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Chapter �

Introduction

This technical report is a draft version of the C�� programming manual� It consists
of excerpts from Chapter 
� and the entire Chapters � and � of the author�s Ph�D�
thesis ����� This report is to be superseded by a version that includes the C��

User�s Manual�

��� Concurrent Programming

There are two� typically con�icting� driving forces shaping the developments in
concurrent programming� increasing e�ciency and increasing expressivity�
The e�ciency�conscious programming systems are typically the products of

design teams also involved with the design of concurrent machines� and often re�ect
the underlying architecture� Shared�memory programming and explicit�message�
passing programming are representatives of this class�
The expressivity�conscious programming systems are often produced by the

frustrated users of the products of the former groups� and are typically architecture�
independent �Section 
�
����

����� Shared
Memory Programming

The �rst developments in concurrent programming were motivated by the advent of
multiprogramming and multiuser operating systems� It should not� therefore� be
surprising that the �rst concurrent�programming systems supported concurrent
processes that communicated and synchronized through the memory of the
machine on which they were executing� The development of the Parallel RAM
�PRAM� model� a theoretical framework on which much of the work in concurrent
algorithms is based� also promoted the popularity of this programming style� which
is still the predominant form of concurrent programming�
From the early stages on� shared�memory programming has been plagued

by various incarnations of the mutual�exclusion problem� This problem is due
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primarily to the discrepancy in access granularity between the data structures and
the memory units used to represent these data structures� A number of remedies
were introduced� atomic test�and�set and�or fetch�and�add instructions �
��� and
semaphores �
��� One of the most signi�cant e�orts was the work of Per Brinch
Hansen on Concurrent Pascal� and the development of monitors �
��� Monitors
encapsulate data with the �mutually�exclusive� operations de�ned on the data
in programmer�de�ned� compiler�and�runtime�system�managed units� This work
forms a foundation on which many of the recent developments in object�oriented
concurrent programming are based� including the programming system described
in this thesis�

����� Explicit Message Passing

Communication and synchronization through explicit message passing is a
programming paradigm whose roots are as old as computers themselves� stemming
from the need for inter�computer information exchange� This programming
paradigm was adopted and adapted for programming multicomputers ���� ����
Starting with the Cosmic Cube ���� and its commercial descendents ���� ���� the
mainstream representatives of the multicomputer architecture employ o��the�shelf
processor� memory� and compiler technology� Programming systems for these
machines are based on a variety of sequential programming languages for specifying
individual process behavior� wherein communication and synchronization between
processes is achieved through a set of library routines�
There are two problems that are the curse of this programming style� First�

although modular organization of data structures can be achieved within a process�
this modularity does not extend readily to collections of processes� Second� the o��
the�shelf technology often brought the o��the�shelf notion of process granularity�
heavy� UNIX�style processes impose an unacceptably high software overhead to
process communication and synchronization�

����� Architecture
Independent Programming

A number of programming models and notations have been devised to provide
a uniform view to the programmer of concurrent computers� and to map
computations onto either of the architectures described above� The advantages
that these programming systems o�er in reducing programming e�ort are
remarkable� preserving the cost�e�ectiveness of concurrent computers running such
programs� however� has yet to be demonstrated� The assembly programming of
conventional� sequential computers has been all but eliminated by higher�level
notations through large improvements in program�writing e�ciency� with small
degradations of program�execution e�ciency� The same has yet to happen to
tailor�made concurrent�programming notations�
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Functional Programming and Data�ow

In its pure form ���� functional programming provides a method for de�ning
functions in terms of other� more�primitive functions� The value of a function
is determined only by the value of its arguments� and is not history�sensitive�
Since there are no side e�ects� functional�programming notations are implicitly
concurrent� and sub�expressions� including function arguments� can be evaluated
independently of each other�

The introduction of side�e�ects into functional�programming notations enables
them to model history�sensitive behavior� but it also opens them up to the full
set of problems associated with imperative�programming notations� Extending
pure functional programming with single�assignment variables and streams� as
introduced by data�ow researchers� represents an important intermediate point�
This extension relaxes the no�side�e�ects requirement into the monotonicity

requirement� A variable starts up uninitialized� and an assignment bounds
it to a value �multiple assignments are disallowed�� A stream consists of a
�possibly�in�nite� sequence of variables that can only be read and appended�
Using single�assignment variables for communication and synchronization is also
used extensively in compositional programming ��� ��� and in concurrent logic
programming� described next�

Concurrent Logic Programming

The programming model typically associated with sequential logic programming is
that of proving an existentially quanti�ed statement given a program that consists
of a set of axioms ����� Implementations of this model involve backtracking
that could� in principle� be replaced by concurrent examination of all the
alternatives� However� for e�ciency reasons� and because of the need to better
model input�output behavior ���� �	�� concurrent logic programming makes a
signi�cant departure from this model� There is no backtracking� once a �non�
deterministic� choice is made� no alternatives are examined�

A concurrent logic program consists of a set of guarded clauses� and each
clause represents a recursive speci�cation of process structures� To program in a
concurrent logic programming notation is to specify tasks as unordered� concurrent
sets of subtasks� Tasks communicate and synchronize with each other by binding
single�assignment variables� and waiting for variables to become bound�

Restrictions on the expressivity of clause guards� to improve e�ciency� lead
to a family of �at concurrent�logic notations ����� A minimalist approach to
concurrent logic programming of Ian Foster and Stephen Taylor resulted in Strand�
a streamlined and e�cient concurrent�programming system �
��� without giving up
much of the expressive power�
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UNITY

UNITY� developed by K� Mani Chandy and Jayadev Misra ���� is a computation
model and a programming notation� with an associated proof methodology� A
UNITY program consists of a set of guarded multiple assignments� These
assignments are executed in arbitrary order� The focus of programming in UNITY
is on what� i�e�� on data transformations� as opposed to when� A particular
execution order can be enforced only through data dependencies� A computation
terminates when it reaches a �xed point� i�e�� when no assignment in the program
modi�es any variables�

An interesting related research has been reported by Craig S� Steele ����� In
this work� a programming model and a corresponding notation are developed� in
which program actions are associated with data objects through a programmer�
speci�ed triggering mechanism� An e�cient multicomputer implementation of this
UNITY�like programming system is demonstrated�

Actors

The Actors model of computation was �rst proposed by Carl Hewitt and
Henry Baker ���� �
�� and was later formalized by William D� Clinger �
�� and
Gul Agha �
�� In this model� the unit of concurrent computation is an actor� an
independent computing agent that is activated in response to messages sent to it�
Each actor has a unique address� an associated message queue� and a speci�ed
behavior� In a response to a message� an actor can� send messages� create new
actors� and become a new actor by specifying its replacement behavior�
Because of its simplicity� potential e�ciency� and straight�forward implemen�

tation on distributed architectures� the Actors model is the basis for numerous
concurrent�programming systems� The reactive�process programming model� de�
scribed next� and its associated notation� described in Chapter �� are based in part
on the Actors model of computation�

��� The Reactive�Process Programming Model

The reactive�process programming model is a variant of the Actors programming
model� Computation in this model is performed by a set of processes� independent
computing agents� A process is normally at rest� and starts executing in response to
a message �including the initial� creation message�� In the course of its execution�
a process can send messages� create new processes� and modify its state� including
self�termination� Message order is preserved for each pair of processes in direct
communication� Each message is marked with a tag that speci�es which of the
process�s compile�time��xed set of entry points should be invoked� Each entry
point runs to completion� and is therefore an atomic update of its process�s state�
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A process can a�ect the order of execution of its entry points by enabling and
disabling them selectively� at run time� all entry points are initially enabled� A
message tagged for a disabled entry point is delivered after that entry point is
active again�
This model is extended to include the remote procedure call �RPC�� An entry

point of a process can be speci�ed to return a value to the message sender� When
a message is sent and tagged for such an entry point� the sender is suspended until
the message with the returned value arrives�

Background

The reactive�process programming model is a result of the work in our research
group over the last decade� Interestingly� a comparison with the early work
of C� R� Lang on a concurrent version of Simula ���� reveals that our group�s
ideas seem to have come almost full circle� The ideas of C� R� Lang� and the
preceeding work of Per Brinch Hansen� were far�sighted and out�of�sync with
the multicomputer technology of their time� In retrospect� it is as if much of
what our research group has been doing was tracking and driving the necessary
communication� processor� memory� and compiler technology to approach this
target�
Starting with the development of the Cosmic Cube� our group embraced the

explicit message�passing programming style� The design of an experimental �ne�
grain multicomputer� Mosaic C� and the similarity of our approach to the Actor
model of computation� provided additional motivation� this e�ort culminated with
the work of W� J� Dally on Concurrent Smalltalk �
��� of W� C� Athas and
N� J� Boden on Cantor� a minimalist Actor�based notation ��� 	�� and of W��
K� Su on Reactive�C and distributed event�driven simulation ����� The work
on the Cosmic Environment ���� and the Reactive Kernel ���� shifted our focus
from organizing computations around processes to organizing computations around
messages� and the reactivity became an essential part of the programming model�
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C��

��� Introduction

����� Object
Oriented Programming vs� Concurrency

Programming notations that support object�oriented programming techniques are
the notations of choice for a rapidly growing number of complex applications�
Indeed� not since the introduction of structured programming �

� has there been
such a degree of unanimity in the programming community� This unanimity
is even more remarkable considering that� just as was the case with structured
programming �
	�� the power of object�oriented techniques is di�cult to convey to
readers through short� example programs in books or articles� When observed in
isolation� none of these techniques is new or revolutionary� It is only when one
approaches a large�scale programming task armed with the full set of techniques
that their power becomes evident�

Structured�programming techniques advocate structuring of program control
�ow in a top�down� compositional fashion� Object�oriented programming
techniques promote data organization in a bottom�up� standard�parts fashion�
Both paradigms emphasize modularity� but� whereas the former is focusing
principally on modularity of control structures� the latter does a better job of
encapsulating data structures with the operations de�ned on these structures�

Object�oriented programming came about through attempts to make large�
sequential programs more manageable� Techniques such as data encapsulation
and access protection� inheritance� and guaranteed initialization� all emerge from
the goal of helping programmers help themselves�

By our view� much of what the techniques of object�oriented programming
are really helping to manage is concurrency� Events are concurrent if they are
unordered� i�e�� if they can occur in any order� or in parallel� Mutual exclusion is
an example of an issue most often associated with concurrent programming� but
the problems that result from a disregard for mutual exclusion also occur regularly

�
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in large sequential programs� With uncontrolled access to global variables� it is
impossible to keep track of all of the places in the code where a certain variable
is accessed� and of all the invocations of such code� Non�deterministic execution
is another issue most often associated with concurrent programming� For a �xed
set of inputs� the execution of a sequential program will always result in the same
ordering of state changes� yet� with side e�ects on global variables� it is often far
from obvious what all the inputs to a program are�
Whereas sequential programming brings out the worst in us only in the large�

concurrent programming will do that already in the small� It should not be
surprising� then� that in the hope of reaping some of the bene�ts that object�
oriented techniques brought to sequential programming� we are witnessing a
proliferation of programming systems trying to amend a particular object�oriented
notation with concurrent semantics�

����� Concurrent Object
Oriented Languages

E�ciency

Expressivity

Safety

E�ciency

Expressivity

Safety

Figure ��
� Design tradeo�s for concurrent programming systems

The three�way design tradeo�s illustrated in Figure ��
 are typical of design of any
programming system� not only those attempting to harness concurrency� However�
all three requirements are more pronounced� and the balance more di�cult to
achieve� for a concurrent�programming system�

� E
ciency � One of the major reasons to employ concurrent solutions in the
�rst place is to get more performance� and programming�system overheads
are less likely to be tolerated by users�

� Expressivity � Moving from a single to many threads of control in itself
places additional demands on expressivity� and also due to the requirement
that threads communicate and synchronize their activities�

� Safety � In addition to mutual exclusion and possible non�determinism
mentioned in the previous section� issues such as deadlock and livelock have
to be dealt with� Simple semantics that aid correctness proofs are essential�
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It is likely that some readers will �nd what we consider a balanced design to be
biased in favor of e�ciency� then expressivity� and then safety� Our argument
about the increased importance of e�ciency in a concurrent�programming
environment is sometimes disputed on grounds that� because concurrent systems
o�er better performance�cost than their sequential counterparts� one can a�ord
more ine�ciencies at the operating�runtime system level� The consequence of this
view on concurrent architectures is that machines with pathetic process�creation
and communication overheads are being designed and built� The major goals of
the work described in this thesis are to show that this pitfall can be avoided� and
to demonstrate that �ne�grain concurrency can be e�ciently exploited�

Extensions of C��

C�� is an object�oriented notation that is in widespread use due to its e�ciency�
availability� and upward compatibility with C� C�� is the starting point for
numerous programming systems that attempt to amend C�� with concurrent
semantics� including the system described in this thesis�

C��

C�� is the result of an experiment to express reactive�process� concurrent programs
�Section 
��� in an object�oriented programming notation� Although C�� is an
extension� of C��� the objective of the C�� project has not been to be able
to execute arbitrary C�� programs e�ciently on the Mosaic� The emphasis of
C�� is on providing e�cient support for the simple abstractions fundamental to
the reactive�process computational model� process creation and communication�
C�� strives not to impose higher�level policies on synchronization� communication
protocols� or process placement�
Although the C�� programming system is portable across a wide range of

architectures� the Mosaic has been both the driving force and the reality test behind
this e�ort� Design decisions have consistently been made to avoid compromising
the performance of C�� programs on the Mosaic� Higher�level programming
systems may be layered on top of C��� but C�� is intended to serve as the Mosaic�s
lowest�level� workhorse programming system� suitable both for operating�system
and application programming�

The remaining sections of this chapter are devoted to teaching the reader
about C��� Familiarity with the basic concepts of object�oriented programming
and of C�� in particular is assumed� classes� inheritance� access rules� operator
overloading� Keywords are underlined in programming examples� Although an
e�ort has been made to steer clear of the idiosyncrasies of C��� some of them

�C�� is not a superset of C�� because it imposes restrictions on global variables� as discussed
in Section ����
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were essential� and they are explained as they are encountered� The reader is
cautioned� however� that C�� is by no measure a minimalist� toy�example�writing
notation� some of the more advanced examples are likely to present di�culties to
those not familiar with C��� Our hope is that this di�culty is the result of C���s
completeness� rather than of poor design choices�

��� The Process Concept

The C�� object concept is carried over intact to C��� class is a user�de�ned type�
an object created according to a class de�nition is a collection of data items� a
set of operations de�ned on them� and a set of access rules �Program 
�� Class
member functions have the usual� sequential semantics�

class C

�

private	

int data�

public	

C�� � data � �� � �� initialization

void write�int i� � data � i� � �� update

int read�� � return�data�� � �� retrieve

��

Program 
� A Class De�nition

The process concept is the only extension that C�� introduces to C��� The
processdef keyword parallels the class keyword syntactically �Program ���
Access rules are associated with data members and functions of a process de�nition�
and process de�nitions can be derived from other process de�nitions �Section ��	�
��

processdef P

�

private	

int data�

public	

atomic P�� � data � �� � �� initialization

atomic void write�int i� � data � i� � �� update

atomic int read�� � return�data�� � �� retrieve

��

Program �� A Process De�nition

However� a process created according to a process de�nition is more than a
collection of data items�
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Speci�cation � A process is an independent computing agent� and a unit of
potential concurrency� Its public interface consists of a set of atomic actions�
At creation time� the process constructor� is executed if it is de�ned� After the
constructor completes� the process is at rest� The invocation of an atomic action
of a C�� process is decoupled from its execution� Conceptually� there is an in�nite
queue of incoming requests for each process� the invocation of an atomic action
places a request into this queue� Process execution consists of servicing these
requests� with each atomic action running to completion�

Creating a process is no di�erent from creating an object �Program ��� In most
cases� processes are created dynamically � pp � new P	 �� and persist until they
are explicitly destroyed � delete pp	 �� One can also create a temporary process
as a local variable� just as with any other type �P p	�� This temporary process is
destroyed implicitly when execution leaves its scope�

�

int i� �� declaring an integer

P� pp� �� declaring a process pointer

pp � new P� �� creating a persistent process

i � pp�
read��� �� retrieving a value

pp�
write�i���� �� updating

delete pp� �� explicitly destroying the persistent process

�

P p� �� declaring a temporary process

i � p�read��� �� retrieving a value

p�write�i���� �� updating

� �� implicitly destroying the temporary process

�

Program �� Programming with Processes

A C�� computation is initiated by a runtime system that� concurrently with
initialization of global processes� creates an instance of root �Program 	�� the
constructor of which is de�ned by the user�

Speci�cation � A process can a�ect the order of execution of its atomic actions
by enabling and disabling them selectively� at run time� All atomic actions are
initially enabled� execution of a disabled action is postponed until the action is
enabled again�

�A process constructor is an atomic action with the same name as that of the process de�nition�
The constructor may not return any value�
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processdef root

�

public	

atomic root�int argc� char�� argv��

��

Program 	� The root process

For example� let us assume that the rules for accessing a process of type P in
Program � are such that it may be updated only once� every subsequent write
request should be tagged as an error� Furthermore� all read requests occurring
before the �rst write should be serviced only after the �rst update occurs� The
process de�nition for this version of P is listed in Program ��
Processes communicate and synchronize with each other through atomic

actions� Thus far� we have discussed only the behavior of processes as servers
� how they deal with incoming requests �invocations of their atomic actions�� We
shall now de�ne the behavior of processes as clients � how they request services
from other processes�

Speci�cation � When invoking an atomic action that does not return a value
�returns a void�� or if the returned value is not used� the caller continues execution
independently of the callee� The order of invocations is preserved for each pair of
processes in direct communication� If the value returned by an atomic action is
used� the caller may be suspended until the returned value is available�

Invoking an atomic action that returns a value does not� in itself� imply that
the requesting process will be suspended until the requested value is available�
It is only when this value is used that a thread of activity must be suspended�
For example� the Program � uses a divide�and�conquer approach to compute the
nth Fibonacci number� Both sub�computations are initiated� and the process will
suspend only if it attempts to add the two partial results before they are available�
It is sometimes desirable to enforce the sequential order of execution of sub�

computations� In such cases� the C�� await construct should be used� For ex�
ample� return �await�f��compute�n���� � f��compute�n����	 ensures that
the �rst subcomputation is complete before the second one is initiated�
Programming systems di�er considerably in what constitutes use of unresolved

variables� also called futures� The most aggressive systems allow futures to be
exchanged between processes� and suspend a thread only when a value is needed
for a hardware�implemented expression evaluation� Support for futures is the
central issue for numerous concurrent�programming systems ���� ��� 	��� C��

is not one of these systems� and is not very aggressive in trying to discover
and utilize this type of concurrency� In C��� assigning an unresolved value to

any programmer�de�ned variable constitutes use of that future� and will cause the
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processdef P

�

private	

int initialized�

int data�

public	

atomic P���

atomic void write�int��

atomic int read���

��

atomic P		P��

�

initialized � ��

passive read�

�

atomic void P		write�int i�

�

if � initialized �

�

report
error���

�

else

�

data � i�

initialized � ��

active read�

�

�

atomic int P		read��

�

return�data��

�

Program �� Enabling and Disabling Atomic Actions

thread to be suspended� C�� guarantees only that a thread will not be suspended

unnecessarily within an expression evaluation� C�� semantics allow any additional
compiler�runtime system optimization� but only within the body of a function or
an atomic action� Unresolved variables must be resolved before they can be passed
as arguments�

The reason for C���s non�aggressive utilization of futures is that we want to
encourage a programming style in which the concurrent behavior is generated
explicitly� as opposed to trying to utilize the concurrency that is implicit in
sequential formulation� Synchronization on an unresolved future is inherently more
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processdef fib

�

public	

atomic int compute �int n�

�

switch �n�

�

case �	 return ��

case �	 return ��

default	 fib f�� f��

return �f��compute�n��� � f��compute�n�����

�

�

��

Program �� Divide And Conquer

expensive than� for example� synchronization using the active�passive semantics�
because the process state that must be saved when blocking on a future is
much larger� For notations that have stack�based implementations of the regular
function�call abstraction� such as C��� this state includes the stack�

��� Managing Concurrency

All concurrency�related issues in the C�� programming system are encapsulated
into the process concept� The following syntactic restrictions enforce this
requirement�

� Only atomic actions can be public members of a process de�nition��

� Only values� process pointers� and process references	 can be arguments to
atomic actions�

� Processes are the only global
 variables allowed�

� Process de�nitions can have no friends��

As speci�ed in Section ���� a process is a unit of potential concurrency�
Processes communicate and synchronize with each other through atomic actions�

�The C�� staticmember functions can be public members of a process de�nition� since their
semantics do not allow them to access process members anyway�

�The di�erence between pointers and references is a subtle idiosyncrasy of C��� and� for the
purposes of this thesis� the two can be considered equivalent�

	This includes both global and static C�� variables� i�e�� all variables with �le scope�

The friend construct in C�� allows non�member functions to have full access to private

class members�
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The remainder of this section will be devoted to examples illustrating how some of
the well�known concurrent�programming paradigms can be implemented in terms
of C�� processes�

����� Remote Procedure Call

The remote procedure call �RPC� is a common form of interaction between threads
of activity� As illustrated in Program � and in Figure ���� a client requests a service
from a server and suspends its execution until the request has been attended to�
The semantics of the RPC are identical to those of an ordinary procedure call�
The implementations of the two types of procedure calls� however� are typically
di�erent� because the client and the server may be operating in di�erent address
spaces� A better name for the RPC might be �interprocess procedure call��

processdef server

�

public	

atomic int request �int��

��

processdef client

�

public	

atomic client �server� s�

�

int i � s�
request������

�

��

Program �� Remote Procedure Call

client

server
time

place client

server
time

place

Figure ���� Remote Procedure Call

During a remote procedure call� the calling process is nominally suspended
until the returned value is available� so no concurrency is introduced� However�
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as discussed in Section ���� with the use of futures� the semantics of the RPC can
be extended so that several requests can be issued concurrently� and the calling
process is suspended until all the requests have been serviced �Program � and
Figure �����

place

time
fib���

fib���

fib���fib���

fib���

fib���

Figure ���� Divide And Conquer

����� Call Forwarding

Call forwarding is a paradigm associated with message�based object�oriented
programming systems� and is similar to tail recursion� As an example� consider
the sequential search of a singly�linked list of dictionary processes in Program ��

processdef dict

�

private	

dict� next�

int index�

int data�

public	

atomic int find �int i�

�

if � i �� index �

return data�

else

return next�
find�i�� �� can be replaced by	

�� forward next�
find�i��

�

��

Program �� A Sequential Search

When the value returned from an atomic action is itself obtained by an atomic
action invocation� programmer may choose to use the forward statement instead�
With the return statement� a request is issued� the process is suspended until the
value is available� and then reply is sent to the calling process� The e�ect of call
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forwarding is to defer servicing of the request to another process� Two sequential
search examples� one using the return� and another the forward statement�
are illustrated in Figures ��	 �a� and �b�� respectively� In addition to reducing

place

time

client

dict

dict

dict

client

dict

dict

dictdict

dict

dict

client

dict

dict

dict

client

�b��a�

Figure ��	� A Sequential Search with RPC �a�� and with Call Forwarding �b�

the number of replies� call forwarding enables the list of processes that form a
dictionary to process multiple requests in a pipeline fashion� At any point in time�
each search request is being worked on by at most one dictionary process�

����� Fork
Join

The remote�procedure�call mechanismwith limited support for futures� as provided
by C��� o�ers a convenient and easy�to�understand programming paradigm for an
important class of problems� A more �exible� fork�join mechanism for process
synchronization in C�� is o�ered through the combination of non�suspending�
atomic�action invocation and active�passive semantics�
There are two paradigms that C�� programmers can use to generate concurrent

activities�

� Creating new processes� whether persistent or temporary� The parent process
continues execution independently� of the child�

� Upon invoking an atomic action that does not return a value� or when the
returned value is not used� the caller continues executing without waiting for
the callee�

�When a pointer to a newly created process is used in a subsequent computation� this may or
may not require suspending the parent� depending on the implementation� However� the parent
continues execution concurrently with child�s constructor�
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The synchronization barriers can be expressed using active�passive semantics�
Suppose that an FFT computation is implemented as illustrated in Figure ��� �����
The expressions along the edges of the graph are coe�cients� Multiple inputs to a
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Figure ���� An ��Point FFT Computation� �WN  e�i
��

N � N  ��

node imply addition� and multiple outputs imply replication of the result�
A concurrent program forN �point FFT computation could employN processes�

and compute the result in O�logN� steps� Each step would consist of� getting two
requests along the input edges� adding the two input values� multiplying by the
coe�cient� and producing two output values�
A version of this program could similarly employN logN processes in a pipeline

regime� achieving the same O�logN� latency� but a new result would be computed
on every step�
In either approach� though� a process �circled in Figure ���� must get one data

item along each of its input edges to be able to compute and emit one data item
along each of its output edges� A process that might be used as part of the FFT�
computation pipeline is listed in Program ��
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processdef fft

�

private	

Complex W� first�

fft �out
up� �out
dn�

void output�Complex in�

�

Complex result � �first � in� � W�

out
up�
up�result��

out
dn�
dn��result��

�

public	

atomic fft�fft� u� fft� d� Complex r�

�

W � r�

out
up � u�

out
dn � d�

�

atomic void up�Complex in�

�

if � passive�dn� � �� upon receiving both requests

� �� produce the output

active dn�

output�in��

�

else �� if you only have one request

� �� await the second one

passive up�

first � in�

�

�

atomic void dn�Complex in�

�

if � passive�up� � �� upon receiving both requests

� �� produce the output

active up�

output�in��

�

else �� if you only have one request

� �� await the second one

passive dn�

first � in�

�

�

��

Program �� An FFT�Computing Process
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����	 Semaphores

First introduced by E� W� Dijkstra �
��� semaphores are low�level primitives for
process synchronization� A semaphore is typically used to control access to a
shared data structure� with an N �ary semaphore allowing access to at most N � 

processes at any point in time� Two operations are de�ned on semaphores� acquire
and release� In general� an implementation of an N �ary semaphore must guarantee
that the number of acquire operations minus the number of release operations is
at most N � 
� and at least �� A C�� implementation of an N �ary semaphore is
presented in Program 
��

processdef semaphore

�

private	

int count� �� number or processes inside

�� the critical section

int max� �� the maximum number allowed

public	

atomic semaphore�int N� �� initially� there is no

� �� processes inside the critical

max � N � �� � section

count � ��

passive release�

�

atomic int acquire��

�

count��� �� one more inside

active release� �� at least one can release

if � count �� max � �� if the maximum is reached�

passive acquire� �� no one can get in

return ��

�

atomic int release��

�

count��� �� one less inside

active acquire� �� at least one can acquire

if � count �� � � �� no one is in� so

passive release� �� no one can exit

return ��

�

��

Program 
�� N �ary Semaphore

An often�used special case for N  �� the binary semaphore� is illustrated in
Program 

�
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processdef semaphore

�

public	

atomic semaphore��

�

passive release�

�

atomic int acquire��

�

active release�

passive acquire�

return ��

�

atomic int release��

�

active acquire�

passive release�

return ��

�

��

Program 

� Binary Semaphore

����
 Monitors

Of all of the concurrent�programming paradigms� semantics of C�� processes are
closest to those of monitors �
��� Just as with monitors� C�� processes encapsulate
a set of data items and o�er mutually exclusive access to a set of routines operating
on this data� C�� processes also share some of the problems associated with
monitors� as both are non�reentrant� The invocation of an atomic action of a
C�� process is� unlike an invocation of a monitor function� decoupled from its
execution� conceptually� there is an in�nite bu�er of incoming requests for each
process� This decoupling enables processes to be active computing agents� able to
a�ect the order of execution of their atomic actions�

����� Recursion

In the examples shown so far� the requirement that all the public member
functions of a process be atomic actions has been helpful in expressing interactions
between concurrent threads of activity� From the point of view of C��

programmers� the most signi�cant repercussion of the atomicity of interprocess
activities is that� since at most one execution thread can be associated with a
process� atomic actions that return values are not reentrant� For example� in
Program 
�� the privatemember function fac has ordinary� sequential� reentrant
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semantics� However� the public member function FAC must be an atomic action�
An invocation of FAC will� therefore� result in deadlock�

processdef bad

�

private	

int fac�int n�

�

if � n �� � �

return ��

else

return n � fac�n���� �� OK	 functions are reentrant

�

public	

atomic int FAC�int n�

�

if � n �� � �

return ��

else

return n � FAC�n���� �� ERROR	 atomic actions are

� �� not reentrant

atomic int Fac�int n�

�

return fac�n�� �� OK	 atomic�action interface

� �� to a function

��

Program 
�� Recursive Functions and Non�Recursive Atomic Actions

In the world of non�reentrant atomic actions� processes are the medium used
to express recursive behavior �Program 
���

����� Message Passing

Invoking an atomic action of a process is equivalent to wrapping up the argument
list and sending it in a message� According to Speci�cation �� the atomic�action
invocation does not imply blocking �waiting for the reply does�� so it is equivalent
to a non�blocking message send�
Message receiving has two forms�

� explicit� associated with the behavior of processes as clients� which receive a
value that is returned from a call to an atomic action� and

� implicit� associated with the behavior of processes as servers� which receive
an argument list as part of a request to execute an atomic action�

The two forms of receive� explicit and implicit� cover the two extremes of
the spectrum of possible mechanisms for message discretion� explicit receive
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processdef fac

�

private	

int output�

public	

atomic fac�int input�

�

if � input �� � �

output � ��

else

�

fac child�input����

output � input � child�result���

�

�

atomic int result��

�

return output�

�

��

�� or

processdef fac

�

private	

int input�

fac� parent�

public	

atomic fac�int i� fac� p�

�

if � i �� � �

�

p�
result����

delete this�

�

else

�

input � i�

parent � p�

new fac�i���this��

�

�

atomic void result�int r�

�

parent�
result�input�r��

delete this�

�

��

Program 
�� Recursive Processes
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accepts only a particular message from a particular process� implicit receive
accepts any message from any process� The active�passive semantics provide
a more general selective�receive mechanism� atomic actions of a process represent
incoming communication channels� and the process can� at run time� select the
communication channels over which it is ready to accept a message�

����� Single
Assignment Variables

Single�assignment variables are a safe form of futures �Section ����� Requesting a
read access on an uninitialized� single�assignment variable causes the requesting
process to be suspended until the variable is assigned to� Since there can be
at most one assignment to a single�assignment variable� these variables can be
e�ectively cached� Processes of type P in Program � are an example of a possible
C�� implementation of single�assignment variables�

����� Process Aggregates

Thus far� we have described processes as independent entities� and have emphasized
the code�execution aspects of processes� In this section� we shall show how
processes can be treated as instances of a restricted data form� one that can be
accessed only through a set of mutually exclusive� atomic actions�

As illustrated in Program 
	� C�� programmers can treat processes as variables
of any other type� Whether a process is a local variable� member of an object or
of another process� element of an array� or used in any other way in which a
variable can be used in C��� the process semantics are the same� According to
the syntactic restrictions described in Section ���� the only operations allowed on
a process are to take its address and to access its public members �all of which
are atomic actions��� The various process usages determine only when a process is
created and when it is destroyed� For non�process data types� variable usage also
implies what the memory layout is� When accessing processes� one cannot assume�
for example� that a process declared as a local variable resides on the stack� nor
can one assume that a process that is a member of a class is placed in memory next
to the other data members� In Section ��
�
� we shall discuss how programmers
can a�ect process�placement strategy�

The semantics of C�� are de�ned such that e�cient implementations exist
for both mainstream variants of MIMD computers� multiprocessors� which have
one global address space� and multicomputers� which have multiple local address
spaces� In C��� regardless of the underlying architecture� a pointer to a process

�Process assignment is an atomic action invocation� equivalent to issuing a request to the
source process to send a copy of itself to the destination process �Section ��	�
�� Passing processes
as arguments is a form of assignment�
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processdef P

�

�� ���

��

class C �� an object of class C contains	

�

public	

P p� �� a process

P� pp� �� and a process pointer

��

�

P p�� p�� �� declare two processes

p� � p�� �� process assignment

P p����� �� declare a process array

�

Program 
	� Treating Processes As Data

can be dereferenced globally� since it contains su�cient information to uniquely
identify the process it points to�

An important advantage that multiprocessors have over multicomputers is
that they can employ most of the data�layout strategies developed for sequential
computers� There are additional performance considerations guiding the design
decisions on the data layout� as discussed in ��	�� If� for the time being� we
neglect such performance considerations� a vector of C�� processes could� on a
multiprocessor� be laid out in memory in the same way as a vector of elements
of any simple data type� Elements with successive indices would reside at
memory addresses that di�er by a stride equal to the size of the process� This
approach would allow the programmer to compute the address of any process in
the vector given the address of any other process in the same vector� and the two
corresponding indices�

On a multicomputer� using the above layout strategy for vectors of processes
is unacceptable for two reasons� �rst� the address space of a multicomputer is
contiguous only within each multicomputer node� so the maximumsize of a process
vector would be limited by the size of node memory� and second� although the
computation model allows elements of a process vector to operate concurrently�
that concurrency could not be used to a performance advantage� because the
elements would all reside on the same node�

This example is but an instance of a more general problem of naming
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constituent elements of distributed objects �
�� ��� There are two issues that
are central to the solution of this problem� The �rst issue is that there should
exist a single name �address� of a distributed object� and a way of addressing
constituents given this name� The second issue is that the programmer should be
able to compute on references� not just store them at process�creation time and
fetch them when they need to be used�

A simple solution that takes only the �rst issue into the account could employ
an address�manager process� The manager�s address would represent the address
of the distributed process as a whole� All the requests would be directed to this
process� and then forwarded to appropriate constituent processes� This solution
obviously introduces an access bottleneck� but may be acceptable for element
processes that exhibit a large ratio of computation�communication�

We consider this problem to be too important to be left to ad hoc approaches�
particularly for such often�used paradigms as arrays of processes� Accordingly�
C�� o�ers a runtime�system�supported mechanism for address management that
preserves the C�� address�computation semantics�

The example in Program 
� shows that the creation of a process array

�

processdef P � ��

P� p � new P������ �� is equivalent to	

�

P� p � unique

CPM�����sizeof�P���

for �int i��� i����� i���

new ��p�i� P�

�

�

Program 
�� Creating A Vector of Processes

consist of two stages� First� a set of unique references is allocated by invoking
the unique CPM function� with arguments specifying how many references are
required� and what the stride between the adjacent references should be� This
function returns a pointer of the generic process�pointer type� pointer t�
analogous to void� in C��� Next� the actual process creation is requested�
specifying that each new element process be placed in such a manner that it can
be located through the given pointer� A description of various �avors of process
creation is presented in Section ��
�
� A set of algorithms that provide e�cient
support for process placement and lookup is described in ����
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������ Summary

The programming examples in Section ��� illustrate that a small set of mechanisms
supported by C�� is su�cient to express a variety of concurrent�programming
paradigms� This set consists of� process creation� asynchronous request�
synchronous request �remote procedure call�� and selective servicing of requests
�active�passive mechanism�� In Chapter �� we shall present an implementation
framework for this set of mechanisms�

��� Managing Program Complexity

In the introductory section of this chapter� we discussed how object�oriented
programming techniques came about through e�orts to aid programmers in
managing program complexity� All of the object�oriented techniques supported
by C�� are extended to managing processes in C��� The interested reader may
consult the wealth of available literature on C��� including� but not limited to �
���
In the remainder of this section� for completeness� we shall mention brie�y two

of those techniques� inheritance and virtual functions� We shall then discuss the
techniques that are speci�c to C�� and concurrent programming� process layering�
process libraries� and customizing of the data exchange�

��	�� Class Inheritance

Class inheritance is the C�� mechanism that enables user�de�ned types to be
derived from more basic types� inheriting data members and functions from the
base type� possibly adding new ones and�or overriding old ones� Access rights are
associated with each class member� For example� in Program 
�� privatemembers
of the base class shape can be accessed only by member functions of shape�
protectedmembers of shape can� in addition� be accessed by member functions of
any class derived from shape �for example� circle�� and publicmembers of shape
can be accessed by any piece of code anywhere in the program� The class circle

is derived from class shape by adding a data member �radius� and a member
function �modify radius���� and by overriding the member function draw���
A typical memory layout for the two classes is shown in Figure ���� The point to

int color�

int origin� int origin�

int color�

int radius�

circle	shape
shapeshape

Figure ���� Class Inheritance vs� Memory Layout

be remembered is that C�� class inheritance is a compile�time rather than a runtime
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class shape

�

private	

int origin�

void modify
origin���

protected	

int color�

void modify
color���

public	

void draw���

��

class circle 	 shape

�

private	

int radius�

public	

void modify
radius���

void draw���

��

Program 
�� Class Inheritance

mechanism�� Every instance of class circle contains a part corresponding to an
instance of class shape� it is the de�nition of class shape that is shared� not
any particular instance of it�

The C�� class�inheritance mechanism is mimicked by process de�nitions in
C��� they too can be speci�ed through their similarities with and di�erences from
previously�de�ned process de�nitions�

��	�� Virtual Functions

The virtual�function mechanism supported by C�� is a mechanism that enables
programmers to separate the design of member�function interfaces from the design
of member functions themselves�

For example� in Program 
�� given a shape� sp� and a circle� cp� the
invocation of sp�
draw�� and cp�
draw�� will result in calling shape��draw��

and circle��draw��� respectively� The compiler decides which call to generate
based on the type of pointer through which the function has been called�

Had the two draw�� functions been virtual� the invocation of sp�
draw��
could have invoked either of the two functions� depending on what the pointer

�Neglecting� for the time being� such C�� features as multiple inheritance and virtual
functions�
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sp pointed to� In this case� the compiler generates an indirect call through the
class�speci�c table�

��	�� Process Layering

The standard C�� inheritance mechanism allows one to describe process de�nitions
hierarchically� However� once a process is created� it is an independent entity� The
hierarchy is re�ected in its structure� not in its relationship with other processes�
There are important applications where� in addition to hierarchy in structure�

it is useful to have runtime�exercised hierarchy in control� For example� in
operating or runtime systems ���� user processes are created and managed by
system processes� In simulators ����� processes that model the behavior of physical
elements are managed by time� or event�driven schedulers�
The mechanism that C�� uses to support such applications is process layering�

also called dynamic process inheritance� As illustrated in Program 
� and
Figure ���� every instance of processdef gate is managed by an instance of

processdef scheduler

�

private	

int time�

��

processdef gate 	 dynamic scheduler

�

protected	

gate� output�

��

processdef two
input
gate 	 gate

�

private	

int state�

atomic void input��int��

atomic void input��int��

��

Program 
�� Process Layering

processdef scheduler� The details of process layering will be discussed in
Section ��
� which describes the C�� runtime�system interface� The relationship
between the manager process and the managed process is established at the
creation time of the managed process� The manager provides a set of services
to all processes that it manages� with the same access protection that is o�ered
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int time�

two input gate 	 gate

scheduler

gate 	 dynamic scheduler
gate� output�

int state�

Figure ���� Process Layering vs� Memory Layout

through the class�inheritance mechanism� The manager decides when an atomic
action of any of the processes managed by it is executed �as opposed to invoked��
while conforming to the de�nitions of process behavior as speci�ed in Section ����

��	�	 Process Libraries

Libraries of C�� processes can be organized in the same way as libraries of data
structures in C��� In most cases� the remote procedure calls to atomic actions
of processes form a suitable interface� and these calls replace the class member�
function interfaces� In these cases� it is su�cient that programs include header
�les that contain interface�process de�nitions�

There are cases� however� in which imposing the RPC interface would overly
serialize computations that are otherwise concurrent� For example� a process
library might initialize a set of processes for FFT computation� as illustrated in
Section ������ employing several input and several output data streams� A stream
of input values can be represented by a sequence of non�blocking atomic�action
invocations� If a stream of output values were represented as a sequence of replies
obtained through the RPC mechanism� just as in the sequential�search example
of Section ������ the computation could not be pipelined� However� unlike in this
search example� this problem could not be resolved with call forwarding�

The mechanism typically used for C�� libraries with multiple input and output
streams is as follows� an input stream is represented by a sequence of non�
blocking atomic�actions invocations of an input�interface process� an output stream
is� similarly� a sequence of non�blocking atomic�actions invocations of a process
provided by the library user� In this arrangement� the library�user process must
be derived from the output�interface process of the library it uses �Section �����
When a process uses multiple libraries� multiple inheritance is employed to derive
such a process from all of the output�interface processes from which it requires
results�
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��	�
 Data Exchange

The designers of C�� made a commendable e�ort to provide an overloading
mechanism that enables programmers to pass arguments by value� even when these
arguments are arbitrarily�complicated� linked� data structures� This mechanism is
not su�cient for concurrent�programming systems� which must take into account
some additional considerations� On multicomputers� object pointers have local
meaning� Also� concurrent computers may be heterogeneous ensembles comprised
of machines with di�erent data layout� alignment� size� or representation�
C�� addresses all of these potential problems at the inter�process�communication

level �invocations of atomic actions� with mechanisms that are described in the
remainder of this section� The communication speci�cations are declarative� as
opposed to imperative� the programmer speci�es what special actions should be
taken when a data item of certain type is communicated� the compiler guarantees
that actions thus speci�ed will be invoked on every occurrence of communication�

Communicating Arbitrarily�Complex Data Structures by Value

One of the premises of �ne�grain concurrent programming is that large data
structures are implemented in terms of many small� cooperating processes� so it is
tempting to claim that process pointers that can be globally dereferenced are all
that programmers might possibly want� However� an important use for pointers in
C�� is for data structures that are only partially speci�ed at compile time� linked
data structures and arrays of variable size� If proper support and clean semantics
for this feature were not o�ered� users would have resorted to ad hoc solutions�
The mechanism supported by C�� enables the programmer to specify what

extra actions should be taken when communicating an object of some class by
value� In its most common form� it amounts to �attening the linked data
structure before sending� and relinking it upon receiving� As will be illustrated in
Section ��
� variants of this mechanism can also be used to express more intricate
�but sometimes much more e�cient� communication protocols�
Suppose that the data type of choice is a singly�linked list of elements of type

list� each of which contains a pointer to the next element in the list� a pointer to
a vector of integers� and a �eld specifying the size of the integer vector� Figure ���
illustrates what is required to pass a data item of type list by value� Part �a�
shows a data item scattered around in memory� Part �b� shows the �attened data
structure� with the dashed parts corresponding to other arguments that may be
sent in the same communication� If the concurrent computer at hand is a shared�
memory multiprocessor� and if the �attened argument list is in the shared address
space� the task is completed� Now suppose that passing arguments moves them
from one address space to another� as typically happens on a multicomputer� When
the message that encapsulates the argument list is received� all the pointers are o�
by a constant �c�� and have to be re�linked� as in �d��
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�a� �b� �c� �d�

Figure ���� Flattening Linked Data Structures

Program 
� is the speci�cation of the �attening and re�linking tasks� The
operator space computes how much extra space is needed in the argument list
when an instance of list is passed as an argument to an atomic action� The
operator send speci�es that� in addition to this instance of list� a vector of
integers and the remaining part of the list should be passed along� The operator
recv requests that the vector of integers �data� and the rest of the list next be
re�linked in place on the receive side�

This special handling will be invoked not only for instances of list� but also
for all objects derived from list� and for all objects that contain instances of list
as members� C�� data�structure libraries can� accordingly� be built in a way that
allows library users to be indi�erent about the details of the implementation�

This example illustrates how arbitrarily complex� linked� data structures can be
passed by value� However� to avoid copying� and when sharing of data structures
between processes is needed� structures must consist of linked processes� not of
linked objects�
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class list

�

private	

int size� �� number of integers �data� points to

int� data�

list� next� �� a pointer to the next of kin

public	

size
t operator space ��

�

size
t s � space�data�size�� �� space for size integers

if �next� s �� space�next�� �� space for the rest

return s� �� of the list

�

void� operator send �void� v�

�

v � send�v�data�size�� �� send size integers

if �next� v � send�v�next�� �� send the rest

return v� �� of the list

�

void operator recv ��

�

recv�data�� �� re�link int�

if �next� recv�next�� �� re�link the rest

� �� of the list

��

Program 
�� Passing Linked Data Structures By Value

Communicating Across Heterogeneous Machine Boundaries

The C�� compiler assembles all messages �argument lists to atomic actions�� and
initiates all instances of communication �invocations of atomic actions�� This
information enables the compiler to handle the size and alignment of the basic
data types �integers� �oating�point numbers� etc�� for a programmer�speci�ed set
of machines that may be involved in direct communication�
The example in Program 
� speci�es that� in addition to the local�machine

type� communication may be established with machines of types I��� and Sparc

�arbitrary� user�speci�ed names�� The entries within each machine description
correspond to the data size and alignment �measured in units of size equal to the
minimum�addressable memory unit on the machine running this program�� and
any special treatment that may be required for a particular basic data type���

��The following is the complete list of C�� basic data types� char� short� int� long�

float� double� long double� signed char� unsigned char� unsigned short�

unsigned int� unsigned long� void�� entry t� and pointer t�
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machine I� !

�

char� �� ��

short� �� ��

int� �� ��

long� �� ��

��

machine Sparc

�

char� �� ��

short� �� �� send
lib� recv
lib�

int� �� ��

long� �� ��

��

Program 
�� Machine Descriptions

For example� for a machine of type Sparc� short integers are of size � and have
to be positioned on addresses divisible by �� When sending a short integer to a
process residing on a machine of type Sparc� the data item has to be converted
using the user�supplied and user�named function send lib� when receiving a short
integer from such a process� the data item has to be converted using the function
recv lib�
The compiler implicitly generates type machine t� de�ned as�

enum machine�t � local��CPM� I���� Sparc �	

and the user is obliged to de�ne the function

machine�t machine��CPM �pointer�t�	

that maps process pointers into machine types�

��� Putting It All Together

The examples of C�� programs shown so far were chosen to illustrate programming
techniques� We have deliberately chosen clarity over completeness� and� indeed�
some of these examples require the addition of forward declarations to be accepted
by the compiler�
In this section� we shall show an example of a complete program that computes

the N �point FFT� as illustrated in Figure ���� Our concurrent program will
closely match this data�dependency graph� with one addition� We shall introduce a
column of nodes whose purpose is to rearrange the input values from the standard�
linear ordering of indices to the bit�reversed ordering required at the input of the
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FFT�computing graph� Figure ��� shows the modi�ed graph� with circled parts
corresponding to sub�computations performed by individual processes�
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Figure ���� An ��Point FFT Computation� with the Processes Circled�

Typically� writing C�� programs consists of four stages�

� Choosing a concurrent algorithm�

� Designing an input�output interface�

� Designing the process hierarchy� and�

� Describing process behavior�

We shall organize the program as a library package� Figure ��
� illustrates the
user�level view of this library� Input values are to be sent to processes of type
fft� and output values will be delivered to processes of the same type� For an
N �point FFT computation� there are N input and N output processes� all of which
have to be derived from fft� The set of pointers to N input processes could be
represented in a variety of ways� but it is often most intuitive to represent these
processes as members of a process vector� as described in Section ������ The same
is true for the set of pointers to N output processes�
Program �� is the header �le that the user must include to access the library�

A user program might look like Program �
� Since the library sends the output
values to the vector of fft processes� the consumer processes are derived from fft�
and have to be created using the distributed�process mechanism� The producer
processes� on the other hand� don�t have to be elements of any vector unless some
other part of the user code needs to treat them so�
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fft��
in��

fft��
in��

fft��
in��

fft��
in��

fft�fft�

fft�fft�
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fft�fft�
fft��
in��

inputs outputs

graph

FFT

�




N � 


inputs outputs

graph

FFT

�




N � 


Figure ��
�� User View of the FFT�Library
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�� fft�h

�include �c���h
 �� The runtime�system header file

�include �Complex�h
 �� The complex�arithmetic package

processdef fft 	 public CPM �� The runtime system requires that

� �� every process be derived from CPM

public	

atomic virtual void connect�fft�� � �� �� The �� �� syntax in C�� denotes

atomic virtual void in�Complex� � �� �� that this is the specification

�� �� of an interface� leaving it to

�� the derived processes to specify

�� how the requests are serviced

processdef fft
graph 	 public CPM �� This process represents the

� �� whole graph

private	

fft� inputs� �� The pointer to the first input

int order� �� Size of the FFT graph

public	

atomic fft
graph�int� fft��� �� Creating the fft process graph

atomic �fft
graph��� �� Deleting the fft process graph

atomic fft� input�int�� �� Finding out the address of a

�� particular input

��

Complex W�int N� int i�� �� A function that computes

�� complex roots of �

int bit
reverse�int N� int i�� �� A bit�reversing function

Program ��� The FFT�Library Header File
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�include �fft�h


processdef consumer 	 public fft

�

public	

atomic virtual void in�Complex�� �� Do something with the result

��

processdef producer 	 public CPM

�

public	

atomic producer�fft��� �� Produce input values

��

const int N � ���

root		root �int argc� char�� argv�

�

fft� outputs � new consumer�N�� �� Create the vector of consumers

fft
graph� g � new fft
graph�N�outputs��

�� Create the computation graph

fft� inputs � g�
input���� �� Get the reference to the inputs

for �int i��� i�N� i��� �� Create N producers

new producer�inputs�i��

�

Program �
� An Example of FFT�Library Usage
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Figure ��

 shows the process�speci�cation hierarchy that we chose to
implement� and Programs �� and �� specify this hierarchy�
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�
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fork
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�


Figure ��

� Process�Speci�cation Hierarchy

The fft process de�nition is just an interface speci�cation� and does not
describe any computation� The remaining process de�nitions specify that the
process activity consists of four distinct stages�

� Establishing a connection� ie� obtaining output references�

� Getting one or two input values�

� Computing the result� which may involve an addition and a multiplication�
and�

� Outputting one or two output values�

The common parts of the code are shared between di�erent process de�nitions
through the process�inheritance mechanism� Using multiple inheritance �whereby
process de�nitions can be derived from more than one process de�nition� would
have resulted in better code reuse� Nevertheless� we felt that� in the examples
in this thesis� multiple inheritance would not have contributed to reader�s
understanding of C���
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�� fft��h

�include �fft�h�

processdef relay 	 public fft

�

protected	

fft� out� �� Output reference

Complex result� �� The result

virtual void compute�Complex�� �� How to compute the result

virtual void output��� �� How to generate the output

public	

atomic virtual void in�Complex��

atomic virtual void connect�fft���

atomic relay��

� passive�in�� �

��

processdef join�

processdef fork 	 public relay

�

protected	

join� out�� �� Fork adds an output reference�

virtual void output��� �� and produces two output values

public	

atomic virtual void connect�fft�� join���

��

processdef mult
fork 	 public fork �� Mult
fork also needs to multiply

�

protected	

Complex W� �� so here is the multiplicand

virtual void compute�Complex�� �� and how to compute

virtual void output��� �� It must generate the �� output

public	

atomic virtual void connect�fft�� join�� Complex��

��

Program ��� Process Hierarchy for FFT Computation� Part 
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�� fft��h

�include �fft��h�

processdef join 	 public relay �� Join has two distinct inputs

�

protected	

virtual void compute�Complex�� �� How to compute the result

public	

atomic virtual void in �Complex��

atomic virtual void in��Complex��

atomic join��

� passive�in�� passive�in��� �

��

processdef join
fork 	 public join �� The same modifications

� �� as from relay to fork

protected	

join� out��

virtual void output���

public	

atomic virtual void connect�fft�� join���

��

processdef join
mult
fork 	 public join
fork �� The same modifications

� �� as from fork to mult
fork

protected	

Complex W�

virtual void compute�Complex��

virtual void output���

public	

atomic virtual void connect�fft�� join�� Complex��

��

Program ��� Process Hierarchy for FFT Computation� Part �

The behavior of various process types is speci�ed in Programs �	� �� and ���
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�� fft��cpm

�include �fft��h�

atomic

void

relay		connect �fft� f�

�

out � f�

active� �� make all atomic function active

�

atomic

void

fork		connect �fft� f� join� j�

�

out � f�

out� � j�

active�

�

atomic

void

mult
fork		connect �fft� f� join� j� Complex c�

�

out � f�

out� � j�

W � c�

active�

�

atomic

void

join
fork		connect �fft� f� join� j�

�

out � f�

out� � j�

active�

�

atomic

void

join
mult
fork		connect �fft� f� join� j� Complex c�

�

out � f�

out� � j�

W � c�

active�

�

Program �	� The FFT Computation� Part 
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�� fft��cpm

�include �fft��h�

atomic

void

relay		in �Complex c�

�

compute�c��

output���

�

void

relay		compute �Complex c�

�

result � c�

�

void

mult
fork		compute �Complex c�

�

result � W � c�

�

void

relay		output ��

�

out�
in�result��

�

void

fork		output ��

�

out�
in�result�� out��
in��result��

�

void

mult
fork		output ��

�

out�
in��result�� out��
in��result��

�

Program ��� The FFT Computation� Part �
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�� fft��cpm

�include �fft��h�

atomic

void

join		in �Complex c�

�

if � passive�in�� �

� compute�c�� output��� active�in��� �

else

� result � c� passive�in�� �

�

atomic

void

join		in� �Complex c�

�

if � passive�in� �

� compute�c�� output��� active�in�� �

else

� result � c� passive�in��� �

�

void

join		compute �Complex c�

�

result �� c�

�

void

join
mult
fork		compute �Complex c�

�

result � �result � c� � W�

�

void

join
fork		output ��

�

out�
in�result�� out��
in��result��

�

void

join
mult
fork		output ��

�

out�
in��result�� out��
in��result��

�

Program ��� The FFT Computation� Part �
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Finally� Programs ��� �� and �� contain the code used to build theN �point FFT
process graph� Depending on how time�critical this creation task is� solutions range
from entirely sequential� taking O�N logN� steps� to maximally concurrent� taking
just O�logN� steps� Our solution follows an intermediate approach� in which the
process creation is concurrent and takesO�logN� steps� whereas passing references
around is sequential for each process column� and takes O�N� steps�

�� fft��h

�include �fft��h�

processdef build
top
fft 	 public CPM

�

public	

atomic build
top
fft�int� join�� int� int� fft���

��

processdef build
btm
fft 	 public CPM

�

public	

atomic build
btm
fft�int� join�� int� int� fft���

��

Program ��� Building the FFT Graph� Part 
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�� fft��cpm

�include �fft��h�

fft
graph		fft
graph �int N� fft� outs�

�

order � N�

inputs � new relay�N��

if � N 
 � �

�

join� j � new join�N��

new build
top
fft�N� j� �� N����� inputs��

new build
btm
fft�N� j� N��� N��� inputs��

for �int i��� i�N� i���

�j�i��
connect�outs�i��

�

else

�

inputs�
connect�outs��

�

�

Program ��� Building the FFT Graph� Part �
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�� fft��cpm

�include �fft��h�

build
top
fft		build
top
fft �int N� join� outs� int from� int to� fft� inputs�

�

int n � to � from � ��

if � n 
 � �

�

join
fork� f � new join
fork�n��

new build
top
fft�N� f� �� n����� inputs��

new build
btm
fft�N� f� n��� n��� inputs��

for �int i��� i�n� i���

f�i��connect�outs�i�outs�n�i��

�

else

�

fork� f � new fork�

f�
connect�outs�outs����

�inputs�bit
reverse�N�from���
connect�f��

�

�

build
btm
fft		build
btm
fft �int N� join� outs� int from� int to� fft� inputs�

�

int n � to � from � ��

if � n 
 � �

�

join
mult
fork� f � new join
mult
fork�n��

new build
top
fft�N� f� �� n����� inputs��

new build
btm
fft�N� f� n��� n��� inputs��

for �int i��� i�n� i���

f�i��connect�outs�n�i�outs�i�W�N�from�i���

�

else

�

mult
fork� f � new mult
fork�

f�
connect�outs���outs�W�N�from���

�inputs�bit
reverse�N�from���
connect�f��

�

�

Program ��� Building the FFT Graph� Part �
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Implementation Issues

There are two major components to the C�� programming system� the translator
from C�� to C��� and the C�� runtime system� This programming system
is currently supported on the Mosaic� and on all systems that support the
Cosmic Environment�Reactive Kernel �CE�RK� ��
� message�passing primitives�
which includes sequential computers� networks of workstations� and a variety of
commercial multicomputers and multiprocessors�
The translator is written in C��� and is both compile�machine� and target�

machine�independent� Most of the runtime�system code is portable as well� with
the exception of a small set of C�� library functions that are illustrated in
Section ��
�

��� The Runtime�System Framework

The relationship between the C�� programming notation and the C�� runtime
systems is symbiotic� Programs written in C�� require runtime�system support�
C�� runtime systems are typically written in C���
Although most of the runtime�system code is portable� the resource�allocation

requirements on various machines are quite di�erent� Given a su�ciently large
node memory� the amount of runtime�system support that C�� programs require
is minimal� The runtime systems for C�� implementations on computers with
workstation�size nodes typically consist of less than a thousand lines of C�� code�
The Mosaic �ne�grain multicomputer consists of nodes with severely restricted
memory resources� hence� the runtime system for the Mosaic employs much more
sophisticated runtimemechanisms� Various con�gurations of MADRE� the MosAic
Distributed Runtime systEm� range from two to ten thousand lines of C�� code�
MADRE was written by Nanette J� Boden� and its design and the distributed
algorithms it employs are described in detail in her Ph�D� thesis ���� This work
demonstrates that the complexity of runtime systems for �ne�grain multicomputers
need not result in large penalties in speed� nor does it imply large chunks of node�
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resident code that reduce the available node memory even further� MADRE is itself
a concurrent program that employs distributed solutions to manage distributed
resources ����
The mutual dependence of the C�� programming notation and the C�� runtime

systems is only apparent� In fact� the runtime system is just a pre�written
part of any user program � a part that includes an interface to the resource�
allocation and communication capabilities of the machine it is running on� The
C�� programming model and programming notation supply only the framework
for implementing process management and data communication� striving not to
restrict the spectrum of possible runtime�system implementations� The remainder
of this section describes this framework� Since the primary target for executing C��

programs is the Mosaic� the names and default semantics of functions that we use
correspond to message�passing communication primitives� This does not� however�
imply that these primitives are the only ones that can be used� shared�memory
communication primitives� for example� are equally suitable for implementing the
necessary low�level routines�

����� Process Creation

An example of how process creation may be implemented in C�� is given in
Program ��� In general� process creation consists of the following three stages�

� Choosing a manager� by invoking the manager CPM function� corresponding
to the type of the process being created� This function must return a
pointer to the process that will be asked to instantiate the new process�
It is possible to de�ne multiple versions of this function� some of which may
take arguments� For example� di�erent versions may correspond to di�erent
process�placement strategies�

� Requesting the creation from the chosen manager by invoking the manager�s
create CPM atomic action� The two arguments� correspond to the size of the
process and the address of the constructor to be invoked� If the constructor
takes arguments� those are passed as well� Various �avors of process creation
can coexist in the system� with one of them selected at creation time�

� Instantiating the process is done by a manager process� not necessarily the one
originally chosen� The creation can be delegated to other potential manager
processes� and is eventually done in the consenting manager�s address space
����

�This function must be declared static� which is a C�� feature that makes a member function
generic� associated with a certain class de�nition� not with any particular instance of that class�

�The size t is a C���de�ned integer type that can represent the size of the largest possible
object �or process�� The entry t type is introduced by C��� and will be described in Section ��	�
�
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processdef Manager

�

public	

atomic P� create

CPM �size
t� entry
t� �����

��

processdef P 	 dynamic Manager

�

public	

static Manager� manager

CPM���

atomic P���

atomic P�int��

��

�

new P� �� is equivalent to	

P		manager

CPM���
create

CPM�sizeof�P���P		P����

new P������ �� is equivalent to	

P		manager

CPM���
create

CPM�sizeof�P���P		P�int�������

�

Program ��� Process Creation

����� Runtime Services

All of the protected and public members of a manager can be accessed by
the processes it manages� This access is handled transparently by the compiler�
The programmer need not be concerned whether some service is provided through
regular inheritance or through dynamic inheritance� with the latter requiring one
or more levels of indirection �Program �
��

����� Process Dispatch

A problem that emerges in the design of all operating and runtime systems is that
of specifying an interface for invoking user programs� This task is typically done
in an ad hoc way� For example� user programs written in C and run under UNIX
must have a function called main� which is the user�code entry point� However� this
approach does not enable the operating system code to merely call this function�
since the address of main is not known at the operating�system linking time� The
typical solution is to require that main always be at the same address� or to �nd
its address at loading time�
Every C�� process has a �xed number of entry points� corresponding to its

atomic actions� each of which could take di�erent numbers and types of arguments�
and return values of di�erent types� If the runtime system itself is to be expressed
in C��� there must be a way of dispatching to any atomic action of any process� or
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processdef Manager �� runtime�system code

�

protected	

int i�

void f���

��

processdef P 	 dynamic Manager �� user code

�

private	

int j�

void g���

public	

atomic P��

�

j � �� �� accessing local data

i � �� �� accessing manager�s data

g��� �� calling local function

f��� �� calling manager�s function

�

��

Program �
� Accessing Runtime Services

of any process in some prede�ned set� In the remainder of this section� we describe
the C�� atomic�action dispatch mechanism�

As illustrated in Figure ��
� every process P is a node of a process tree� with
its path toward the root of a tree leading through its manager M� its manager�s
manager MM� etc� Several such trees may coexist on each physical node� Every
processdef M that could be used as a dynamic base for some process de�nition�
which means that an instance of M could be a manager of some process� must
have a special atomic action de�ned� atomic �M�entry t�� called the dispatcher�
A generic dispatcher� atomic ��entry t�� also has to be de�ned� its job is to
dispatch to root processes of process trees�

The entry t is a type introduced by the compiler� corresponding to any and
all types of entry points of processes that could be de�ned with M as their dynamic
base� A variable of this type can be used like a regular C�� member�function
pointer� with one important distinction� one need not know the interfacing details
of all atomic actions that a variable of type entry t may be used to invoke� How
arguments are passed to anonymous atomic actions is discussed at the end of this
section� How values are returned from atomic action is presented in Section ��
���

Speci�cation � An execution of an atomic action of a process can be requested
only from the body of its manager�s dispatcher atomic action�
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processdef P 	 dynamic M

processdef M 	 dynamic MM

processdef MM

f atomic �MM�entry t�� g

f atomic �M�entry t�� g

f atomic int f�int�char�� g

atomic ��entry t��

Figure ��
� Process Dispatch

For the process hierarchy in Figure ��
� this speci�cation means that the
execution of an atomic action of processdef P� say P��f� consists of executing the
generic dispatcher �� which calls MM���MM� which calls M���M� which calls P��f� It
is this layered execution that enables �managers� to manage other processes� The
semantics of atomic�action executions can be changed by modifying the runtime�

system code� As stated in The Annotated C�� Reference Manual� �� � � this opens
vast opportunities for generalization and language extension in the general area
of� What is a function and how can I call it�� �
��� This feature could strike the
reader as intolerably under�speci�ed and inviting of hacking and abuse� However�
the safety properties of this mechanism are not as weak as they may appear to
be� The runtime�system�speci�ed mechanisms cannot be changed by users � the
manager always gets to run before dispatching to the managed process� We have
come to believe that the support for some mechanism of this kind is essential for
a notation that is intended for expressing operating and�or runtime systems�
Another way of thinking about this layered dispatch mechanism is that every

process provides a set of services �its atomic actions�� and an escape mechanism to
which it can defer the execution if it cannot handle the requested service itself�

Arguments to Atomic Actions

The memory layout of the arguments to atomic actions is the same as that for
regular functions in C��� with additional arguments being passed to the dispatcher
actions of the manager processes �Figure �����
These additional arguments are� by default� generated by the compiler� but� as

discussed in Section ��
��� this default behavior can be replaced by one de�ned by
the programmer�
An additional feature is that the arguments are assumed to be members of the
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�P��f

�M���M

�MM���MM

arguments to P��f

arguments to M���M

arguments to MM���MM

char

int

arguments to �

Figure ���� Atomic�Actions Arguments Layout

compiler�introduced structure args t� and can be accessed as a unit through a
pointer variable args t� args	 �similar to the this variable in C����

����	 The pointer t and the entry t Types

In the programming examples wemade use of pointer t and entry t types� always
referring to them as �introduced by the compiler�� These two types are actually
de�ned by the runtime�system in a �le that has to be included by every C��

program �
c���h
�� The C�� translator makes the structure of every process
pointer the same as that of pointer t� and the structure of every pointer to a
member of a process the same as that of entry t�

����
 Process State

As discussed in the previous sections� the state of a C�� process consists of its�

� data members�

� active�passive set� and

� a pointer to the manager process�

What are the semantics of process assignment in the context of processes with the
state de�ned above� The default C�� semantics for process assignment are bit�
wise copying of data members and of the representation of the active�passive set�
the pointer to the manager process is left untouched� The example in Program ��
shows process assignment as equivalent to sending a request to the source process
to send a copy of itself to the speci�ed destination process�

����� Process Migration

No notion of process migration is supported directly in C��� A process pointer
typically contains an absolute address of a piece of memory representing the
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processdef P

�

private	

int i�

public	

atomic int copy

CPM �P� pp�

�

forward pp�
copy

CPM��this��

�

atomic int copy

CPM �P p�

�

�this � p�

return ��

�

��

�

P p�� p��

p� � p�� �� is equivalent to	

await � p��copy

CPM��p�� ��

�

Program ��� Process Assignment

state of a process� However� the example in Program �� shows how simple it
is to copy the state of a process� Furthermore� with the ability of the runtime
system to de�ne the structure of process pointers �Section ��
�	�� the runtime�
system framework described in this chapter was su�cient to implement distributed
processes �Section ������� The support for distributed processes requires the
same indirection mechanism that might be used for process migration� The work
reported in ��� is a �rst step towards a thorough examination of the issues involved
in process migration� The results presented in this work establish conditions under
which� for example� process state can be shipped to where the atomic�action code
is located just as readily as code can be cached where the process state is located�

����� Invoking Atomic Actions

As illustrated in Program �	� an atomic�action invocation consists of three stages�

� Introductory Stage � Upon calling operator space to determine the size of
the argument list� the operator head is invoked to build the dispatcher list�
Given a data type TYPE and a process type PROCESS� the default operator
semantics are as follows�
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size
t operator space�TYPE t�

�

return sizeof�t��

�

static

void� PROCESS		operator head�void� v� pointer
t p� entry
t e� size
t s�

�

return operator send�v�e��

�

� Main Stage � For each element in the argument list� the operator send is
invoked� The default operator semantics are bit�wise copy�

void� operator send�void� v� TYPE t�

�

TYPE� tp � v�

�tp � t�

return tp���

�

� Final Stage � The operator tail is invoked� with no�op default semantics�

static

void PROCESS		operator tail�void�� void��

� �

At the time of atomic�action execution� operator recv is invoked for each
element in the argument list� The default semantics for this operator are a no�op
�Program ����
The set of operators described above provides runtime�system programmers

with a powerful tool that they can use to de�ne how process communication
is actually implemented in terms of lower�level routines� The same set of
operators is available to users� An example of an application that might bene�t
signi�cantly from the ability to exercise total control is a program that implements
communication�network protocols� The general usability of the above mechanism�
however� is highly questionable� Once the compiler relinquishes control over
data layout to a naive user� obscure problems abound� For a great majority
of applications� the e�ciency of the data�exchange mechanisms described in
Section ��	�� is su�cient�
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void operator recv�TYPE t�

� �

Program ��� Default operator recv
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processdef MM

�

public	

atomic �MM�entry
t��

��

processdef M 	 dynamic MM

�

public	

atomic �M�entry
t��

��

processdef P 	 dynamic M

�

public	

atomic void f �int� char��

��

�

P� p�

int i�

char c�

p�
f�i�c�� �� atomic action invocation is equivalent to

�

size
t size � operator space��MM		�MM� �� assuming there are

� operator space��M		�M� �� no alignment problems

� operator space��P		f�

� operator space�i�

� operator space�c��

void �b� �v�

pointer
t pp � p�

b � v � operator head � pp� �MM		�MM� size��

v � MM		operator head �v� pp� �M		�M� size��

v � M		operator head �v� pp� �P		f� size��

v � operator send�v�i��

v � operator send�v�c��

v � M		operator tail � v� pp� �P		f� size��

v � MM		operator tail � v� pp� �M		�M� size��

operator tail �b� v� pp� �MM		�MM� size��

�

�

Program �	� Atomic�Action Invocation
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����� Active�Passive

The active�passive mechanism� because of its simplicity and e�ciency� is the
C�� synchronization mechanism of choice� The runtime�system interface for this
mechanism is presented in Program ��� If a di�erent synchronization mechanism
is required� it can be implemented following the same approach�

processdef P

�

public	

atomic void f���

atomic int g���

��

atomic

void

P		f ��

�

active f� �� is equivalent to	

P		active

CPM��P		f��

passive g� �� is equivalent to	

P		passive

CPM��P		g��

�

Program ��� Active�Passive Implementation

����� Remote Procedure Call

When invoking an atomic action that returns a value� the sequence of events is
identical to that described in Section ��
��� except that an extra argument is passed�
This extra argument is the pointer to the currently�running process � the process
that expects the reply� This pointer is obtained by calling the runtime�system�
de�ned function current CPM���� The NULL extra argument implies that the
returned value is not required�

Values Returned From Atomic Actions

Inside an atomic action� the extra argument is called reply CPM� As illustrated
in Program ��� returning a value from an atomic action is equivalent to invoking
the return CPM����� atomic action of the process pointed to by the reply CPM

pointer�

�Note that it was not possible to use the this variable� because a process might be suspended
while executing a non�member function�



�� CHAPTER �� IMPLEMENTATION ISSUES

processdef P

�

public	

atomic int f���

��

atomic

int

P		f ��

�

return ���� �� is equivalent to

�

if �reply

CPM�

reply

CPM�
return

CPM������

return�

�

�

Program ��� Atomic Actions Returning Values

Suspending A Process

Whenever a returned value is expected from an atomic action� the compiler
introduces a placeholder for that value� and the runtime system is passed a pointer
to this placeholder through the wait CPM�void�� function� Multiple placeholders
can be active at any time� as discussed in Section ���� When the process attempts
to access the placeholder and �nds it uninitialized� it suspends itself by invoking
the suspend CPM�� function�

��� From C�� to C��

There are a number of reasons for translating from C�� to C�� instead of compiling
from C�� directly to Mosaic code� First� this was a faster way to build a running
system� Second� the wide availability of C�� compilers guaranteed machine�
independence� Third� we had good experience in re�targeting the Gnu C�� compiler
to produce excellent code for the Mosaic processor� And fourth� since C�� is
syntactically so similar to C��� C�� debugging tools and other programming�
support tools can be used with few or no modi�cations� One disadvantage of the
translation approach is that the compile time increases� because programs must
be parsed twice� A possible disadvantage is that some optimization opportunities
may be lost when using C�� as an intermediate target notation� However� we have
identi�ed no such lost opportunities so far�
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����� Parsing

The translator is a C�� program built within the framework of a Bison�produced
parser �
��� Practically every person who has ever worked on a project that involved
parsing of C�� has already expressed their distaste that C�� syntax cannot be
described by an LALR�
� grammar� Nevertheless� we feel that our own distaste
should be on record� too� We acknowledge that it is not the compiler writer�
but the language user� who should be the ultimate judge of the value and style
of a programming notation� However� if syntactic issues are subtle enough to be
di�cult for a compiler� what hope does a user have of not making obscure mistakes
writing programs using that syntax� Fortunately� beginners tend to use a small
set of basic language constructs� whereas experienced users tend to develop their
own programming style from a subset of the rich C�� o�ering� In our experience�
the complexity of handling the few special cases in parsing C�� is comparable to
the complexity of all of the remaining issues of translating C�� into C��� Su�ce
it to say that we are looking forward to the ANSI standard for C�� syntax�
In our implementation of the translator� each grammar rule corresponds to

a class de�nition� For example� given the grammar rule in Program ��� three

expression 	 assignment
expression

� expression � assignment
expression

�

Program ��� An Example of a Grammar Rule

class de�nitions have to be written� as shown in Program ��� Parsing a C��

program generates a parse tree that consists of nodes that are instances of classes
such as these illustrated in Program ��� We developed a program that� given an
input grammar such as the one illustrated in Program ��� generates the default
class de�nitions �similar to those described in Program ���� the code that builds
the parse tree� and the default de�nitions of output�� functions� The resulting
program code is a parsing speci�cation for Bison� which can be used to produce
a default parser� When a source program is fed to this default parser� the parser
builds the parse tree� It then invokes the output�� function at the topmost level
of the tree� thereby causing the entire source program to be produced as the
output� This default behavior can be modi�ed by de�ning additional elements
of class de�nitions� by specifying extra actions to be taken while building the
parse tree� and by providing customized versions of the output�� routine for any
class de�nition� This simple tool for developing programs for source�to�source
transformation� a program of less than two thousand lines of C�� code� has been
crucial to our ability to experiment with numerous versions of C�� syntax� This
tool generates about two�thirds of the approximately ������ lines of C�� code of a
complete C�� translator�
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class expression

�

void output�� � ��

��

class expression� 	 public expression

�

assignment
expression� member��

public	

void output��

�

member��
output���

�

��

class expression� 	 public expression

�

expression� member��

assignment
expression� member��

public	

void output��

�

member��
output���

member��
output���

�

��

Program ��� A Part of the De�nition of the Parse Tree

����� Code Generation

Once the hurdle of parsing C�� is overcome� the translation from C�� to C�� is a
fairly simple task� The description of the runtime�system framework in Section ��

also speci�es this translation task� Since the process concept is the only extension
that C�� introduces to C��� the focus of the translator is on keeping track of
processes and various other process�related types� The translator considers each
segment of a source program to be a type transformation� For example� a process�
pointer type� when dereferenced� is transformed into a process type� and a function
call transforms a list of argument types into the type of the returned value� Since
the translator keeps track of all of the type transformations in a program text�
operations on processes are detected� and the replacement code� as illustrated in
Section ��
� is generated�
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����� Code Splitting

In addition to the transformations described in Section ��
� there is one more
requirement on the translator� Since the Mosaic� a machine with limited node�
memory resources� is the most important target machine for executing C��

programs� the C�� translator must provide support for code splitting� Pieces of
code are cached in each node by the runtime system� and invoked through the
indirect�function�call mechanism� A design decision had to be made on what the
code�splitting target should be�
The default object�code unit provided by the regular C�� compilers is a piece

of code produced by the compilation of one source �le� We considered this
default setup to be unacceptable� Programmers would have to organize their code
according to the code�splitting policy rather than according to the programming�
abstraction requirements of the application� This setup would unavoidably lead to
loss of portability� whereby the source code would have to be rearranged and split
into smaller pieces when moving to a machine with less node memory�
Given that the default code�splitting policy was deemed unusable� we identi�ed

three well�de�ned code�splitting targets� These three targets� with increasing
granularity� are to split the code so that each piece corresponds to�

� an atomic action of a process�

� a function and�or an atomic action of a process� or

� a block of code within a function� with strictly sequential execution �no
conditional execution��

The next�higher�granularity target would be equivalent to turning the runtime
system into a pseudo�code interpreter�
If the block of code with strictly sequential execution is the code�splitting

target� only code that is certain to be executed is ever brought to the code cache�
However� this implies more frequent code�cache updates�
If the code corresponding to a function or an atomic action is the code�splitting

target� there is no unnecessary code duplication� as every named piece of code is
a stand�alone unit� In this case� an indirect�call overhead has to be paid for each
function call�
Even though each of these options could be supported by the C�� translator�

we decided to split the code into pieces that correspond to atomic actions of
processes� This was the least�complicated and the best�understood approach�
and it still allowed us to provide an experimental testbed that can be used to
determine the e�ect of code�splitting granularity on the machine performance�
Code of a function is linked with every atomic action that invokes it� Some of the
runtime�system services� such as sending messages and creating new processes�
are accessed by virtually every user process� and replicating that code would
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be equivalent to including a large fraction of the runtime system in the code of
each user�process atomic action� Access to these services is through the indirect�
function�call mechanism� but its speci�cation is left entirely to the runtime�system
implementation ���� We consider this an acceptable compromise� particularly
because any e�cient code�caching policy must distinguish such often�used code
anyway�
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