A High Performance Implementation of Prolog

Michael O. Newton

Computer Science Department
California Institute of Technology

5234:TR:86

A High Performance Implementation of Prolog

Michael O. Newton

Technical Report TR:5234:86
April 10, 1987

Caltech Computer Science Department

Pasadena, California 91125

Abstract

We discuss an efficient implementation of the Warren Abstract Machine (WAM) [12] in detail. Spe-
cial attention is given to data formats, memory layout, WAM optimizations and code generation
techniques. A final section describes some hardware considerations for even higher performance exe-
cution. Currently the compiler produces code that runs at approximately 900,000 logical inferences
per second (LIPS) on a single processor of an IBM 3090 using the naive reverse benchmark. Using
several of the yet unimplemented optimizations, we expect this figure to top one million LIPS.

1 Introduction

In 1977 David Warren published a set of papers on an efficient Prolog compiler for the DEC-20
series of computers [9, 10, 11]. The compiled code showed order of magnitude improvements over
previous interpreters — executing at approximately 40,000 LIPS on a DEC-20. Later, in October
1983, Warren presented a new method of compiling Prolog [12], through the use of an intermediate
code for a virtnal machine usually referred to as the Warren Abstract Machine (WAM). Familiarity
with the above references is required for understanding this paper.

In 1982, with support from IBM, Caltech decided to do an implementation of this abstract machine.
The current implementation is nearly finished and consists of approximately 8000 lines of Prolog
code (the compiler, optimizer, merger and WAM assembler) and 4000 lines of assembly (the run
time system). By writing the compiler itself in Prolog, we were faced with many realities we would
otherwise have ignored - size, debugging and garbage collection issues that are easily overlooked
with trivial test cases. The compiler completely compiles all of itsell.

This paper describes various implementation details for a high performance version of the Warren
virtual machine. While a few techniques discussed will be specific to the IBM 370 series of computers,
these will be in the minority.

' The sections are arranged in a bottom up hierarchy. The first two sections describe the lowest level:
data types and memory layout. The next section describes aspects of code generation. Following
this are some details of the highest levels: a summary of various changes that were made to the
WAM for performance reasons, and a brief overview of the large subroutines — the unifier, the fail
code, and evaluatable predicates. The final section relates architectural considerations the author
feels would have a major impact on the speed of compiled Prolog code. The appendices include
WAM, optimized WAM and assembly code for a small sample program.

Throughout the paper references will be made to instructions and data formats described in [12].
The reader is expected to be familiar with this paper. In all samples, WAM code is shown as Prolog
terms. In those (painful) cases when 370 assembly language must be shown, it will be without regard
for ‘card’ columns.

1.1 Acknowledgements

This work would not have been done without the help and comments of Jim Kajiya and Keith Hughes.
Working with both of these people has been very enjoyable and interesting. A good overview of our
compiler is in [1]. Some of the ideas in this paper came as a result of long conversations with Ross
Overbeek at Argonne National Labs (see also [4]).

1.2 Other Work

A few of the design decisions were the result of the useful statistics published by Evan Tick [6]. In
addition the reader is referred to the paper by Andrew K. Turk [7], who independently reports some
of the same optimizations, but who also has several “higher-level” optimizations.

2 Data Types

Prolog programs spend most of their time searching through clauses, looking for matches. This

‘matching’, called unification, is highly dependent on the types of data items involved. Thus, there
is a great need for a fast way of determining the type of data pointed to by an object. Two possible
method are in general use: separate areas for different data types, or tagged data items.

We have taken the tagged data item approach. While not ideal on the new, larger XA series of
IBM’s, for most System/370 architecture machines it is ideal — there is a ‘wasted’ high order byte
in every pointer word that lends itself very nicely to tagging. By appropriately picking these tags,
significant speedups (factors of 2-4) can be obtained.

There are only a few primitive types necessary in a Prolog Architecture:

o pointers — these can point at any data type, including themselves.
e number — integers, floating point and possibly others.
e atoms - ‘string’ constants.

e structures — composed of any data type.

All user data is built out of these data types, mainly through the use of structures. Thus, only a
small number of distinct tags are needed to encode the various data types. However, in addition
to these bits, a garbage collection bit is also necessary. Throughout this paper, “simple data type”
refers to any data type except a structure and a pointer is said to point to an object if it points to
anything but another pointer. Note that pointer chains do occur.

Integers, pointers, and atoms each conmsist of a tag and then the data, sometimes in the form
of an address. The data format format of a structure is more implementation dependent. The
representation will depend on the choice of tags and the available instructions as well as detail of
how stacks grow and shrink.

2.1 Tags

Of the data format decisions, none is more important than the tags applied to the various data
types. In the execution of Prolog only like terms are compared, so comparing tags is the single most
frequent operation. These changes can easily produce a factor of two or three in performance. Note

that most of the commments apply only to untagged machine architecures. Tagged architectures
are preferable, but rarer.

2.1.1 Pointers

When inspecting tags in a WAM instruction the most common decision is whether an item is a
pointer or not. Thus, in our implementatiorn the sign bit of each word determines if the item points
to an object or to another pointer. As will be shown during the discussion on dereferencing, this
will have major impact on the speed of the compiler.

If the item is not a pointer, the next most common decision is between a structure or list and an atom,
number, or constant. To determine this, we use the second highest order bit to indicate a structured
data item. On the IBM architecture, this has a second advantage — the testing and branching can
be done in one instruction (very important on 3090 type architectures where instruction count needs
to be kept minimal) as shown here:

BXLE R1,R1,TAGSET % Branches if second highest order
% bit is set (structure). R1 may
% be any odd numbered register. Ri
0, : . .
% is destroyed by this operation.

If the item is a pointer, we must determine if it is a free variable or part of a pointer chain. There
are several possible ways of representing this choice:

e As above, by using the second highest order bit.
e By having a free variable point to itself.

e By having a free variable be stored as a zero.

Which of these should be chosen is highly architecture dependent. I will discuss the differences in
detail.

The first choice, using the second highest order bit is a simple but effective way of implementing
unbound variable tagging. Usually however, one of the other two methods would be quicker, as bit
tests are usually not as efficient as comparisons or sign tests.

The second possibility has the advantage that it is very robust — it is very unlikely that a random
location in memory points to itself without being set up this way. This is very useful when debugging
a compiler. However, it involves several inefficiencies. One of these is during garbage collection. Each
free variable that is moved must have its address translated. In addition, to test for a free variable,
one must do a memory reference, so a performance penalty is likely.

The final possibility, storing a free variable as a zero, is risky when first debugging a compiler — there
are many other ways that a zero can be located in memory. But, the advantages are numerous.
Instead of the need for doing memory references to determine whether a variable is free or not, only

a simple test must be done. When storing multiple free variables (as in allocate(N)), one needs
only do a block copy of zeroes.

2.1.2 Lists as structures

Another minor modification to the WAM in our implementation was the removal of the distinct tags
for structures and list. This is most noticeable in the switch_on_term instruction, which now only
takes two arguments — the place to go for atoms, and the place to go for structures. We did this so
that unify code (in-line and in the unifier) would not have to detect whether a list coded with a tag
was matching a list coded with a functor of period.

2.1.3 System/370 particulars

Unfortunately, on the System 370, there is no single instruction to store a zero. And, since the need
to test for a free variable happens in less than 35 percent of dereferencing loops [6], it is slightly
more efficient to have variables point to themselves (ignoring time spent garbage collecting). At one
point we almost reserved a register to contain zero, but the supply of general purpose registers in
this architecture is limited, and we believed a free register would have been better spent on other
constants. Since then we have been seriously considering using a zero — see later.

In the (original) System/370 architecture, memory address are 24 bits wide, and the high order byte
of each word lends itself nicely to tagging. In the later, extended addressing, architecture, up to 31

bits may be used for addressing, however, most of the *virtual machines’ still run in 24 bit address
mode. While we implemented tagging in the high order byte of address words, it would be relatively
simple to put the tags in separate words, and have full extended addressing. This would result in
a slight decrease in speed due to a higher number of memory references. Current estimates would
place the decrease around 30 percent — since the sign bit can still be used for tagging.

2.2 Terms

Prolog semantics imply a right to left, depth first order during unification of terms. To keep the
number of memory accesses to a minimum, it is critical to lay out terms in as efficient manner as
possible. On some machines small integer offsets work well in one direction but not in another. This
would affect the direction of a term. As another example, to detect the end of a term, there are
several choices — in some systems there will be enough bits in a word to include some flag bits, while
in other systems a seperate word would be needed, and in others the arity could be stuck in a header
word.

The layout of terms in memory is affected by several other decisions — the way bytes and words are
stored in memory, the ease of detecting the end of a string of words and the design of the unifier.

2.2.1 Direction of terms in memory

After checking for similar functors and arities, unification in Prolog proceeds from left to right.
Thus, when building a structure, the most efficient method of storing the data in the order:

o functor/arity,
e argument 1,
e argument 2,

e argument n.

Currently stacks grow downwards so terms are built within the heap (and code area) in this direction.

2.2.2 The end of a term

We considered two possible ways of determining the end of a term in memory. The first solution was
to store a flag of zero or negative one at the end of the term. However, this had several disadvantages:

When unifying different arity terms many unifies will be done before the unifier will notice
that the arities are different.

e When unifying an extra memory reference must be done at the end of each structure.

When garbage collecting, the garbage collector must determine the size of the structure to be
moved and then do some calculations.

It wastes memory.

Since the functor pointer in the first word of our data structure was just a address pointer into the
atom table, there was an unused byte at the top of the structure. This was used to store the arity.
Though limiting the arity of structures to 256 (actually 170 due to a garbage collection bit), this
was considered a minor limitation compared with the above inefficiencies.

2.3 Other data items

In the initial implementation, integers and floating point numbers are stored as a tag and the number.
We plan on expanding this, so that a full 32 (64 for floating point) bits can be used. Atoms are
stored as a tag and a pointer to the character string, and references are stored as a tag and a pointer
value. In each of the later cases, extended addressing could be accomplished by separating the tag
and data into separate words — with only a minor performance penalty.

3 Memory Layout

The memory layout that we choose were very close to the recomendations in [12]. Those changes
that were made either reflected either the fact that we were not using a byte coded interpreter, or
the peculiarities of the architecture.

Overall, there are seven data areas:

e Compiled Code.
e Push Down List — for the unifier.
e Trail - tracks the variables that are bound for the failure code.

e Environments — that keep track of the state of the machine.

Choice Points — that represent alternative not yet followed.

Heap - the global memory area.
e Data space — for asserts and retracts.
Note that we have split Warren’s general stack into an environment stack and a choice point stack

so that we could save memory by removing unused choice points. In addition, [12] does not mention
code space as no mention is given of assert’s and retract’s.

Of these areas, the PDL, Trail, Environments, Choice Points and Heap all act like stacks. Structures
are stored only in the heap and code areas. In addition, a frequent needed piece of information is
whether the structure being built is in the “most recent” area of the Heap.

3.1 Stacks
3.1.1 Direction

As already mentioned, a structure consists of a structure tag and a pointer to the structures elements.
The first word pointed to at this location has a tag representing the arity of the function and a pointer

to the functor name (atom) location. The next (growing downwards on the IBM) arity number of
words represent the subterms.

Since, for almost all the stacks, we wish to reference areas off the top of the stack, all stacks
grow downward. This is only necessary on 370 style architectures, where base plus (positive) offset
addressing is the only addressing mode. Should this be done, the order of the stacks, as suggested
in ([5]) should be reversed, with the code area, and the heap as the top and next to top stacks in
memory. As noted below, this permits efficient trailing.

Unfortunately — for a System 370 architecture — we decided to have the heap grow in the same
direction as all the other stacks. This was a mistake: to access a structure in read mode we would
subtract the structure pointer to the end of the structure and use positive offset; and to build an item
in write mode, we would push a word at a time. If, instead, the code space and the heap were put
in low core relative to the other stacks, building a structure could be done with cheaper instructions
and reading a structure would take at most one subtract (as opposed to an always needed subtract).
With this changed, we would expect speeds of well over a 1,000,000 LIPS on a single processor of a
3090. We hope to try this out in the near future.

3.1.2 Overflow detection

We do not explicitly test for stack overflow. Rather, we put a special page at the top and bottom
of each stack. Using the storage key protection mechanism (virtual memory mapping) mechanism
of the IBM 370 architecture, overflow can be detected by trapping thereby saving valuable cycles.

If this alternative is not available on a particular machine, another possibility is to have the compiler
compute the maximum number of words each procedure can push onto each stack. Then, at the
beginning of each procedure, a test can be done to see if stack overflow is possible.

8.1.8 Order of stacks for trailing

Trailing is only performed when binding a variable in the code space, or in the heap. However, when

trailing the heap, this need only be done when binding a pointer in an older area of the heap than
the current frame.

Another consideration in the ordering of stacks is trailing. By having the heap grow towards the

code section, and away from the other stacks, a simple register comparison (R > HB) tells us if the
new address is in a portion of the heap that must be trailed.

Note that we do not use the unsafe variable distinction of [12]. This is reflects our choice of free
variable representation and the expense of checking variables. Since the WAM argument registers
are located in memory and a free variable points to itself, the unsafe variable instructions would
necessitate a test and then a modification of the register to a newly set up location in the heap if the
variable was still unbound. Rephrased, a register pointing to itself is harder to handle than having
all variables located in the heap.

When we change our representation of a free variable to a zero instead of a pointer that points to
itself, then we will also restore the unsafe instructions.

3.1.4 Block moves of memory and registers
Finally, note that the ordering of the prolog virtual registers (AO...An in ([5])) is important. Often,

6

blocks of these are moved as a single unit, so it is helpful for the order to be the same as that saved
by the try me_else and similar instructions.

3.2 Globally Addressable Segment

In certain machines, global memory layout is very important. In particular, certain constants, save
areas and routines are widely used. By making these easily addressable, memory fetches for the
addresses of these values can be saved.

The problem is especially acute on BASE+OFFSET type architectures that do not provide in-line
constants (IBM 370, 80x86). In our version of the compiler, we reserve a special register to always
point to this “globally addressable” memory segment. This saved loading a pointer to such important
constants as NILPTR (for checking ends of lists), the constant four (for memory addressing), and
various tag values. That the unifier and fail code were also there meant that routines could branch
straight to the code rather than having to load an address and then branch.

For a further increase in speed, the first item in this global area was the constant ‘[]’- Thus, we

could use the low core pointer (appropriately tagged, and always residing in a register), in any WAM
instructions that tested for nil or for the end of a list.

3.2.1 Often used constants

The prolog system starts with certain atoms predefined — ‘[|, * ’, ‘user’, and ‘.". Note that X =*°
is the result of name([],X).

By having the atoms stored in the form:

DefConst PtrTo(NextAtom - 4)
ATOM: DefConst Lenght (Atom) ,
DefConst C’Atom’

the atom insertion code is relatively fast — one only has to do a long string comparison on those
atoms which have the same number of characters.

Another major decision was the Argument registers. It would be possible to put the low order two
or three WAM argument registers into real registers and gain speed in the standard ’append/3’
timings — which does very few non-deterministic procedure invocations. However, in any real Prolog
program there would be many more choice points, and the constant need to store and retrieve WAM
machine registers like CP, HB, and H would slow execution down. Ideally there should be enough real
machine registers for both these registers and the argument registers, but this is not the case on

any currently popular machine, so we put these constants into a globally addressable segment for
efficient access.

8.2.2 Evaluatable predicates and common routines

Presently, in our implementation, most of the (non-IO) evaluatable predicates are also in the globally
addressable segment. However, certain ones of these — var/1, integer/1, repeat, fail, true, atom/1 ...
should be coded for inline by the code generator. This is a very easy optimization. Ideally though,
the compiler front end would detect situations like:

foo(X) :- var(X), blech(X).

foo(X) :- integer(X), twilde(X).
foo(X) :- float(X), blorp(X).
ufoo([X|Y]) :- blechity(X), foo(Y).

and generate appropriate code — the switch_on_term instruction would automatically go to the right
routine, and no choice points would be ever set up.

4 WAM Code generation

4.1 Registers

Several of our optimizations result in better register utilization. One of these depends on the inter-
action between switch_ on_term and getstruct. Since switch_on_term must already dereference
argument register zero, if the next get or put instruction references the same register, the value is

already loaded.

When in read mode after a getstruct, the following unifies occur off of the § register. After each
unify the 8 register is updated to the next item. However, it is possible to point to the last item in
the term (given that getstruct knows the arity of the functor) and then do all memory references
off of an offset. This can save several pointer subtractions on some machines.

In the flow control instructions, the argument register for the current procedure are saved and
restored. To expedite this, we use block moves (STM and LM on a 370) and appropriately ordered the
registers in memory and on the backtrack stack.

An interesting observation is that for normal flow through WAM instructions, only three work
registers were used (above the normal WAM registers). The only places were more registers are
needed are the unifier, the fail code and the evaluatable predicates.

4.2 Trailing

Trailing receives relatively little coverage in the Warren paper, in a real implementation, however, it
is very costly — either one must trail every time one binds a variable (extremely expensive in terms
of memory and memory speed), or one must test whether one needs to trail. If stacks are ideally
ordered this test consists of comparing the HB register with the top of the Heap, and trailing if H
< HB (ie: binding a variable in a non-local stack frame). If stacks are not ideally ordered, one must
also test to make sure that the address is withing the heap. In either case, in most implementations
a sequence like:

CR H,HB
BLE NoTrail
ST H,Trail
S H,FOUR

NoTrail:

must be coded. On a fast machine, the branch, which is often taken, destroys pipelines. In addition,
on many machines, one wishes to branch to places that are ideally located (full word/double word

boundaries). In the above code, NoTrail’ is reached through both branches, so appropriate alignment
is difficult.

In reality, trailing usually need not be done. Consider the test case, append/3:

append([H|L1],L2, [HIL3]) :- append(L1,L2,L3).
append([],L,L).

along with the mode declaration:
:~ mode append(+,+,7).

We are guaranteed that the first argument, the input list is instantiated. Then, append takes the
tail of this argument, and recursively calls itself. Thus, the first argument must be fully instantiated!
This is easily detectable by flow analysis.

If the first argument is fully instantiated, there is no point in trailing the third argument in all of
the recursive calls - if append ever fails in the middle of execution, it will fail all the way back to

the beginning. Thus, we can change the WAM code for append/3 to never trail after the first call.
(See the appendices).

To do this, we introduce several new WAM instructions. The first, trail_it causes the immediate
trailing of an argument. trailing(on) and trailing(off) are meta-instructions telling the code
generator when it need not generate trail code when producing code for instructions like getstruct
or any of the unify instructions. The net effect is to save many branches with the large loss of
performance suffered by a broken pipeline.

4.3 Dereferencing Loop

The dereferencing loop is the single most commonly executed piece of code in the system. It therefore
is also one of the most time critical. Given hardware that will not dereference automatically, it is
most important to arrange tagging and the representation of pointers so that it can be executed
as quickly as possible. As Tick points out in [6], 66 percent of the time dereferencing terminates
immediatedly with a bound item. Another 33 percent of the time only one loop is necessary. Based
on this we try to test if an item is bound as soon as possible. In addition, we unfold the loop once,
so that if the item is a pointer, a loop is only necessary after first dereferencing once.

At the same time, one of the times that dereferencing is most often done is in the instruction
switch on term. As already mentioned, we keep the bound value around in the § register if the
next instruction uses argument register zero. Also, in the switch_on_term deref loop, we need to
decide if the atom is bound to an atom or to a structure. Since a structure is much more common,
this occurs as a special first test in the deref loop.

4.4 Atoms

Prolog atoms and functor names are stored as strings in a special area. It is possible to detect
cquality of atoms by doing a string comparison, but it is much more efficient to do this only at
the time of atom creation. New atoms can only be created by reading or through the metalogical
predicate name/2. When either of these encounters an atom, it calls the atom insertion code with

a pointer to the string length and the string itself. The atom creation code then checks the the
linked list of atoms, searching for an equal. If none is found the new atom is inserted into the list.
From then on, atom comparisons can be done solely by an address compare. Ideally the linked list
of atoms would be a sorted binary tree, but we have not yet felt this was worth the coding time.

5 WAM Optimizations

5.1 Elimination of Read and Write Modes

One of the easiest ways of making the Warren Abstract Machine run faster is to eliminate read and
write modes. These modes are set only by the two instructions put_structure and get_structure.
Of these two instructions put_structure always leaves the machine in write mode, while the in-
struction get_structure leaves the machine in read or write depending on whether the argument
is bound or not, respectively.

By generating the unify instructions that follow the get_structure or put_structure instruction
directly into the code stream of the branch points, each of these unify instructions no longer needs to
test for read or write mode. This saves time by eliminating branches and tests as well as preserving
a relatively well sized pipeline.

5.2 Instruction Collapsing

Typically the instructions that follow a get_structure or put_structure, are very stereotypical.
Usually, these instructions can be ‘collapsed’ together into a single more powerful WAM instruction
that will generate less assembly language than its original constituents. One example of this is when
several gen nil instructions follow one another. By compiling these as a single WAM instruction
several memory access to the nil pointer can be eliminated. Another example is an instruction that
calls the unifier followed by a proceed. In this case the unifier can be given the return address that
the proceed would have branched to.

5.3 Listfollow to build structures efficiently

Another common activity is the building of lists. If the list is built one element at a time, from
the head first, one can collapse the unify of the previous put_structure, the put_structure, and
unify of the next value into one instruction. For cdr-coded machines, this can be done directly.

6 Prepackaged Routines

6.1 TUnifier

The unifier is not called as often as we initially expected. This is largely due to the way that
structures are built and taken apart in the clauses — all the work is explicitly stated and, thus, coded
as WAM instructions. However, when the unifier is called, it has to do a fair amount of work.

Most of the optimizations already described in this paper, especially with regards to dereferencing
and structure representation, not only speed the in line WAM code, but the unifier as well. If care

10

is taken when writing the unifier to handle the cases where one of the input arguments dereferences
to a variable, a large percentage of calls will be handled in the most efficient manner. By having the
unifier easily addressable, less time is spent on overhead to reach it.

For those cases where the two inputs are both complex structures, it is advantageous (at least on a
System 370 architecture) to encode the unifier as a loop, using a small push down stack to store the
triple:

e Pointer to where in term one the unifier is.
e Pointer to where in term two the unifier is.

e Number of arguments left at this level.

6.2 TFail code

The fail code is frequently used, and usually involves considerably more computation than unifying.
Untrailing often is done on more trail items than is necessary, but with current machines, testing to
avoid this work would take more time than the work itself.

6.3 Evaluatable Predicates

The evaluatable predicates are relatively straightforward to write, once one has decided the vari-
ous data formats. The hardest part is detecting all the boundary conditions, like name(’’,X) or
name (X, [1). For speed purposes, certain predicates like var (X), integer(X), or atomic(X) should
be coded in line, or, if possible, as part of the switch_on_term instruction (see Chapter 3)

.

7 Future directions

Using the optimizations already implemented, we achieve speeds on the order of 870,000 LIPS. With
the addition of the other optimizations we expect speeds on the order of 1,100,000 LIPS. The author
believes that without major changes in hardware, Prolog machines could be easily built that would
obtain roughly 5-10 million LIPS. To substantiate this claim, I will delve some into our particular
code generator.

In the analysis of instruction timings on the IBM 3090, the overall rule was to keep instruction count
to the minimum. Currently our main append loop consists of 30 instructions executing at the rate of
870,000 LIPS (Using optimizations already mentioned in this paper, but not yet implemented, will
lower the instruction count to 28). Using the following optimizations, this would reduce to under 24
instructions. At the same time 4 memory references would disappear. These optimizations include:

¢ Base plus offset addressing considerations take away several cycles.
e Most of the remaining memory references can be placed in registers, these are:

1. The argument registers.

2. The list functor (./2).

3. The structure tag.

4. The constant four (for addressing).

11

* We have not yet implemented free variables as zeros, and,

e two instructions (BXLE and ICM) are used only for a fraction of what they do.

Simply having 82 registers instead of 16 would alleviate almost all of these inefficiencies.

The Prolog compiler only uses approximately ten percent of the instruction set of the IBM 3090.
And, almost all branch targets and offset are small (less than 128) positive integers — thus the
instruction set could be based on a very compact instruction set. In addition, certain key sequences
(ST X,... , S X,=F"4’) could be considered as individual instructions (push(X)). Combining these

into single op codes would reduce memory size for the program and increase the effective instruction
fetch/execution rate.

Ideally the WAM would be rebuilt at a lower level. The cuirrent code generator reflects this — most of
the WAM instructions (like get_structure or unify value) are built from a small set of primitives
that map into one to eight IBM 370 instructions. The WAM is at too high a level — too many
possible optimizations are lost, and 370 assembly is not the ideal target.

In addition to factors of two to four speed up in execution from the above changes, another possibility
for increased performance is parallel execution. Though the Argonne group has obtained extremely
large speedups on certain problems through the uses of independent execution on separate machines,
another more fundamental approach would be applicable to almost all programs — two to four tightly
coupled machines. These machines would share registers and data paths, and would execute different
parts of the same procedure call. For example, in the append example used in the appendices, the two
get_list instructions and their associated unifies could be done almost completely independently.
Note also that the code for trailing and restoring from the trail can be done much more efficiently
using a special purpose stack — only those locations that are still useful need be restored.

In the extreme, these tightly coupled machines could be considered as one machine with a very long
instruction word (horizontal microcode). Each argument register would have associated with it a
path to memory, a dereferencing engine and a very simple ALU.

A A sample program
All of the other appendices show WAM code related to the following sample program:

append([HIL1],L2, [H|L3]) :- append(L1,L2,L3).
append([],L,L).

rev([H|T],0ut) :- rev(T,TR), append(TR, [H],Out).
rev([1,[1).

B Compiler WAM Code

The following is the output of our compiler immediately after code generation. No optimizations of
any sort have been applied.

comment (procedure(/(append,3))).

12

*$LABEL’ ("L1’).
switchonterm(’$LABEL’ (*L4'), *$LABEL’ (*L5’)).
try_me_else(*$LABEL’ (°'L6°),3).

*$LABEL’ (*L5°).
getlist(a(0)).
unifyvar(t(0)).
unifyvar(t(1)).
getvar(t(2),a(1)).
getlist(a(2)).
unifyvalue (£(0)).
unifyvar(£(3)).
putvalue(a(0),t(1)).
putvalue(a(1),t(2)).
putvalue(a(2),t(3)).
execute (’$LABEL’ (°L1°)).

*$LABEL’ ('L6°).
trust_me_else_fail.
*$LABEL’ (°L4’).
getnil(a(0)).
getvar(t(0),a(1)).
getvalue(t(0),a(2)).
proceed.

comment (procedure(/ (rev,?2))).

*$LABEL’ ("L2').
switchonterm('$LABEL’(’L7').’$LABEL’(’L8')).
try_me_else (*$LABEL’ (*L9'),2).

*$LABEL" (°L8").
allocate2(3,0).
getlist(a(0)).
unifyvar(p(1)).
unifyvar(t(0)).
getvar(p(2),a(1)).
putvalue(a(0),t(0)).
putvar(a(1),p(0)).
call(*$LABEL’ (*L2')).
putvalue(a(0),p(0)).
putlist(a(1)).
buildvalue (p(1)).
buildnil.

buildend.
putvalue(a(2),p(2)).
deallocate.

execute ("$LABEL’ (*L1’)).

*$LABEL’ (*L9’).
trust_me_else_fail.
*$LABEL’ (*L7°).
getnil(a(0)).
getnil(a(1)).
proceed.

13

C Register Optimized WAM Code

After generating code, it is possible to do WAM register optimizations. We have not yet implemented
this, but plan on doing so soon. The interested reader is referred to [8] and [7] for more details.

Notice that our compiler has produced extra labels (branch points). These are insignificant, as they
do not produce any executable code.

comment (procedure(/ (append,3))) .

*$TABEL (*L1’).
switchonterm(’$LABEL’ (*L4’), *$LABEL’ (*'L5’)).
try_me_else(’$LABEL’ (*1L6°),3).

*$LABEL’ (*L5’).
getlist(a(0)).
unifyvar(a(3)).
unifyvar(a(0)).
getlist(a(2)).
unifyvalue(a(3)).
unifyvar(a(2)).

execute (*$LABEL’ ("L1%)).

*$LABEL’ (*L6°).
trust_me_else_fail.
*$LABEL’ (*L4’).
getnil(a(0)).
getvalue(a(1),a(2)).
proceed.

comment (procedure(/(rev,2))).

*$LABEL’ (°L2°).
switchonterm(’$LABEL’ ("L7’), "$LABEL’ (*18°)).
try_me_else(’$LABEL’ (*L9’),2).

*$LABEL’ (*L8’).
allocate2(3,0).
getlist(a(0)).
unifyvar(p(1)).
unifyvar(a(0)).
getvar(p(2),a(1)).
putvar(a(1),p(0)).
call(*$LABEL’ (*L2°)).
putvalue(a(0),p(0)).
putlist(a(1)).
buildvalue(p(1)).
buildnil.

buildend.
putvalue(a(2),p(2)).

14

deallocate.
execute (’$LABEL’ (*L1°)).

*$LABEL’ (*L9°).
trust_me_else_fail.
*$LABEL’ (’L7’).
getnil(a(0)).
getnil(a(l)).

proceed.

D Optimized WAM Code

Either with or without register allocation, the WAM code is then run through our optimizer. This
pass detects many of the optimizations cited in this paper. Here is a sample of the output:

comment (procedure(/ (append,3))).

*$LABEL’ ("L1°).
switchonterm(q('$LABEL'('L4')),q('$LABEL'('RL5'))).
try_me_else(*$LABEL’ ('16°),3).

*$LABEL’ (fast(’L5’)).
getlist (*SPHack’, [unifyvar(a(3)),unifyvar(a(0))], 'L5").
getlist(a(2), [unifyvalue(a(3)),unifyvar(a(2)),execute(*$LABEL' (*L1°))1).

*$LABEL’ (fast(’L6’)).
trust_me_else_fail.

*$LABEL’ ('L4’).
getnil(a(0)).
getvalue_proceed(a(1),a(2)).

comment (procedure(/(rev,2))).

*$LABEL’ ("L2°). .

switchonterm(’$LABEL’ (*L7'),q(*$LABEL’ (*L8"))).
try_me.else(’$LABEL’ (*L9°'),2).

*$LABEL’ (’L8’).
allocate2(3,0).
getlist(a(0) . [unifyvar(p(1)),unifyvar(a(0))]).
getvar(p(2),a(1)).
putvar(a(1),p(0)).
call(*$LABEL’ ('L2’)).
putvalue(a(0),p(0)).
putlist(a(1)).
buildvalue(p(1)).
buildnil.

buildend.
putvalue(a(2),p(2)).

15

deallocate.
execute (’$LABEL’ (*L1°)).

*$LABEL’ (fast(’L9’)).
trust_me_else_fail.

*$LABEL’ ("L7’).
getnils_proceed([a(0),a(1)]).

E Optimized WAM Code with Trailing Optimization

Until this point all code would run equally well with any variable as input or output, and no mode
declarations have been used. However, by flow analysis of the program, the optimization discussed in
the section on trailing can be applied. This results in the elimination of trailing code in the getlist
and unify instructions. In addition, much of the flow control previously included (try.me_else,
trust_me else fail) can be eliminated. (Unfortunately, this has no affect on speed.)

Included in the code are comments that explain most of the instructions that were added to the
WAM instruction set.

Here is what the new code would look like:

comment (procedure(/ (append,3))).
trail_it(a(2)).
trailing(off).

comment (internal_procedure(/(internal_append,3))).
*$LABEL" (°"L1’).
switchonterm(q(*$LABEL’ (*L4’)),q(’$LABEL’ (*RL5"))).

*$LABEL’ (fast(’L5")).

%% 'SPhack’ implies the argument is already in register 1, and

%%%h has been dereferenced, all courtesy of ’switchonterm’.

ook

%%% The following shows how unifies are incorporated

%%% into the respective get instructions.

getlist (’SPHack’, [unifyvar(a(3)),unifyvar(a(0))],’L5*).

getlist(a(2), [unifyvalue(a(3)),unifyvar(a(2)),execute(’$LABEL’ (*L1°))]).

*$LABEL’ ('L4’).

getnil(a(0)).

%kkh For effiency, we combine many pairs of: instruction, proceed
%hh as a single WAM instruction. This increases prevents branches
%%% to branches.

getvalue_proceed(a(1),a(2)).

trailing(on) .

comment (procedure (/(rev,2))).

16

*$LABEL’ ("L2°).
switchonterm(’$LABEL’ (*L7’).,q(*$LABEL’ (*L8°))).
try_me_else(’$LABEL’ ('L9°),2).

*$LABEL’ ("L8"’).
allocate2(3,0).
getlist(a(0), [unifyvar(p(1)),unifyvar(a(0))]).
getvar(p(2),a(1)).
putvar(a(1),p(0)).
call(*$LABEL’ (*L2°)).
putvalue(a(0),p(0)).
putlist(a(1)).
buildvalue(p(1)).
buildnil.

buildend.
putvalue(a(2),p(2)).
deallocate.
execute (' $LABEL’ (°L1°)).

'$LABEL’ (fast (’L9*)).
trust_me_else_fail.

*$LABEL’ (*L7°).
getnils_proceed([a(0),a(1)]).

F IBM-370 Assembly

After the mandatory optimization pass, IBM 370 Assembly is produced. The code in this section
is optimized for the 3090 series processors as much as our scant amount of data has allowed. In
addition, markings are provided to indicate what code is executed in a typical loop through the two
procedures. This is the code that currently executes at approximately 870,000 LIPS. Note that the

trailing optimization is not included.

(A few of these optimizations have been done by hand, as mentioned earlier. The code, however,

has run on a IBM 3090.)

* These equates represent the offset into each of the stacks

* for various values:

B$B EQU 0
B$HB EQU 4
BYTR EQU 8
B$PLACE EQU 12
B§CP EQU 16
B$E EQU 20
B$TOPE EQU 20
B$CE EQU 24
B$N EQU 28
B$ARGS EQU 32
B$AL EQU 32
CE$CP EQU 0
CE$CE EQU 4
CE$CUT EQU 8
CE$N EQU 12

17

-2
->
->
->

CE$VARS EQU

* These are the various register assignments. Many of the assignments
* must be kept in this order.

LC
BASE
s

H

B

HB
IR
URET
CP

E
TOPE
CE
FLAGS
*

*

*

* --> comment{procedure(/(append,3)))

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU

BALR
USING

16

R4
RE
Ré
R7
R8
RO
R10
Riil
R12
R13
R13
Ri4
R14

*

BASE, 0
*,BASE

low core pointer

current addressibility
structure pointer

top of heap

top of backtrack point stack
Heap backtrack

top of trail

return for the unifier
continuation pointer

top of environment stack
top of environment stack
Current envioroment
system flags for tests

* K K K ¥ K K K K K ¥ ¥ ¥

* --> spwitchonterm(q($LABEL(L4)),q($LABEL (RLE)))
L

Hi

H2

HO

LIR
BNM

BXLE

B
DS
c
BE
L
LTR
BNM

BXLE

B
DS

LTORG

DS
EQU

R1,ARGS+4%0
S.,R1

H2
R1i,R1,RLE
L4

oD
R1,0(,R1)
HO
R1,0(,R1)
S,R1

H2
R1,R1,RLE
L4

oD

Here's a nice place
0D

*

* --> try_me_else($LABEL(LSE),3)

*

Ls

EQU

*

*
*
*
*

*
*
*
*
*

*
*

*
*

*
*
*
*

Get an arg-reg ptr
variable?

No -- we’re done
Sneaky !

quick branch

same 7

yes -~ we’'re done
otherwise go another level
variable?

Ne -- we’re done

Sneaky |

quick branch

prevback

save space on stack
save it all

save N
get where to go

efficently store!!
push(b) prevback:

CUT = prevback

save H for backtracking

* --> getlist(SPHack, [unifyvar (a(3)),unifyvar(..)],..)

H6

* K K ¥ ¥ ¥ ¥

Ri set by switchonterm
go to right routine

set tag bits

set arg

get & store functor pointer
bump heap and clear tag
Lower than HB?

Yes, no need

save it

LR R3,B
push(b) An...A1
S B,=F*44°’
MVC 32(12,B),ARGS
push(b) N:
LA R156,3
L URET,=A(L8)
Push (b) HB, TR, Place, CP, TOPE, CE & N:
SIM HB,R16,4(B)
ST R3,0(,B)
ST R3,CUT
LR HB,H
> LB
LTIR s,8
BM H3
write mode -——-
0 H,STTTAG
ST H,0(,S)
MVC 0(4,H) ,CDOTPTIR
SL H,STTTAG4
CR S,HB
BL
ST §,0(,TR)

18

s TR,FOUR

*

push it on the stack

->

->

->
->
->
->

->
->
->
->
->
->
->
->

->
->

H7 EQU *
* Build instructions -----~--c-—v
* unifyvar(a(3))
ST H,ARGS+4*3 * store value
ST H,0(,H) * and save new free var
S H,FOUR * and bump H
* unifyvar(a(0))
ST H,ARGS+4%0 * gtore value
ST H,0(,®) * and save new free var
] H,FOUR * and bump H
B H4
DS oD
LTORG Here's a nice place
DS oD
H3 EQU *
RLE EQU * * Label for switchonterm
* Read mode - -- -
CLC 0(4.8) ,CDOTPIR % sea if same functor as heap
BNE FAIL * No, go fail, else...
* clear struct tag, sub 4, and all other subs
HE EQU X'D0000000’ +12 * compute
SL S,=A(HE) * do it
* Read instructions -----=------
* unifyvar(a(3))
MVC ARGS+4+3(4),8(S) * move what S points to
* unifyvar(ao0))
MVC ARGS+4%0(4) ,4(S) * move what B points to
* End of getlist/getstruct------
H4 EQU *

* ~-> getlist(a(2), [unifyvalue(a(3)),unifyvar(..),..1)

IcM S,X'F’ ,ARGS+4%2 * Get an arg-reg ptr
H12 BM H9 * No -~ we are done
[+ §,0(,S) * game ?
BE Hi3 * yes -- we are done
ICM S.X'F',0(S) ¥ else, go another level
BM H9 * No -- we are done
[+ 5,0(,8) * game ?
BE H13 * yes -- we are done
B Hi2
Ds oD
H13 EQU *
* write mode------m--——meommae
] H,STITTAG * set tag bits
ST H,0(,8) * sat arg
MVC 0(4,H) ,CDOTPTR * got & store functor pointer
SL H,STITAGL * bump heap and clear tag
CR S,.HB * Lower than HB?
BL H1iB * Yes, no need
Hi4 ST 8,0(,TR) * pave it
] TR,FOUR * push it on the stack
Hi6 EQU *
* Build instructions -—-—-mo——u_
* unifyvalue(a(3))
IcM R1,X'F',ARGS+4%3 * Get an arg-reg ptr
H17 BM Hi8 * No -~ we are done
C R1.0(,R1) * game 7
BE His8 * yes -- we are done
IcM RL,X*F',0(R1) * else, go another level
BM Hi8 * No -- we are done
[R1,0(,R1) * pame ?
BE H18 * yes -- we are done
B H17
DS ()]
Hi8 EQU *
ST R1,0(,H) * and push value
S H,FOUR * bump heap

* unifyvar(a(2))

