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We present a method for the automatic compilation of concurrent pro-
grams into self-timed circuits. The compilation is directed by the syn-
taz of the source language and produces linear-sized implementations
of arbitrary concurrent programs. We have constructed a compiler
which performs this translation.

An automatic method for synthesizing a digital circuit from an ab-
stract specification represents an important step forward in managing
the complexity of VLSI system design. By allowing the designer to
think in terms of high-level programs instead of detailed circuits, sys-
tems can be designed in less time with fewer errors. In fact, if formal
proofs are used to verify that the program implements the system
specification, the circuits derived are correct by construction.

To take full advantage of the inherently concurrent nature of dig-
ital circuits, we have chosen a variant of Communicating Sequential
Processes (CSP)[4] as the source language for our synthesis method.
While self-timed circuits[10] offer several advantages over clocked cir-
cuits, we chose them as our synthesis target mainly because of the
composition properties they possess. Self-timed sub-circuits may be
composed together to form circuits of arbitrary size without the haz-
ards associated with clock distribution in large synchronous designs.

In this paper, we present a mechanical method for transforming a
concurrent program into a semantically equivalent self-timed circuit.
This method is based on the manual circuit-compilation techniques of
[6,8], but the translation mechanism follows standard syntax-directed
techniques. We describe the necessary translation rules and apply
these to an example. This transformation method allows any program

lin Advanced Research in VLSI: Proceedings of the 5th MIT Conference, MIT
Press, pp. 35-50 (1988)



{process) = ( {process) { || (process) }) { (channel) }
| { (port) } { (var) } (sequence)

{channel) = channel ( ((NAME) , (pPNAME} )

{port}) = (passive | active ) (pNAME) ( (rINT) , (rINT) )

(var) = boolean (YNAME) = ( true | false )

(sequence) u= ({statement) { ; (statement) }

(statement) := skip | (vNAME) (up |down) | [ {ges) 1] *[ {gcs) 1
| (PNAME) ( (vINT) ) : [ (responses) ]

(ace) = (o) {1 ()}

{gc) = ({expr) --> (sequence)

{responses) = (response) { | (response) }

(response) = (VINT) --> (sequence)

{expr) := {conjunct) { or {conjunct) }

(conjunct) = (primary) { and (primary} }

{primary) := (vNAME) | probe (pNAME}) | true | false

| not {primary)} | ( {expr) )

Figure 1: BNF for Source Language

in the source language to be compiled into a self-timed circuit, and
furthermore constructively proves that the size of the resulting circuit
is linearly related to the size of the source program. The method has
been automated and we compare the designs produced by the compiler
with designs produced by manual methods.

1 Source Language

The source language is based on CSP[4] with the addition of the
probe[9] and a new communication construct. A complete description
of the language syntax is given in Figure 1. A program in this lan-
guage consists of a set of sequential processes with interconnecting
channels. Associated with each sequential process is a set of ports,
a set of private variables, and a list of statements to be executed se-
quentially. Ports that do not connect to another process connect to
the environment.

Only boolean variables are allowed. Variables are changed by as-
signment to true (x up) or to false (x down). The selection ([{gcs}1)
and repetition (* [{ges)]) constructs are based on guarded commands.
We use * [{sequence)] as an abbreviation for *[true-->(sequence)].

Synchronization between two processes is accomplished by zero-
slack communication actions across channels denoted by pairs of ports.



Of the two ports which make up a channel, one is declared active and
the other is declared passive. The process which owns the passive port
may determine whether the other process is waiting for a communica-
tion on this channel by evaluating a boolean condition called a probe.
Probes may be used in arbitrary boolean expressions.

Though concurrently operating processes may not share variables,
processes may communicate data by exchanging values from small
sets during a synchronization action. The communication construct
provides a syntax allowing differing sequences of commands to be
executed based on the value received during a communication. When
declaring a port, we specify both the send and receive sets of values—
each set being represented by a single integer. For example,

passive L(3,2)

declares a passive port L with send set {0,1,2} and receive set {0,1}.
The communication action (on the same port, L)

L(:T0-->xdown | 1 --> x up ]

sends the value 1 while simultaneously receiving either a 1 or a 0. If
a 0 is received, x is set to false; if a 1 is received, x is set o true.

The output value specification of the communication action may
be suppressed if the port has only one send value. Similarly, the
receive value selection need not be specified if the port has only one
receive value.

We illustrate the programming language and, later, the compila-
tion procedure with the following example.

Routing Automata

By interconnecting processes of two different types, we can construct
worm-hole routing systems|3| that allow processors, connected in a
variety of different network structures, to communicate. The swiich
process (diamond), together with an arbster process (circle}, are suffi-
cient to implement deterministic routing systems for hypercubes, tori,
meshes and other networks in which the path of the message can be
determined before the message is sent. Figure 2 shows a building block
configuration for sending messages up and right in a two-dimensional
mesh. Each processor injects messages (strings of bits) into the sys-
tem through port P and extracts messages through port Q. The
processor sending a message prefixes the message with a string of bits
specifying the path the message will travel through the network. A
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Figure 2: Building Block Interconnections for a One-way Mesh

special token is used to mark the end of the message. The packet—the
combination of the header, the message, and the trailing token—cuts
a path through the mesh, first to the right and then up, to its desti-
nation. The arbiter transmits an entire packet contiguously from an
input port to the output port. Packets from different input ports are
not interleaved. The switch consumes the first bit of the packet, and,
based on whether the bit is one or zero, passes the remainder of the
message out through either port S or port T'.

Figure 3 shows programs for these two sequential processes. The
switch process first communicates through port X, and raises one of
two boolean flags, s or t. If s was raised, the process acts as a
one-place buffer, sending the value received by port X out through
port 8, until the special trailing value 2 is received; in which case,
flag s is lowered, and the repetition terminates. If t was raised, the
process behaves in a similar manner, except T is used as the output
port. The arbiter process performs fair arbitration|7] between the two
input streams by first checking if an input is pending on port A and,
if it is, then acting as a one-place buffer with output port Y until the
trailing value is received. The port B will be chosen next if an input is
pending, ensuring that each port is given the opportunity to transmit
its packet. :



passive X(1,3) active 5(3,1) active T(3,1)
boolean &8 = false boolean t = false
*[ X:[1-->sup | O--> t wp ];
*[ s --> X:[ 0--> 8(0) | 1--> 8(1) | 2--> S(2); s down ]
| £ --> X:[ 0--> T(0) | 1--> T(1) | 2--> T(2); t down ]
11
process switch(X,8,T)

passive A(1,3) passive B(1,3) active Y(3,1)
boolean a = false boolean b = false
#[ [ probe A --> a up | not probe A --> skip ];
*[a --> A:[ 0--> Y(0) | 1--> Y(1) | 2--> Y(2); a down ]1];
[ probe B --> b up | not probe B --> skip 1;
*[ b --> B:[ 0--> Y(0) | 1--> Y(1) | 2--> Y(2); b down 1]
1 .
process arbiter(A,B,Y)

Figure 3: Programs for the Switch and Arbiter Processes

2 Target Language

The target of the compilation is a self-timed circuit—a set of circuit
variables (nodes) interconnected by a set of operators (gates). These
circuits are designed to function correctly regardless of the internal
delays of the operators. The target operator types include the com-
binational operators WIRE, AND, and OR; and the state-holding
operators shown in Figure 4. Each operator is defined in terms of a
set of production rules6,8]. A production rule is a simple transition
rule of the form G +— S; where G is a boolean expression and S is an
assignment to true or false. All references to a circuit variable are as-
sumed to have the same value (isochronic forks)[2,6]. A synchronizer,
which cannot be represented in terms of production rules, is included
to allow the implementation of programs with negated probes|7]. The
synchronizer, as well as the other operators, have been implemented
as CMOS standard cells.

Self-timed circuit implementations of concurrent programs are gen-
erated by implementing each sequential process as a separate sub-
circuit. The sub-circuits are connected (by wire operators) only to
implement communication actions. The simultaneity required in the
zero-slack communications is implemented using a four-phase hand-
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Figure 4: State-holding Operators

shaking protocol. In order to implement the exchange of data, the
usual request/acknowledge pair of wires is replaced by one wire for
each send value and one wire for each receive value. For example, us-
ing this unary encoding scheme, a channel, connecting the active port
Y of the arbiter process and the passive port X of the switeh process,
is implemented using four wire operators: three pointing from Y to X
and one pointing from X to Y (Figure 5).

arbiter switch

YV
Y

N

Figure 5: Implementation of a CSP Communication

The delay-insensitive nature of interprocess communication al-
lows concurrent programs with any number of processes to be im-
plemented. In implementing individual processes, we shall exploit
this property, through a technique known as process decomposition.



3 Syntax-directed Translation

The translation from a source program into a target circuit is per-
formed using standard syntax-directed techniques. We derive rules for
generating sub-circuits that correspond to each syntactic construct of
the source language, and for composing these sub-circuits to generate
circuits for arbitrary programs. These translation rules are derived
by applying the process decomposition transformation|6].

3.1 Process Decomposition

An arbitrary program statement # can be replaced by a single active
communication C' and a new sub-process implementing 5.

a; B3y B (s Cv || *[[C — B;C1))

The probe C, of the connected passive port, is used to guard the ex-
ecution of the statement 8. While process decomposition introduces
a new sub-process, it does not add concurrency to the implementa-
tion; the active communication C' cannot finish until its correspond-
ing passive communication C' does, and thus the strict sequencing
a; B;~ is maintained. The original process and the new sub-process
may now share variables and ports, since processes and sub-processes
are never active concurrently. The variables and ports of a process
are implemented by circuit variables, which must be distributed to
many sub-circuits. We assume these circuit variables are distributed
by isochronic forks. This assumption may be relaxed by suspending
a sequential process until distribution of the variable to every refer-
ence point is detected. This refinement, described in [2], reduces all
isochronic forks to size two.

Communications across channels introduced by process decompo-
sition have simple implementations because the handshaking actions
of the passive communication may be interleaved with the execution
of 8. Wire operators are typically sufficient to implement this special
form of the passive communication action.

We apply process decomposition to generate translation rules for
the BNF rules naming (statement). Evéry occurrence of (statement)
on the right-hand side of a BNF rule is replaced by an active commu-
nication. For every BNF rule with (statement) on its left-hand side, a
new sub-process, protected by a passive communication, is generated
to implement the right-hand side.
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Figure 6: Translation Rule For Sequencing

We generate the translation rule for the sequencing constructby
the following series of transformations:

*[[C — {statement); C|]

> {BNF rule}
#[[C — (statement), ; (statement),; C|]
> {Process decomposition}

+[[C — C};CL Cl
| #[[C7 — (statement),; C1]
| +[[C2 — (statement),; Cy]

The first sub-process is of fixed size and may be compiled into a self-
timed circuit using the techniques in [6,8]. Circuits for the other two
sub-processes are generated recursively by applying the translation
rules. Figure 6 displays the translation rule in circuit form. The sub-
circuit enclosed in box ID is used in the implementation of several
other constructs. In the following, we shall refer to instances of this
circuit as instances of a D-element.

The other translation rules that use {statement) can be derived
similarly. Complete derivations are described in [2]. Figure 7 shows
the circuit representations of these rules. The leaf sub-processes
are interconnected by several circuit variables. The named variables
within the dashed boxes are connected to form the complete circuit.
Each assignment sub-circuit adds a new input to the flip-flop imple-
menting the variable. The output of the flip-flop is distributed to all
sub-circuits using the variable. Each port usage adds a new input to
an OR operator merging its output transitions. A circuit variable is
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Figure 7: Circuits Implementing Statemen



Figure 8: Translation of the switch Process

generated to directly implement each probe by merging together, with
an OR operator, each input wire of a passive port. The translation
rule for {process) uses a global reset variable g. When ¢ is false, no
process is active, and thus all state-holding operators can be reset to
an initial state.

Figure 8 shows the first few translation rules applied to the switch
process. The complete circuit is shown in Figure 9.

3.2 Guarded Command Evaluation

Data channels can be used in process decomposition, allowing a sub-
process to communicate the result of an evaluation to its parent pro-
cess. We apply this general form of decomposition to derive transla-
tion rules for guarded command evaluation. '

The implementation of a guarded command set (g.c.s.) returns one
of two values: 1 if a guard evaluated to true and its corresponding
command was executed, and O if no guard evaluated to true. The
repetition statement reevaluates the g.c.s. if 1 is returned. Using busy-
waiting, the selection statement reevaluates the g.c.s. if 0 is returned.

The g.c.s. process is decomposed into a process for guard set eval-
uation; and a control process which sequences guard evaluation and
the associated command execution. The guard set process selects at
most one true guard, returning a value corresponding to the selected
guard. This process also detects when no guard evaluates to true, and
returns the value 0. The control process explicitly introduces the state
variables necessary to distinguish between the program state just be-
fore guard evaluation and the program states just after a guard has
been selected, thus allowing guard evaluation to complete before sub-
sequent statements change variables and probes used in the guards.

We concentrate now on evaluating an arbitrary guard set. The se-
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11



mantics of the language does not specify the order in which the guards
are to be evaluated. They may be evaluated in any order or all si-
multaneously. We introduce three schemes for implementing guards:
sequential, concurrent-all, and concurrent-one. The sequential scheme
imposes a total order on the guards and generates a circuit which
conditionally evaluates each guard and each connective with a guard.
Evaluation of the guard set terminates when a guard evaluates to
true. In the concurrent-all scheme all guards are evaluated concur-
rently. Evaluation of the guard set finishes after all guards have been
evaluated. In the concurreni-one scheme all guards are evaluated con-
currently, but the guards and the sub-expressions within a guard have
been strengthened so that only one path through the evaluation cir-
cuit will become active. For all three schemes, we must ensure mutual
exclusion among the guards and generate the all-false value.

3.2.1 Sequential Guard Evaluation

The guards are evaluated one by one until either one evaluates to
true or the last guard evaluates to false. Mutual exclusion among the
guards is accomplished implicitly by this construction.

Implementations of complex expressions are built up from imple-
mentations of simple ones. Primitive circuits exist for evaluating
variables and probes. We use conditional evaluation to implement
the logical connectives. Negation is accomplished by exchanging the
meanings of the false and true values. We show the translation rules
for sequential guard evaluation in Figure 10.

If probes are used, a further transformation is required. Because
the value of a probe may change from false to true while an expression
is being evaluated, all probes used more than once in a guard set are
evaluated and assigned to a variable before the guard set itself is
evaluated. Probes within these expressions are changed to refer to
the corresponding stable variable.

The sequential scheme is applied to implement the repetition con-
struct of the switch process (see outlined sub-circuit in Figure 9). The
variable s is evaluated, and, if false, t is evaluated. If both are false,
an all-false signal is returned.

3.2.2 Concurrent-all Guard Evaluation

All guards can be evaluated concurrently if each guard evaluation
completes before the result for the entire guard set is returned. If the
circuit does not wait for all the evaluations to complete, subsequent
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Figure 10: Circuits Implementing Sequential Guard Evaluation

evaluations may fail because internal variables of the implementation
have not been reset to a required state.

In the concurrent-all scheme, all variable and probe evaluations for
the entire guard set are started simultaneously. Logical connectives
are evaluated by first evaluating the two sub-expressions, and then
applying the logical operation to the results. Sub-expressions may be
shared among the guards, producing more efficient implementations.
The number of probe references per guard set can be reduced to one,
thereby eliminating the need to store each probe in a variable.

The exclusion transformation must be performed explicitly to use
the concurrent-all evaluation scheme. Each guard E; is strengthened
with /\:;-‘;11 - E;, ensuring that no two guards will evaluate to true. An
all-false guard A}, ~E; is also created. By factoring common sub-
expressions, the O(n?) increase in guard size can be reduced to adding
O(n) new and connectives and O(n) nesting levels. The transforma-
tion also can be performed by a parallel prefix network [5], leading
to O(nlogn) new and connectives, but with O(logn) nesting levels,
resulting in the asymptotically fastest evaluation of the three schemes.

8.2.3 Concurrent-one Guard Evaluation

As in the concurrent-all scheme, all guards are evaluated concurrently,
but instead of adding circuitry to wait for all the guards to evaluate,
the guards are transformed so that only one path through the eval-
uation circuit is active at a time. The guard set finishes evaluation
when the single guard becomes true.
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Each guard is transformed into AND-OR form. The AND terms
are further strengthened until exclusive evaluation of each term is
ensured. While exponential blow-up may occur when transform-
ing pathological expressions, this method produces the smallest and
fastest implementations of most small expressions.

This scheme cannot be used to implement all guard sets. Negated
probes cannot be used, and if many variables are used in the guard set,
AND-operators with several inputs are required. However, selection
statements with only positive probes may be implemented without
the busy-waiting iteration of the previous schemes.

4 Optimizations

Simple optimizations greatly improve the compiled circuits. Peephole
optimization is applied to the target circuits by removing operators
that can be shown redundant by a local analysis of the circuit. Other
optimizations are applied at the program level. They take the form of
proving that the program satisfies some invariant condition, and then
using this invariant to simplify the implementation of a construct.

As an example, the explicit sequencing (D-element) between guard
evaluation and the execution of the first statement of a correspond-
ing command can be removed if the first statement of a command
sequence does not change the value of any guard. This is always the
case if the guard set consists of only constants or if the first statement
is i) a skip, ii) an assignment to a variable not named in the guard
set, or iii) a communication and no probes are named in the guard
set.

After applying optimizations of these forms, the switch process
compiles into the circuit shown in Figure 9. Notice the removal, from
the non-optimized compilation started in Figure 8, of the initialization
operators and the D-element protecting the constant guard true.

5 Compiler and Performance

We have implemented the translation and optimization rules described
in this paper. The compiler consists of approximately 800 PROLOG
clauses and is based on the program-to-machine-code compiler de-
scribed in [11]. PROLOG provides an excellent environment for de-
veloping compilers and, in our case, its unification procedure provides
a simple means of representing and composing circuits.
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Name Operators per process

Manual | Compiled
3z + 1 iterator 95 175
routing switch 37 44
routing arbiter 36 49
lazy stack 50 86
token ring 13 27
systolic multiplier 38 59

Figure 11: Comparison of Manual and Compiled Designs

The compiled circuits are typically no more than twice the size
of those derived by hand. In Figure 11, a rough comparison between
the number of operators is shown for a variety of fabricated hand
designs. The extra operators needed in the compiled circuits can be
explained by two interrelated factors: The current source language
cannot represent the interleaving of statements within a sequential
process (reshuffling of handshaking expansions), and the current pro-
gram level optimizer does not detect all the cases where explicit se-
quencing can be removed. We expect to narrow this gap in the future.

Using 3um SCMOS, we have fabricated several circuits derived
manually from concurrent programs. We have used either a standard-
cell place-and-route preprocessor for the MAGIC design tool, or the
MOSIS FUSION service[l], to generate layout from an electrically
optimized operator-level description of the circuit. Rudimentary elec-
trical optimization is performed individually on each circuit variable
by inserting appropriately sized drivers to minimize the transition
time of each operator. Such simple techniques have met with good
results; in an early implementation of a mesh router (Figure 2), the
transition time of a typical operator was 2.3ns, resulting in a pad-
to-pad propagation delay of 45ns for an arbiter and a swiich process
connected in series. We expect similar electrical performance from
chips generated by the compiler.

The translation method produces correct, self-timed implementa-
tions of arbitrarily large concurrent programs, and because each trans-
lation rule is of fixed size, the size of an implementation is no worse
than linearly related to the size of the source program. The trans-
lation method and the compiler provide a constructive proof that a
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design methodology based on programs instead of circuits is not in-
herently inefficient, and thus represents a practical approach to the
design of VLSI systems.
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