncountably many functions from the natural
numbers to the natural numbers, many functions are uncomputable.

There exists a class of Turing machines of paramount importance: the universal Turing
machines. These machines are able to compute any function that can be computed by any
Turing machine M by simulating the actions of M step by step.

We take U to be a particular implementation of a universal Turing machine with
input alphabet X and states {qo0,q1,...,9x}. We write p(M) to denote the encoding of
the Turing machine M and p(M)w to denote the binary string w concatenated onto the
encoding of M. (The encoding p(M) is defined to be self-delimiting.) We call a string of the
form p(M)w a program. The string w is called the data. For fixed p(M), we refer to the
various programs obtained by adding different data as instances of the encoding. (Note that
p(M) = p(M)X = the instance of p(M) with the empty string as input.) If it is necessary
to supply multiple strings as data, we can perform a syntactic transformation that makes
the component parts of the data self-delimiting. We denote such a transformation by [w,Vv].
A very simple transformation that allows |[w,v]| = 2(jw| + |v|) + 2 is simply to write each
bit of each string twice, and separate the strings with “01.” This method generalizes to
three or more strings.

Given p(M)w as input, U halts if and only if M would halt on the input w, and leaves
as output precisely what M would leave. U is further defined not to halt if its input is not

a syntactically correct encoding of a Turing machine with input. It is convenient to think of
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U as having an input tape, several work tapes, and an output tape. This convention allows
a Turing machine M to have easy access to its own encoding, the binary string p(M).

We use the term simulation to describe the situation of one Turing machine calculating
the action of another Turing machine on a particular string. Note that since U itself
is a Turing machine, it has an encoding which can be incorporated into other machines.
Simulations of the action of U are of great importance.

We denote by E (for Everhalting) the machine which copies the contents of its input
tape to its output tape and then halts. (Or, under the convention of Turing machines
having only a single tape, justs halts.) The existence of this machine guarantees that every
finite binary string is the output of some program. (The string v is generated by U when
presented with p(E)v.)

The status of a Turing machine computation at any moment can be represented by a
quadruple called a snapshot. The quadruple (g,v,0,w) indicates that the machine is in
state ¢ with the string v to the left of its head, the string w to the right of its head, the
symbol o currently being scanned, and the rest of the tape blank. We define the relation
—y on snapshots thus: if the machine M goes from the snapshot (g,v,0,w) to the

snapshot (¢',v',0’,w') in exactly one transition (i.e. by exactly one application of the

transition function §) then
(Q:V:”:w)_'_)m(q,;v,aal:wl)s
and we define ——_ to be the reflexive, transitive closure of ——,,. Note that
(QI’V:G;W)—_)M(QI)"’ O',W).
The Kolmogorov-Chaitin complexity of a string s is defined as:

K(S) = min{ |p| : (QO,A, #:p)—_’;(qu’\7 #,S) }

That is,
K (s) = min{ |p| : U given p halts leaving s as output }.
Note that p is a binary string; we have not specified how it is divided into encoding and

data. A string s is random in the sense of Kolmogorov if K (s) = |s|. These definitions were

first presented by Kolmogorov [11], and were extended by Chaitin [4,3].



We now define the relation ——»:w recursively as follows:

(i) (qe,U,Uj»V)——+:,,(Qi,u: (Tj,V),

(i9) (9151, 05, Vi)——,, (4:,, 12, 05,,V2)

if and only if there exists a snapshot (¢:,u,0;,v) such that

(q,-l,ul,ajl,vl)—>;;1(q,~,u,aj,v) and (gi,u,04,v)—,(gi,,uz,0j,,V2).
Intuitively, two snapshots satisfy this relation if the machine M transforms one snapshot into
the other in ¢ steps of computation. When we simulate, the machine doing the simulation
can count the number of state transitions the simulated machine goes through during the
course of the simulation. This allows a Turing machine to decide whether or not some other
Tul;ing machine produces a specified output within some time bound.

Finally, given a function 7, we define the time bounded Kolmogorov-Chaitin complezity
by:
K. (8) = min{|p| : (g0, A, #,0)— """ (g1, \, #,9) }.

Or,
K.(s) = min{ |p| : U given p halts within r(|s|) steps leaving s as output }.

We assume that 7 is always chosen large enough for U to reduce p(E)s to s within 7(|s|)
steps. We could eliminate this assumption by adding a clause defining K, (s) to be infinite if
there is no program satisfying the requirement, but this makes the definition unnecessarily
cumbersome given the weakness of the assumption above.

These definitions and conventions will be used throughout the thesis. Further, more

specialized, definitions will be introduced at the beginning of chapter II.
2. On the Existence of Apparently Random Strings
We show that given a computable bound on the amount of time allowed for the produc-

tion of a string from the program that generates it, there exist strings of arbitrarily low

Kolmogorov—Chaitin complexity that appear maximally random. That is, given a notion



of quick, we show that there are strings that can be compressed to extremely short rep-
resentations, but that cannot be recovered quickly from any specification shorter than the
original string.

Reasons to be interested in the amount of time required to generate a binary string are
most intuitively to be found in the realm of data compaction. Computer users often want to
store large amounts of data, but are not concerned with the details of how the information
is stored. It is important, however, that the stored data be readily accessible. The problem
of data compression should really be called the problem of data re-expansion. Typically,
we are concerned with the size of the compressed version and the difficulty of retrieval
of the original information, not the difficulty of the compression process. Other areas
of Computer Science are also well characterized as the study of compact representations.
Computer Graphics seeks to model the real world in ways that permit generation of realistic
images without having previously stored digitized versions of those images.

Suppose we limit the amount of computation that may be done to retrieve a binary
string from its compressed version. Clearly, under some bounds some strings will require
longer programs than they do under larger bounds. One might hope that a trade-off of
space against time exists; that is, that restricting the amount of time allowed would cost
some (but not all) of the space saved. Unfortunately, under any computable time bound at
all there exist binary strings that appear incompressible (i.e. that are not generated by any
short program within that time bound, but that have extremely short descriptions if we do
not limit in advance the amount of computation allowed.)

More precisely, we have:

Theorem 1.1 Let 7 and o be any computable functions, with o(n) > n. Then there
exists a 2o such that for all ¢ > o there exist binary strings s with |s| = o(t) such that
K(8) <t but K,(s) > a(t).

We call such a string r-incompressible.

To emphasize the generality of this result, consider letting o(n) = A(n,n) and r(n) =
A(o(n),o(n)), where A is Ackermann’s generalized exponential. The theorem says that
there is a program of length n that generates an enormous string, but takes a very long
time to do it. But further, if we require a program to generate that string “fast” (and we
should emphasize that A(c(n),o(n)) is huge) then we are completely stuck: we cannot get

by with a program even one bit shorter than the string itself.



Proof The proof proceeds by constructing a Turing machine which attacks the problem
by brute force: we examine the output of every short program that halts quickly, and then
select a string not in the list of produced outputs. The proof is constructive, that is, it gives
a procedure for exhibiting a 7-incompressible string.

We construct a Turing Machine M. Let to = |p(M)|, and consider any instance p(M)w
of p(M) of length t. This proof relies heavily on the fact that Turing machines may be
composed. Each step described below is complex, but clearly computable.

The Turing Machine M started on the input string w (or, equivalently, U started on
the input string p(M)w :

(1) Computes o(t) and 7(|s|) = 7(o(t)). We note that ¢ does not need to be specified as a

parameter to the computation: the program remains available on the input tape of U;
(2) Generates a list £ of all binary strings of length o(t) in lexicographic order;

(3) Simulates the operation of U on each binary string of length < o(t) — 1 until it (ie.
the simulated U) either halts or has computed for r(c(t)) steps without halting;
(4) Removes from the list £ every string of length exactly o(t) produced by a simulation;

(A simulation must halt to be considered to have produced an output.)

(5) Prints the w'? remaining string; (We show below that there are at least 2/ +1 strings
in £ not produced by any simulation; hence the w*? remaining string exists.)
(6) Halts.

We note that M simulates U on 20 + 21 + ... 4 29001 = 2(e(®)-1)+1 _ 1 — 9o(t) _ 1
potential programs. Since o(t) > ¢, the 2/%| instances of p(M) are in this collection, and
each of them clearly computes for more than r(o(t)) steps before it halts. Thus no more
than 2°() — 1 — 2lw| strings are eliminated from £, and each instance of p(M) of length t
will produce a distinct string of length o(2).

The construction above gives a program of length ¢ that generates the string s. Thus
K (s) < t. But by the operation of M, s is not produced within 7 (o (t)) steps by any program
of length < o(t) — 1. Thus K,(s) > o(t). |

Suppose we are given a binary string and wish to know whether or not it is T-incompress-
ible. We can simply enumerate all r-incompressible strings of the same length as the given
string, and then check to see if the given string is in the list. The time complexity of doing
this is clearly a multiple of the time complexity of the operation of M, with the multiplier

exponential in the length of the given string. The point is that the problem of generating



r-incompressible strings and the problem of deciding if a given string is r-incompressible
are essentially the same. This has interesting ramifications for physics.

Erber and Putterman [7] have recently suggested that the validity of Quantum Me-
chanics be tested empirically by observing spectral emissions of single atoms stimulated by
a laser. They hope that “...a search for unexpected patterns of order by cryptanalysis of the
telegraph signal generated by the on/off time of the atom’s fluorescence will provide new
experimental tests of the fundamental principles of the quantum theory.” The above theo-
rem says that we can never increase our confidence in the validity of Quantum Mechanics
on the basis of such an experiment: there could be an extremely short, but computationally
complex, explanation for the string generated by the experiment.

There are some assumptions about the fundamental nature of computation and physi-
cal systems implicit in the discussion above. If the string generated truly requires enormous
amounts of time to be produced, then how does the electron “decide” what to do quickly?
The fundamental relation between randomness as studied in Quantum Mechanics and ran-
domness as studied in computability theory is not at all well understood. Deutsch [6] has

addressed the question, but it is far from entirely settled.

3. On the Significance of Apparently Random Strings

We now investigate how significant these apparently random strings are. That is, given 7
and o, how many strings of length o(n) are r~incompressible? Leonid Levin [10] formulated

the problem thus:

Let
S, = {s € {0, 1}"|K (s) < K,(s)}.
Conjecture:
lim Eﬂ—'— > 0 for any computable 7.
N>oo 2N

The following theorem settles this conjecture affirmatively.

Theorem 1.2  For any fixed k and any computable function 7, there is an ng such that

a constant fraction of all strings of length n > ng have K(s) < n — k but K,(s) > n.



Proof We use the definitions of theorem 1.1, and base the proof on the machine M of that
theorem. Let o(m) = m + k. We again call [p(M)| = to. Since |w| = t — ¢y, we have
2=t instances of the encoding p(M), each of which produces a distinct string of length
t+ k. Thus 2~(to+¥) — 4 fraction independent of n — of all strings of sufficient length
can be compressed by k bits (i.e. are produced by programs k bits shorter than the strings
themselves) if we are patient, but appear maximally random if we require that generating
programs run under the time constraint r. (We require that ng = ¢3. To see that this

suffices, take o(m) = m + 1, and consider the string produced by p(M)A.) [



Chapter 2

On the Algorithmic Information of Halting Oracles

We have already noted that there are functions not computable by Turing machines. Com-
puting any function from the natural numbers to the natural numbers can be reduced to
the problem of deciding some language, that is, determining whether or not certain binary
strings are in a particular subset of $*. This provides a convenient framework in which to
study questions of relativized computability.

Suppose some agency provides us with a magical source of answers to a specified set
of questions which we might be otherwise unable to answer. In this chapter we investigate
some aspects of the additional computing power we would gain from such an oracle.

The Kolmogorov—Chaitin complexity can be thought of as a measure of the degree of
uncomputability of infinite strings. If X,, denotes the first m bits of an uncomputable
infinite binary string X, the algorithmic information K(Xp,) is the minimum number of
bits needed to compute X,, on a universal Turing machine. How K (Xsm) varies with m,
for example, as log m, \/m, —;-m, etc., is a measure of how uncomputable X is.

On the other hand, the degree of uncomputability can be measured in terms of a
hierarchy of halting oracles. If any desired number of bits of X can be computed by a fixed
Turing machine which consults the n'" order halting oracle, but not by any machine that
consults the (n — 1)®, then its degree of uncomputability is n.

The purpose of this section is to relate these two concepts of “degree of uncomputabil-
ity,” by giving exact estimates (identical lower and upper bounds) for the algorithmic infor-
mation of halting oracles. Specifically, the algorithmic information of the :*" order halting

oracle relative to a universal Turing machine which consults the j** order halting oracle is
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estimated for all 7, 7. The result shows a sharp contrast between the algorithmic informa-
tion of the first order halting oracle (previously investigated by Chaitin [4]) and the second
order halting oracle. Also, the essential changes in the Kolmogorov—Chaitin complexity of

certain strings for different consulted oracles are discussed.

1. Notation and Definitions

An oracle for a language L C X" is an infinite binary string, where the n'™ bit of the oracle
is a 1 if and only if the n®" string of * (in lexicographic order) is in L.

An oracle consulting Turing machine (“OTM”) is a Turing machine with an additional
read-only tape, infinite in one direction (the “oracle tape” )- At any stage of the computation
the action and next state of the machine are determined by the current state and the symbols
scanned on the work tape and the oracle tape. To the usual actions are adjoined actions for
moving the oracle tape scanning head left or right. Intuitively, the oracle will be inscribed
(by some means other than a Turing machine) on the oracle tape, and queries to the oracle
will be accomplished by examining a particular bit of the oracle.

A universal oracle consulting Turing machine takes strings as input and halts with a
specific output if and only if the input string is a syntactically correct encoding of an OTM
(possibly including an input string for that machine) that halts with that output. (This
is analogous to the definition of universal Turing machines given earlier.) We denote the
universal OTM with some particular oracle O on its oracle tape by U(O). Note that the
halting behavior of the universal OTM for some fixed string may be different for different
oracles. (That is, a computation which depends on the contents of the oracle tape will
proceed differently if the oracle tape is changed.)

We say that a function is computable relative to the oracle O (or “O-computable”) if
the function can be computed by an OTM with O on its oracle tape.

We define the kalting oracle for OTM’s relative to the oracle O to be the oracle for the
language

L(0O) = {s : U(O) halts on s }.

Finally, we define the complezity of a string s relative to the oracle O thus:

K°(s) = min{ |p| : U(O) given p halts leaving s as output }.

11



That is, the complexity of a string is the length of the shortest program which produces the
string. If the oracle tape is blank, then this is the usual Kolmogorov—Chaitin complexity.
(In fact, if the oracle tape contains any computable string, then the relativized Kolmogorov-
Chaitin complexity differs from the usual Kolmogorov—Chaitin complexity only by an ad-
ditive constant.)
If X is some infinite binary string, X,, denotes the first m bits of X.
For the remainder of this thesis, we will use the following hierarchy of oracle strings:
H?O is the empty string.
H" is the halting oracle for OTMs relative to H* 1.
Thus H! is the halting oracle for normal Turing machines. This hierarchy corresponds

to the sequence 0, 0/, 07, ... of Turing degrees (see, e.g., Rogers [14]).

2. On Discussing the Complexity of Infinite Binary Strings

The complexity of an infinite binary string is a little harder to define than the complexity
of a finite string. Clearly, we cannot expect a Turing machine to print an infinite string and
then halt. The solution is to look at the complexity of all initial substrings.

Intuitively, an infinite string X is computable if there exists a fixed Turing machine
which can compute X,, for any specified m. A string is uncomputable if we must specify
not only how much we want, but also some information about the string.

It might seem that the complexity of (initial substrings of) computable strings does
not grow with the length of the substring, but the complexity of (initial substrings of)
uncomputable strings does. The problem is that it is possible for the numeral m to have
high complexity.

It is therefore impossible to describe the behavior of the complexity of infinite strings by
means of limits. We can, however, make the following statements about the Kolmogorov—

Chaitin complexity of a computable infinite string X:

lim sup M =1
m— o0 ogm

and
m—oo loglog---logm

12



The first case is justified by noting that the numeral which represents the number m
never requires more than [logm] digits. In the second case, we take the machine which
computes X, from m, and compose it with a machine that computes a function that grows
extremely fast. We can always find a function that grows faster than the inverse of any
fixed number of iterations of log, and thus generate enormously long initial substrings of X

from very short inputs.

3. Remarks on Relativized Kolmogorov—Chaitin Complexity

1. H**! is not H'-computable. The case i = 0 is a statement of the usual halting
problem. Other cases can be proved with exactly the same techniques.

2. K H‘(s) is not Hf-computable. (Assume that it is. Take the program that computes
it and modify it to look for strings of very high complexity and print one. Since the program
is of constant length, and we can specify how high we want the complexity to be with a
logarithmic number of bits (the length of a numeral is log of the number it represents), we
get a contradiction.) But KH'(s) is Hi*l-computable. (Simply simulate all machines of
appropriate length which the oracle says will halt and look for the shortest one generating
s.)

3. A given string can have different complexities relative to different oracles. As an
example, consider the worst string of length n relative to H, that is, the string with the
highest complexity (breaking any tie by lexicographic ordering). Relative to Hi+1, we need

only a constant program and logn bits of specification.

4. On the Algorithmic Information of Halting Oracles, Small Jumps

In this section and the next, we completely analyze the relative complexity of pairs of halting
oracles. We find the somewhat surprising result that specifying an oracle one step above
one we have requires much less information than specifying one two or more steps up. To

be precise, we show:

Hiypiy_ J©O(ogm), i=75-1;
K (H#)_{G(m), i<j-—1

13



(© is Knuth’s [10] “Big Theta”; f(n) = ©(g(n)) means that f = O(g) and g = O(f), or,
there exist ¢; and ¢; such that ¢1g(n) < f(n) < c2g(n), for all n sufficiently large.)

The first case says that given some halting oracle Hf, m bits of H'*1 can be compressed
into a description of length essentially log m, but no further. The second case says that all
higher order halting oracles may be compressed only to some fraction of their length, but
no further. We note that the omitted case, ¢ > 5 — 1, is not interesting: given any halting

oracle, we can compute lower order halting oracles at will.

Lemma about Lower Order Halting Oracles

Having said that the 1 > j — 1 case is uninteresting, we hasten to add that it is needed
for later results. Therefore let ns assume that we have H* on the oracle tape and want
bits of H~!. We define a special OTM called the “checker,” denoted C. Given the binary
number w as input on the work tape, C reads the w*P bit of whatever is on its oracle tape
(here assumed to be HI*~1) and halts if that bit is a 1. If the bit is a 0, C enters an infinite
loop. Since we can use H* to decide the fate of C on any input w, we can determine the wt®
bit of H*~1. By building checkers of checkers of checkers (etc.), we can work our way down
to any halting oracle of degree lower than the one we have. For completeness, we note that

we can always copy bits from the oracle tape to the work tape: this covers i = 5. ||

Theorem 2.1 We now wish to show that
K™ (HiH) = 6(log m),

or, equivalently, that

KT (Hi) = 0(m).

Proof This proof is in two pieces: first, we demonstrate by construction that the oracle
may be compressed logarithmically; and second, we prove that it cannot be compressed
further.

We define Q! to be the number of 1’s in HiEl . (This is by no means the only
way to compress a halting oracle. Chaitin’s number Q is equally dense; the proof using m
bits of that string is essentially the same as what follows. See Gardner [8] for an excellent

discussion of this material.)

14



We must first verify that if we are given Q%! we have enough information to construct
approximately 2™ bits of H*! using U(H*). We note that the number of 1’s in some section
of a halting oracle is the count of the number of programs which halt. In this case, we know
how many programs of length less than m will halt. So we simulate the operation of all
such programs until the correct number have halted. We then know which bits of I-I;",;l_l
are 1’s, and can write 0’s in the other places, and thus print the entire 2™ — 1 bits. (In the
course of these simulations, we will need to refer to a great many bits of H?. In fact, it can
be proved by a diagonalization argument that the number of bits we will need grows faster

than any H'-computable function of m.)

Now assume that the halting oracle can be compressed further, i.e., that for some ¢ > 0,
K¥(HEEN <m-(1- ).

This says that it is possible to use m — em bits to determine the fates of all programs

of length less than m. Call such a string ﬂ, and consider the following Turing machine

(called T):

(1) Use € to decide which programs of length less than m will halt;

(2) simulate all those programs;

(3) for every string that has been generated as the final output of one or more programs,
find the shortest program that generates that string;

(4) find the longest of these programs;

(5) erase everything except the output of that program;

(6) halt.

We observe that there is a string of length m of complexity at least m. This follows
from the fact that there are 2™ strings of length m, but only 20+ 21 4 ... 4 2m~1 —9m _ |
programs of length less than m.

Now note that the encoding p(T) of T has some fixed length; call it t. We recall that
no string of length m has complexity greater than m + |p(E)|. For large m,

m—em+t<m——§m.

But now we have found a contradiction. For, by the observation above, the output of T
will be a string of complexity near m, but T and Q describe it with significantly fewer bits.
Hence €1 does not exist, and

K¥ (Hit) = 0(log m). I
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5. On the Algorithmic Information of Halting Oracles, Big Jumps

Now we wish to show that

Theorem 2.2
i<j-1= KT (@H],) = o(m).

Proof Owur approach will be to use 27 . m bits of HY to construct m bits of Qftl. The
exponent r depends only on j — ¢ and a constant.

Without loss of generality, let 1 = 5 — 2. (We have seen that we can compute lower
order oracles from higher order ones.) Consider the following OTM M with [p(M)] = k
when started on a binary string w of length m:

(1) calculate the (w+ 1) bit of the binary numeral which represents the number of 1’s in
the first 22" — 1 bits of whatever is on its oracle tape;

(2) X that bit is a 1, halt;

(3) If it is a O, enter an infinite loop.

If the oracle tape read by M contains H'*!, then M halts if and only if the (w + 1)
digit of Q5 is a 1.

Assume we have Hg",;ikﬂ. By definition, this contains halting information for all OTM
programs of length less than or equal to m + k with H**! on their oracle tapes. In particular,

it contains halting information for M with input strings of length m. There are 2™ of these

programs, and each one yields exactly one bit of Q’;',;l. We are done, since we have already

shown that Q! is not compressible. I
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Chapter 3

On the Time Complexity of Extracting Bits
from a Compressed Halting Oracle

It is well known that the Kolmogorov—Chaitin complexity of initial substrings of the halting
oracle is logarithmic in the length of the oracle which they specify. All the usual examples of
corresponding compressions (e.g. Chaitin’s number 1) require unbounded amounts of time
for expansion. Any method which requires simulating a group of Turing machines until all
which will ever halt ha.vé halted must require an amount of time which grows faster than
any computable function; if the time could be bounded above, we would be able to solve

the halting problem. We now show that this is true of all such drastic compressions.

Theorem 3.1 Let H! be a compressed version of the halting oracle H. Suppose that
f(n) bits of H! suffice to specify the first n bits of H!, that is, that there exists a fixed

Turing machine which can compute H) from ﬁ}(n) for any n. Assume that

lim M =0.

n—oo g

Then there is no computable bound on the amount of time required to extract any single
bit of H! from H!.

Proof Assume that a block u of r bits of H! ending on the s*® bit, i.e. the bits with indices
from s — r + 1 to s, can be extracted from a sufficiently long block ﬁ}(n) of H! in time

T(s,r), where T is a computable function, i.e., that there exist M" and T such that

(g0, X, #,p(M")[s, , I/:]:.:}’(n)]) ——*T,("r)(m, A #,ul.
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We observe that this is equivalent to assuming that there is a computable bound on the
time required to extract a single bit of H! from H!. The assumption above clearly implies
a computable bound on the time required to get one bit: set r = 1. If we have a bound
on the time required to extract one bit, we can simply compose the Turing machine which
meets that bound with itself r times. The resultant machine will run in time boundable

by a computable function. (See, e.g. Lewis and Papadimitriou [13] for more details on
composition of Turing machines.)

Let
T(s,r)= >, T(i,4)

1<j<i<s
This expression has no explicit dependence on r, but T'(s,r) is obviously not defined for
r > 8. We define T(s, r) in order to avoid putting requirements on T'(s,). Note that T is
monotonic and bounds T above.

Recall the Turing machine M of theorem I.1. Let o(n) = n + 1, and let
7(n) = f(2n,n +1).

We will be considering the instances of M of length 2¥ — 1 of the form p(M)00-- - 0.
Let M’ be a Turing machine which takes a k-bit string n as input and

(1) computes the (n + 1) bit of the output of the appropriate instance of M;

(2) halts if that bit is a 1;

(3) enters an infinite loop if that bit is a 0.
Note that for all sufficiently large k,

lo(M')n| = [p(M')| + k < 2* -k -1,
and also

p(M)] + [p(M")] + 2k +1 < 2%,

Choose k large enough to satisfy the second inequality above. By the construction of
M/, the 2* bits of H' describing the halting behavior of the programs from p(M")00---0 to

p(M')11-- .1 (the instances of M’ with data of length k) are exactly identical to the string
generated by M.

Since T bounds T above, we can use M" to print these bits in time at most

T(2WPMII+E 1 1 2%) < r(2%).
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Further, we can use fewer than 2 bits of input to U to do this:

e |p(M")] is constant,

e specifying which bit of H! gives the halting information for p(M')11---1 requires no
more than |p(M')| + k + 1 bits (this is the parameter s),

e specifying r requires k bits,

¢ by assumption, specifying

1
Hzlp(M’)l+k+1_1

requires fewer than 2%~ bits, for all b,
* encoding the three data parameters requires at most 2(|p(M')| + k+ 1 + k + |[H!|) + 4

bits, and we are done, for the sum of all these lengths
lo(M")] + 2[p(M')] + 4k + 6 + 2+

can be made less than 2* for some b.
It might appear that we have proved a stronger result than originally stated, viz., that
there is some maximal fraction 2~° limiting the degree of compression. The problem is that

as T' gets larger, 7 gets larger, and as 7 gets larger, |p(M)| grows, and thus we cannot bound
|p(M')| absolutely. [l
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Conclusions and Directions for Future Research

Randomness is a subtle and slippery idea. This thesis has tried to enhance our understand-
ing of this important concept by exploring algorithmic notions of complexity.

The results on time bounded Kolmogorov—Chaitin complexity touch on the difficulty of
discovering patterns. It is not always possible to find structure with a reasonable amount
of effort.

In the last two chapters, we have illustrated the enormous power of halting oracles.
We have made repeated use of the idea of reducing a computation to a yes or no answer,
having a Turing machine halt or not halt depending on that answer, and then extracting
the answer—without having to go through potentially prodigious amounts of computation—
from a halting oracle. It is this powerful property of halting oracles which makes them so
hard to compress—either in space, as with the hierarchy of halting oracles (Chapter 2); or
in time, as with the first order halting oracle (Chapter 3).

There is a large literature on relativized computability, and there is a well understood
hierarchy of recursive degrees. It would be interesting to characterize the Kolmogorov-
Chaitin complexity of arbitrary oracles in the lattice of Turing degrees in a general manner.
The degrees which are weaker than the halting oracle but not recursive are especially inter-

esting.
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Appendix

Some of the results presented in this thesis are not original. The final theorem was originally
called a result on general recursive majorants of complexity. It was first proved by Barzdin’
(2], and was presented again, with a different proof, by Zvonkin and Levin [18]. These
articles were unknown to the author until L. Levin [12] mentioned the references.
Theorem 1.1 is, according to Levin, not at all deep. But there is some value in the
proof given, in that it provides an easy way to prove theorem 1.2.
The results on algorithmic information of halting oracles are, so far as the author knows,

original.
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