
HCETLA

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

C

SUBMICRON SYSTEMS ARCHITECTURE PROJECT
Department of Computer Science
California Institute of Technology

Pasadena� CA �

��

Introduction to C��

Jakov N� Seizovic

Caltech Computer Science Technical Report

Caltech�CS�TR������

�� August
���
�Subject to Revision�

The research described in this report was sponsored by
the Advanced Research Projects Agency of the Department of Defense�

and monitored by the O�ce of Naval Research�

Contents

� Introduction �

�
 Concurrent Programming �

�
�
 Shared�Memory Programming � � � � � � � � � � � � � � � � �

�
�� Explicit Message Passing �

�
�� Architecture�Independent Programming � � � � � � � � � � � �

�� The Reactive�Process Programming Model � � � � � � � � � � � � � � 	

� C��

��
 Introduction �

��
�
 Object�Oriented Programming vs� Concurrency � � � � � � � �

��
�� Concurrent Object�Oriented Languages � � � � � � � � � � � � �

��� The Process Concept �

��� Managing Concurrency �
�

����
 Remote Procedure Call �
	

����� Call Forwarding �
�

����� Fork�Join �
�

����	 Semaphores �
�

����� Monitors ��

����� Recursion ��

����� Message Passing �

����� Single�Assignment Variables � � � � � � � � � � � � � � � � � � ��

����� Process Aggregates ��

����
� Summary ��

��	 Managing Program Complexity ��

��	�
 Class Inheritance ��

��	�� Virtual Functions ��

��	�� Process Layering ��

��	�	 Process Libraries ��

��	�� Data Exchange ��

��� Putting It All Together ��

ii

CONTENTS iii

� Implementation Issues �	

��
 The Runtime�System Framework � � � � � � � � � � � � � � � � � � � 	�
��
�
 Process Creation � 	�
��
�� Runtime Services � 	�
��
�� Process Dispatch � 	�
��
�	 The pointer t and the entry t Types � � � � � � � � � � � � ��
��
�� Process State ��
��
�� Process Migration ��
��
�� Invoking Atomic Actions ��
��
�� Active�Passive ��
��
�� Remote Procedure Call ��

��� From C�� to C�� ��
����
 Parsing ��
����� Code Generation ��
����� Code Splitting �

Bibliography
�

iv CONTENTS

Chapter �

Introduction

This technical report is a draft version of the C�� programming manual� It consists
of excerpts from Chapter
� and the entire Chapters � and � of the author�s Ph�D�
thesis ����� This report is to be superseded by a version that includes the C��

User�s Manual�

��� Concurrent Programming

There are two� typically con�icting� driving forces shaping the developments in
concurrent programming� increasing e�ciency and increasing expressivity�
The e�ciency�conscious programming systems are typically the products of

design teams also involved with the design of concurrent machines� and often re�ect
the underlying architecture� Shared�memory programming and explicit�message�
passing programming are representatives of this class�
The expressivity�conscious programming systems are often produced by the

frustrated users of the products of the former groups� and are typically architecture�
independent �Section
�
����

����� Shared
Memory Programming

The �rst developments in concurrent programming were motivated by the advent of
multiprogramming and multiuser operating systems� It should not� therefore� be
surprising that the �rst concurrent�programming systems supported concurrent
processes that communicated and synchronized through the memory of the
machine on which they were executing� The development of the Parallel RAM
�PRAM� model� a theoretical framework on which much of the work in concurrent
algorithms is based� also promoted the popularity of this programming style� which
is still the predominant form of concurrent programming�
From the early stages on� shared�memory programming has been plagued

by various incarnations of the mutual�exclusion problem� This problem is due

� CHAPTER �� INTRODUCTION

primarily to the discrepancy in access granularity between the data structures and
the memory units used to represent these data structures� A number of remedies
were introduced� atomic test�and�set and�or fetch�and�add instructions �
��� and
semaphores �
��� One of the most signi�cant e�orts was the work of Per Brinch
Hansen on Concurrent Pascal� and the development of monitors �
��� Monitors
encapsulate data with the �mutually�exclusive� operations de�ned on the data
in programmer�de�ned� compiler�and�runtime�system�managed units� This work
forms a foundation on which many of the recent developments in object�oriented
concurrent programming are based� including the programming system described
in this thesis�

����� Explicit Message Passing

Communication and synchronization through explicit message passing is a
programming paradigm whose roots are as old as computers themselves� stemming
from the need for inter�computer information exchange� This programming
paradigm was adopted and adapted for programming multicomputers ���� ����
Starting with the Cosmic Cube ���� and its commercial descendents ���� ���� the
mainstream representatives of the multicomputer architecture employ o��the�shelf
processor� memory� and compiler technology� Programming systems for these
machines are based on a variety of sequential programming languages for specifying
individual process behavior� wherein communication and synchronization between
processes is achieved through a set of library routines�
There are two problems that are the curse of this programming style� First�

although modular organization of data structures can be achieved within a process�
this modularity does not extend readily to collections of processes� Second� the o��
the�shelf technology often brought the o��the�shelf notion of process granularity�
heavy� UNIX�style processes impose an unacceptably high software overhead to
process communication and synchronization�

����� Architecture
Independent Programming

A number of programming models and notations have been devised to provide
a uniform view to the programmer of concurrent computers� and to map
computations onto either of the architectures described above� The advantages
that these programming systems o�er in reducing programming e�ort are
remarkable� preserving the cost�e�ectiveness of concurrent computers running such
programs� however� has yet to be demonstrated� The assembly programming of
conventional� sequential computers has been all but eliminated by higher�level
notations through large improvements in program�writing e�ciency� with small
degradations of program�execution e�ciency� The same has yet to happen to
tailor�made concurrent�programming notations�

���� CONCURRENT PROGRAMMING �

Functional Programming and Data�ow

In its pure form ���� functional programming provides a method for de�ning
functions in terms of other� more�primitive functions� The value of a function
is determined only by the value of its arguments� and is not history�sensitive�
Since there are no side e�ects� functional�programming notations are implicitly
concurrent� and sub�expressions� including function arguments� can be evaluated
independently of each other�

The introduction of side�e�ects into functional�programming notations enables
them to model history�sensitive behavior� but it also opens them up to the full
set of problems associated with imperative�programming notations� Extending
pure functional programming with single�assignment variables and streams� as
introduced by data�ow researchers� represents an important intermediate point�
This extension relaxes the no�side�e�ects requirement into the monotonicity

requirement� A variable starts up uninitialized� and an assignment bounds
it to a value �multiple assignments are disallowed�� A stream consists of a
�possibly�in�nite� sequence of variables that can only be read and appended�
Using single�assignment variables for communication and synchronization is also
used extensively in compositional programming ��� ��� and in concurrent logic
programming� described next�

Concurrent Logic Programming

The programming model typically associated with sequential logic programming is
that of proving an existentially quanti�ed statement given a program that consists
of a set of axioms ����� Implementations of this model involve backtracking
that could� in principle� be replaced by concurrent examination of all the
alternatives� However� for e�ciency reasons� and because of the need to better
model input�output behavior ���� �	�� concurrent logic programming makes a
signi�cant departure from this model� There is no backtracking� once a �non�
deterministic� choice is made� no alternatives are examined�

A concurrent logic program consists of a set of guarded clauses� and each
clause represents a recursive speci�cation of process structures� To program in a
concurrent logic programming notation is to specify tasks as unordered� concurrent
sets of subtasks� Tasks communicate and synchronize with each other by binding
single�assignment variables� and waiting for variables to become bound�

Restrictions on the expressivity of clause guards� to improve e�ciency� lead
to a family of �at concurrent�logic notations ����� A minimalist approach to
concurrent logic programming of Ian Foster and Stephen Taylor resulted in Strand�
a streamlined and e�cient concurrent�programming system �
��� without giving up
much of the expressive power�

	 CHAPTER �� INTRODUCTION

UNITY

UNITY� developed by K� Mani Chandy and Jayadev Misra ���� is a computation
model and a programming notation� with an associated proof methodology� A
UNITY program consists of a set of guarded multiple assignments� These
assignments are executed in arbitrary order� The focus of programming in UNITY
is on what� i�e�� on data transformations� as opposed to when� A particular
execution order can be enforced only through data dependencies� A computation
terminates when it reaches a �xed point� i�e�� when no assignment in the program
modi�es any variables�

An interesting related research has been reported by Craig S� Steele ����� In
this work� a programming model and a corresponding notation are developed� in
which program actions are associated with data objects through a programmer�
speci�ed triggering mechanism� An e�cient multicomputer implementation of this
UNITY�like programming system is demonstrated�

Actors

The Actors model of computation was �rst proposed by Carl Hewitt and
Henry Baker ���� �
�� and was later formalized by William D� Clinger �
�� and
Gul Agha �
�� In this model� the unit of concurrent computation is an actor� an
independent computing agent that is activated in response to messages sent to it�
Each actor has a unique address� an associated message queue� and a speci�ed
behavior� In a response to a message� an actor can� send messages� create new
actors� and become a new actor by specifying its replacement behavior�
Because of its simplicity� potential e�ciency� and straight�forward implemen�

tation on distributed architectures� the Actors model is the basis for numerous
concurrent�programming systems� The reactive�process programming model� de�
scribed next� and its associated notation� described in Chapter �� are based in part
on the Actors model of computation�

��� The Reactive�Process Programming Model

The reactive�process programming model is a variant of the Actors programming
model� Computation in this model is performed by a set of processes� independent
computing agents� A process is normally at rest� and starts executing in response to
a message �including the initial� creation message�� In the course of its execution�
a process can send messages� create new processes� and modify its state� including
self�termination� Message order is preserved for each pair of processes in direct
communication� Each message is marked with a tag that speci�es which of the
process�s compile�time��xed set of entry points should be invoked� Each entry
point runs to completion� and is therefore an atomic update of its process�s state�

���� THE REACTIVE�PROCESS PROGRAMMING MODEL �

A process can a�ect the order of execution of its entry points by enabling and
disabling them selectively� at run time� all entry points are initially enabled� A
message tagged for a disabled entry point is delivered after that entry point is
active again�
This model is extended to include the remote procedure call �RPC�� An entry

point of a process can be speci�ed to return a value to the message sender� When
a message is sent and tagged for such an entry point� the sender is suspended until
the message with the returned value arrives�

Background

The reactive�process programming model is a result of the work in our research
group over the last decade� Interestingly� a comparison with the early work
of C� R� Lang on a concurrent version of Simula ���� reveals that our group�s
ideas seem to have come almost full circle� The ideas of C� R� Lang� and the
preceeding work of Per Brinch Hansen� were far�sighted and out�of�sync with
the multicomputer technology of their time� In retrospect� it is as if much of
what our research group has been doing was tracking and driving the necessary
communication� processor� memory� and compiler technology to approach this
target�
Starting with the development of the Cosmic Cube� our group embraced the

explicit message�passing programming style� The design of an experimental �ne�
grain multicomputer� Mosaic C� and the similarity of our approach to the Actor
model of computation� provided additional motivation� this e�ort culminated with
the work of W� J� Dally on Concurrent Smalltalk �
��� of W� C� Athas and
N� J� Boden on Cantor� a minimalist Actor�based notation ��� 	�� and of W��
K� Su on Reactive�C and distributed event�driven simulation ����� The work
on the Cosmic Environment ���� and the Reactive Kernel ���� shifted our focus
from organizing computations around processes to organizing computations around
messages� and the reactivity became an essential part of the programming model�

Chapter �

C��

��� Introduction

����� Object
Oriented Programming vs� Concurrency

Programming notations that support object�oriented programming techniques are
the notations of choice for a rapidly growing number of complex applications�
Indeed� not since the introduction of structured programming �

� has there been
such a degree of unanimity in the programming community� This unanimity
is even more remarkable considering that� just as was the case with structured
programming �
	�� the power of object�oriented techniques is di�cult to convey to
readers through short� example programs in books or articles� When observed in
isolation� none of these techniques is new or revolutionary� It is only when one
approaches a large�scale programming task armed with the full set of techniques
that their power becomes evident�

Structured�programming techniques advocate structuring of program control
�ow in a top�down� compositional fashion� Object�oriented programming
techniques promote data organization in a bottom�up� standard�parts fashion�
Both paradigms emphasize modularity� but� whereas the former is focusing
principally on modularity of control structures� the latter does a better job of
encapsulating data structures with the operations de�ned on these structures�

Object�oriented programming came about through attempts to make large�
sequential programs more manageable� Techniques such as data encapsulation
and access protection� inheritance� and guaranteed initialization� all emerge from
the goal of helping programmers help themselves�

By our view� much of what the techniques of object�oriented programming
are really helping to manage is concurrency� Events are concurrent if they are
unordered� i�e�� if they can occur in any order� or in parallel� Mutual exclusion is
an example of an issue most often associated with concurrent programming� but
the problems that result from a disregard for mutual exclusion also occur regularly

�

���� INTRODUCTION �

in large sequential programs� With uncontrolled access to global variables� it is
impossible to keep track of all of the places in the code where a certain variable
is accessed� and of all the invocations of such code� Non�deterministic execution
is another issue most often associated with concurrent programming� For a �xed
set of inputs� the execution of a sequential program will always result in the same
ordering of state changes� yet� with side e�ects on global variables� it is often far
from obvious what all the inputs to a program are�
Whereas sequential programming brings out the worst in us only in the large�

concurrent programming will do that already in the small� It should not be
surprising� then� that in the hope of reaping some of the bene�ts that object�
oriented techniques brought to sequential programming� we are witnessing a
proliferation of programming systems trying to amend a particular object�oriented
notation with concurrent semantics�

����� Concurrent Object
Oriented Languages

E�ciency

Expressivity

Safety

E�ciency

Expressivity

Safety

Figure ��
� Design tradeo�s for concurrent programming systems

The three�way design tradeo�s illustrated in Figure ��
 are typical of design of any
programming system� not only those attempting to harness concurrency� However�
all three requirements are more pronounced� and the balance more di�cult to
achieve� for a concurrent�programming system�

� E
ciency � One of the major reasons to employ concurrent solutions in the
�rst place is to get more performance� and programming�system overheads
are less likely to be tolerated by users�

� Expressivity � Moving from a single to many threads of control in itself
places additional demands on expressivity� and also due to the requirement
that threads communicate and synchronize their activities�

� Safety � In addition to mutual exclusion and possible non�determinism
mentioned in the previous section� issues such as deadlock and livelock have
to be dealt with� Simple semantics that aid correctness proofs are essential�

� CHAPTER �� C��

It is likely that some readers will �nd what we consider a balanced design to be
biased in favor of e�ciency� then expressivity� and then safety� Our argument
about the increased importance of e�ciency in a concurrent�programming
environment is sometimes disputed on grounds that� because concurrent systems
o�er better performance�cost than their sequential counterparts� one can a�ord
more ine�ciencies at the operating�runtime system level� The consequence of this
view on concurrent architectures is that machines with pathetic process�creation
and communication overheads are being designed and built� The major goals of
the work described in this thesis are to show that this pitfall can be avoided� and
to demonstrate that �ne�grain concurrency can be e�ciently exploited�

Extensions of C��

C�� is an object�oriented notation that is in widespread use due to its e�ciency�
availability� and upward compatibility with C� C�� is the starting point for
numerous programming systems that attempt to amend C�� with concurrent
semantics� including the system described in this thesis�

C��

C�� is the result of an experiment to express reactive�process� concurrent programs
�Section
��� in an object�oriented programming notation� Although C�� is an
extension� of C��� the objective of the C�� project has not been to be able
to execute arbitrary C�� programs e�ciently on the Mosaic� The emphasis of
C�� is on providing e�cient support for the simple abstractions fundamental to
the reactive�process computational model� process creation and communication�
C�� strives not to impose higher�level policies on synchronization� communication
protocols� or process placement�
Although the C�� programming system is portable across a wide range of

architectures� the Mosaic has been both the driving force and the reality test behind
this e�ort� Design decisions have consistently been made to avoid compromising
the performance of C�� programs on the Mosaic� Higher�level programming
systems may be layered on top of C��� but C�� is intended to serve as the Mosaic�s
lowest�level� workhorse programming system� suitable both for operating�system
and application programming�

The remaining sections of this chapter are devoted to teaching the reader
about C��� Familiarity with the basic concepts of object�oriented programming
and of C�� in particular is assumed� classes� inheritance� access rules� operator
overloading� Keywords are underlined in programming examples� Although an
e�ort has been made to steer clear of the idiosyncrasies of C��� some of them

�C�� is not a superset of C�� because it imposes restrictions on global variables� as discussed
in Section ����

���� THE PROCESS CONCEPT �

were essential� and they are explained as they are encountered� The reader is
cautioned� however� that C�� is by no measure a minimalist� toy�example�writing
notation� some of the more advanced examples are likely to present di�culties to
those not familiar with C��� Our hope is that this di�culty is the result of C���s
completeness� rather than of poor design choices�

��� The Process Concept

The C�� object concept is carried over intact to C��� class is a user�de�ned type�
an object created according to a class de�nition is a collection of data items� a
set of operations de�ned on them� and a set of access rules �Program
�� Class
member functions have the usual� sequential semantics�

class C

�

private	

int data�

public	

C�� � data � �� � �� initialization

void write�int i� � data � i� � �� update

int read�� � return�data�� � �� retrieve

��

Program
� A Class De�nition

The process concept is the only extension that C�� introduces to C��� The
processdef keyword parallels the class keyword syntactically �Program ���
Access rules are associated with data members and functions of a process de�nition�
and process de�nitions can be derived from other process de�nitions �Section ��	�
��

processdef P

�

private	

int data�

public	

atomic P�� � data � �� � �� initialization

atomic void write�int i� � data � i� � �� update

atomic int read�� � return�data�� � �� retrieve

��

Program �� A Process De�nition

However� a process created according to a process de�nition is more than a
collection of data items�

� CHAPTER �� C��

Speci�cation � A process is an independent computing agent� and a unit of
potential concurrency� Its public interface consists of a set of atomic actions�
At creation time� the process constructor� is executed if it is de�ned� After the
constructor completes� the process is at rest� The invocation of an atomic action
of a C�� process is decoupled from its execution� Conceptually� there is an in�nite
queue of incoming requests for each process� the invocation of an atomic action
places a request into this queue� Process execution consists of servicing these
requests� with each atomic action running to completion�

Creating a process is no di�erent from creating an object �Program ��� In most
cases� processes are created dynamically � pp � new P	 �� and persist until they
are explicitly destroyed � delete pp	 �� One can also create a temporary process
as a local variable� just as with any other type �P p	�� This temporary process is
destroyed implicitly when execution leaves its scope�

�

int i� �� declaring an integer

P� pp� �� declaring a process pointer

pp � new P� �� creating a persistent process

i � pp�
read��� �� retrieving a value

pp�
write�i���� �� updating

delete pp� �� explicitly destroying the persistent process

�

P p� �� declaring a temporary process

i � p�read��� �� retrieving a value

p�write�i���� �� updating

� �� implicitly destroying the temporary process

�

Program �� Programming with Processes

A C�� computation is initiated by a runtime system that� concurrently with
initialization of global processes� creates an instance of root �Program 	�� the
constructor of which is de�ned by the user�

Speci�cation � A process can a�ect the order of execution of its atomic actions
by enabling and disabling them selectively� at run time� All atomic actions are
initially enabled� execution of a disabled action is postponed until the action is
enabled again�

�A process constructor is an atomic action with the same name as that of the process de�nition�
The constructor may not return any value�

���� THE PROCESS CONCEPT

processdef root

�

public	

atomic root�int argc� char�� argv��

��

Program 	� The root process

For example� let us assume that the rules for accessing a process of type P in
Program � are such that it may be updated only once� every subsequent write
request should be tagged as an error� Furthermore� all read requests occurring
before the �rst write should be serviced only after the �rst update occurs� The
process de�nition for this version of P is listed in Program ��
Processes communicate and synchronize with each other through atomic

actions� Thus far� we have discussed only the behavior of processes as servers
� how they deal with incoming requests �invocations of their atomic actions�� We
shall now de�ne the behavior of processes as clients � how they request services
from other processes�

Speci�cation � When invoking an atomic action that does not return a value
�returns a void�� or if the returned value is not used� the caller continues execution
independently of the callee� The order of invocations is preserved for each pair of
processes in direct communication� If the value returned by an atomic action is
used� the caller may be suspended until the returned value is available�

Invoking an atomic action that returns a value does not� in itself� imply that
the requesting process will be suspended until the requested value is available�
It is only when this value is used that a thread of activity must be suspended�
For example� the Program � uses a divide�and�conquer approach to compute the
nth Fibonacci number� Both sub�computations are initiated� and the process will
suspend only if it attempts to add the two partial results before they are available�
It is sometimes desirable to enforce the sequential order of execution of sub�

computations� In such cases� the C�� await construct should be used� For ex�
ample� return �await�f��compute�n���� � f��compute�n����	 ensures that
the �rst subcomputation is complete before the second one is initiated�
Programming systems di�er considerably in what constitutes use of unresolved

variables� also called futures� The most aggressive systems allow futures to be
exchanged between processes� and suspend a thread only when a value is needed
for a hardware�implemented expression evaluation� Support for futures is the
central issue for numerous concurrent�programming systems ���� ��� 	��� C��

is not one of these systems� and is not very aggressive in trying to discover
and utilize this type of concurrency� In C��� assigning an unresolved value to

any programmer�de�ned variable constitutes use of that future� and will cause the

� CHAPTER �� C��

processdef P

�

private	

int initialized�

int data�

public	

atomic P���

atomic void write�int��

atomic int read���

��

atomic P		P��

�

initialized � ��

passive read�

�

atomic void P		write�int i�

�

if � initialized �

�

report
error���

�

else

�

data � i�

initialized � ��

active read�

�

�

atomic int P		read��

�

return�data��

�

Program �� Enabling and Disabling Atomic Actions

thread to be suspended� C�� guarantees only that a thread will not be suspended

unnecessarily within an expression evaluation� C�� semantics allow any additional
compiler�runtime system optimization� but only within the body of a function or
an atomic action� Unresolved variables must be resolved before they can be passed
as arguments�

The reason for C���s non�aggressive utilization of futures is that we want to
encourage a programming style in which the concurrent behavior is generated
explicitly� as opposed to trying to utilize the concurrency that is implicit in
sequential formulation� Synchronization on an unresolved future is inherently more

���� MANAGING CONCURRENCY
�

processdef fib

�

public	

atomic int compute �int n�

�

switch �n�

�

case �	 return ��

case �	 return ��

default	 fib f�� f��

return �f��compute�n��� � f��compute�n�����

�

�

��

Program �� Divide And Conquer

expensive than� for example� synchronization using the active�passive semantics�
because the process state that must be saved when blocking on a future is
much larger� For notations that have stack�based implementations of the regular
function�call abstraction� such as C��� this state includes the stack�

��� Managing Concurrency

All concurrency�related issues in the C�� programming system are encapsulated
into the process concept� The following syntactic restrictions enforce this
requirement�

� Only atomic actions can be public members of a process de�nition��

� Only values� process pointers� and process references	 can be arguments to
atomic actions�

� Processes are the only global
 variables allowed�

� Process de�nitions can have no friends��

As speci�ed in Section ���� a process is a unit of potential concurrency�
Processes communicate and synchronize with each other through atomic actions�

�The C�� staticmember functions can be public members of a process de�nition� since their
semantics do not allow them to access process members anyway�

�The di�erence between pointers and references is a subtle idiosyncrasy of C��� and� for the
purposes of this thesis� the two can be considered equivalent�

	This includes both global and static C�� variables� i�e�� all variables with �le scope�

The friend construct in C�� allows non�member functions to have full access to private

class members�

	 CHAPTER �� C��

The remainder of this section will be devoted to examples illustrating how some of
the well�known concurrent�programming paradigms can be implemented in terms
of C�� processes�

����� Remote Procedure Call

The remote procedure call �RPC� is a common form of interaction between threads
of activity� As illustrated in Program � and in Figure ���� a client requests a service
from a server and suspends its execution until the request has been attended to�
The semantics of the RPC are identical to those of an ordinary procedure call�
The implementations of the two types of procedure calls� however� are typically
di�erent� because the client and the server may be operating in di�erent address
spaces� A better name for the RPC might be �interprocess procedure call��

processdef server

�

public	

atomic int request �int��

��

processdef client

�

public	

atomic client �server� s�

�

int i � s�
request������

�

��

Program �� Remote Procedure Call

client

server
time

place client

server
time

place

Figure ���� Remote Procedure Call

During a remote procedure call� the calling process is nominally suspended
until the returned value is available� so no concurrency is introduced� However�

���� MANAGING CONCURRENCY
�

as discussed in Section ���� with the use of futures� the semantics of the RPC can
be extended so that several requests can be issued concurrently� and the calling
process is suspended until all the requests have been serviced �Program � and
Figure �����

place

time
fib���

fib���

fib���fib���

fib���

fib���

Figure ���� Divide And Conquer

����� Call Forwarding

Call forwarding is a paradigm associated with message�based object�oriented
programming systems� and is similar to tail recursion� As an example� consider
the sequential search of a singly�linked list of dictionary processes in Program ��

processdef dict

�

private	

dict� next�

int index�

int data�

public	

atomic int find �int i�

�

if � i �� index �

return data�

else

return next�
find�i�� �� can be replaced by	

�� forward next�
find�i��

�

��

Program �� A Sequential Search

When the value returned from an atomic action is itself obtained by an atomic
action invocation� programmer may choose to use the forward statement instead�
With the return statement� a request is issued� the process is suspended until the
value is available� and then reply is sent to the calling process� The e�ect of call

� CHAPTER �� C��

forwarding is to defer servicing of the request to another process� Two sequential
search examples� one using the return� and another the forward statement�
are illustrated in Figures ��	 �a� and �b�� respectively� In addition to reducing

place

time

client

dict

dict

dict

client

dict

dict

dictdict

dict

dict

client

dict

dict

dict

client

�b��a�

Figure ��	� A Sequential Search with RPC �a�� and with Call Forwarding �b�

the number of replies� call forwarding enables the list of processes that form a
dictionary to process multiple requests in a pipeline fashion� At any point in time�
each search request is being worked on by at most one dictionary process�

����� Fork
Join

The remote�procedure�call mechanismwith limited support for futures� as provided
by C��� o�ers a convenient and easy�to�understand programming paradigm for an
important class of problems� A more �exible� fork�join mechanism for process
synchronization in C�� is o�ered through the combination of non�suspending�
atomic�action invocation and active�passive semantics�
There are two paradigms that C�� programmers can use to generate concurrent

activities�

� Creating new processes� whether persistent or temporary� The parent process
continues execution independently� of the child�

� Upon invoking an atomic action that does not return a value� or when the
returned value is not used� the caller continues executing without waiting for
the callee�

�When a pointer to a newly created process is used in a subsequent computation� this may or
may not require suspending the parent� depending on the implementation� However� the parent
continues execution concurrently with child�s constructor�

���� MANAGING CONCURRENCY
�

The synchronization barriers can be expressed using active�passive semantics�
Suppose that an FFT computation is implemented as illustrated in Figure ��� �����
The expressions along the edges of the graph are coe�cients� Multiple inputs to a

WN
�

X���

X���

X���

X�
�

X���

X���

X�	�

X���

x���

x���

x���

x�
�

x���

x���

x�	�

x���

�	

�	

�	

�	

�	

�	

�	

WN
�

WN
�

WN
�

WN
�

WN
�

WN
�

WN
�

WN
�

�	

�	

�	

�	

�	

WN
�

WN
�

WN
�

WN
�

X���

X���

X���

X�
�

X���

X���

X�	�

X���

x���

x���

x���

x�
�

x���

x���

x�	�

x���

�	

�	

�	

�	

�	

�	

�	

WN
�

WN
�

WN
�

WN
�

WN
�

WN
�

WN
�

WN
�

�	

�	

�	

�	

�	

WN
�

WN
�

WN
�

Figure ���� An ��Point FFT Computation� �WN e�i
��

N � N ��

node imply addition� and multiple outputs imply replication of the result�
A concurrent program forN �point FFT computation could employN processes�

and compute the result in O�logN� steps� Each step would consist of� getting two
requests along the input edges� adding the two input values� multiplying by the
coe�cient� and producing two output values�
A version of this program could similarly employN logN processes in a pipeline

regime� achieving the same O�logN� latency� but a new result would be computed
on every step�
In either approach� though� a process �circled in Figure ���� must get one data

item along each of its input edges to be able to compute and emit one data item
along each of its output edges� A process that might be used as part of the FFT�
computation pipeline is listed in Program ��

� CHAPTER �� C��

processdef fft

�

private	

Complex W� first�

fft �out
up� �out
dn�

void output�Complex in�

�

Complex result � �first � in� � W�

out
up�
up�result��

out
dn�
dn��result��

�

public	

atomic fft�fft� u� fft� d� Complex r�

�

W � r�

out
up � u�

out
dn � d�

�

atomic void up�Complex in�

�

if � passive�dn� � �� upon receiving both requests

� �� produce the output

active dn�

output�in��

�

else �� if you only have one request

� �� await the second one

passive up�

first � in�

�

�

atomic void dn�Complex in�

�

if � passive�up� � �� upon receiving both requests

� �� produce the output

active up�

output�in��

�

else �� if you only have one request

� �� await the second one

passive dn�

first � in�

�

�

��

Program �� An FFT�Computing Process

���� MANAGING CONCURRENCY
�

����	 Semaphores

First introduced by E� W� Dijkstra �
��� semaphores are low�level primitives for
process synchronization� A semaphore is typically used to control access to a
shared data structure� with an N �ary semaphore allowing access to at most N �

processes at any point in time� Two operations are de�ned on semaphores� acquire
and release� In general� an implementation of an N �ary semaphore must guarantee
that the number of acquire operations minus the number of release operations is
at most N �
� and at least �� A C�� implementation of an N �ary semaphore is
presented in Program
��

processdef semaphore

�

private	

int count� �� number or processes inside

�� the critical section

int max� �� the maximum number allowed

public	

atomic semaphore�int N� �� initially� there is no

� �� processes inside the critical

max � N � �� � section

count � ��

passive release�

�

atomic int acquire��

�

count��� �� one more inside

active release� �� at least one can release

if � count �� max � �� if the maximum is reached�

passive acquire� �� no one can get in

return ��

�

atomic int release��

�

count��� �� one less inside

active acquire� �� at least one can acquire

if � count �� � � �� no one is in� so

passive release� �� no one can exit

return ��

�

��

Program
�� N �ary Semaphore

An often�used special case for N �� the binary semaphore� is illustrated in
Program

�

�� CHAPTER �� C��

processdef semaphore

�

public	

atomic semaphore��

�

passive release�

�

atomic int acquire��

�

active release�

passive acquire�

return ��

�

atomic int release��

�

active acquire�

passive release�

return ��

�

��

Program

� Binary Semaphore

����
 Monitors

Of all of the concurrent�programming paradigms� semantics of C�� processes are
closest to those of monitors �
��� Just as with monitors� C�� processes encapsulate
a set of data items and o�er mutually exclusive access to a set of routines operating
on this data� C�� processes also share some of the problems associated with
monitors� as both are non�reentrant� The invocation of an atomic action of a
C�� process is� unlike an invocation of a monitor function� decoupled from its
execution� conceptually� there is an in�nite bu�er of incoming requests for each
process� This decoupling enables processes to be active computing agents� able to
a�ect the order of execution of their atomic actions�

����� Recursion

In the examples shown so far� the requirement that all the public member
functions of a process be atomic actions has been helpful in expressing interactions
between concurrent threads of activity� From the point of view of C��

programmers� the most signi�cant repercussion of the atomicity of interprocess
activities is that� since at most one execution thread can be associated with a
process� atomic actions that return values are not reentrant� For example� in
Program
�� the privatemember function fac has ordinary� sequential� reentrant

���� MANAGING CONCURRENCY �

semantics� However� the public member function FAC must be an atomic action�
An invocation of FAC will� therefore� result in deadlock�

processdef bad

�

private	

int fac�int n�

�

if � n �� � �

return ��

else

return n � fac�n���� �� OK	 functions are reentrant

�

public	

atomic int FAC�int n�

�

if � n �� � �

return ��

else

return n � FAC�n���� �� ERROR	 atomic actions are

� �� not reentrant

atomic int Fac�int n�

�

return fac�n�� �� OK	 atomic�action interface

� �� to a function

��

Program
�� Recursive Functions and Non�Recursive Atomic Actions

In the world of non�reentrant atomic actions� processes are the medium used
to express recursive behavior �Program
���

����� Message Passing

Invoking an atomic action of a process is equivalent to wrapping up the argument
list and sending it in a message� According to Speci�cation �� the atomic�action
invocation does not imply blocking �waiting for the reply does�� so it is equivalent
to a non�blocking message send�
Message receiving has two forms�

� explicit� associated with the behavior of processes as clients� which receive a
value that is returned from a call to an atomic action� and

� implicit� associated with the behavior of processes as servers� which receive
an argument list as part of a request to execute an atomic action�

The two forms of receive� explicit and implicit� cover the two extremes of
the spectrum of possible mechanisms for message discretion� explicit receive

�� CHAPTER �� C��

processdef fac

�

private	

int output�

public	

atomic fac�int input�

�

if � input �� � �

output � ��

else

�

fac child�input����

output � input � child�result���

�

�

atomic int result��

�

return output�

�

��

�� or

processdef fac

�

private	

int input�

fac� parent�

public	

atomic fac�int i� fac� p�

�

if � i �� � �

�

p�
result����

delete this�

�

else

�

input � i�

parent � p�

new fac�i���this��

�

�

atomic void result�int r�

�

parent�
result�input�r��

delete this�

�

��

Program
�� Recursive Processes

���� MANAGING CONCURRENCY ��

accepts only a particular message from a particular process� implicit receive
accepts any message from any process� The active�passive semantics provide
a more general selective�receive mechanism� atomic actions of a process represent
incoming communication channels� and the process can� at run time� select the
communication channels over which it is ready to accept a message�

����� Single
Assignment Variables

Single�assignment variables are a safe form of futures �Section ����� Requesting a
read access on an uninitialized� single�assignment variable causes the requesting
process to be suspended until the variable is assigned to� Since there can be
at most one assignment to a single�assignment variable� these variables can be
e�ectively cached� Processes of type P in Program � are an example of a possible
C�� implementation of single�assignment variables�

����� Process Aggregates

Thus far� we have described processes as independent entities� and have emphasized
the code�execution aspects of processes� In this section� we shall show how
processes can be treated as instances of a restricted data form� one that can be
accessed only through a set of mutually exclusive� atomic actions�

As illustrated in Program
	� C�� programmers can treat processes as variables
of any other type� Whether a process is a local variable� member of an object or
of another process� element of an array� or used in any other way in which a
variable can be used in C��� the process semantics are the same� According to
the syntactic restrictions described in Section ���� the only operations allowed on
a process are to take its address and to access its public members �all of which
are atomic actions��� The various process usages determine only when a process is
created and when it is destroyed� For non�process data types� variable usage also
implies what the memory layout is� When accessing processes� one cannot assume�
for example� that a process declared as a local variable resides on the stack� nor
can one assume that a process that is a member of a class is placed in memory next
to the other data members� In Section ��
�
� we shall discuss how programmers
can a�ect process�placement strategy�

The semantics of C�� are de�ned such that e�cient implementations exist
for both mainstream variants of MIMD computers� multiprocessors� which have
one global address space� and multicomputers� which have multiple local address
spaces� In C��� regardless of the underlying architecture� a pointer to a process

�Process assignment is an atomic action invocation� equivalent to issuing a request to the
source process to send a copy of itself to the destination process �Section ��	�
�� Passing processes
as arguments is a form of assignment�

�	 CHAPTER �� C��

processdef P

�

�� ���

��

class C �� an object of class C contains	

�

public	

P p� �� a process

P� pp� �� and a process pointer

��

�

P p�� p�� �� declare two processes

p� � p�� �� process assignment

P p����� �� declare a process array

�

Program
	� Treating Processes As Data

can be dereferenced globally� since it contains su�cient information to uniquely
identify the process it points to�

An important advantage that multiprocessors have over multicomputers is
that they can employ most of the data�layout strategies developed for sequential
computers� There are additional performance considerations guiding the design
decisions on the data layout� as discussed in ��	�� If� for the time being� we
neglect such performance considerations� a vector of C�� processes could� on a
multiprocessor� be laid out in memory in the same way as a vector of elements
of any simple data type� Elements with successive indices would reside at
memory addresses that di�er by a stride equal to the size of the process� This
approach would allow the programmer to compute the address of any process in
the vector given the address of any other process in the same vector� and the two
corresponding indices�

On a multicomputer� using the above layout strategy for vectors of processes
is unacceptable for two reasons� �rst� the address space of a multicomputer is
contiguous only within each multicomputer node� so the maximumsize of a process
vector would be limited by the size of node memory� and second� although the
computation model allows elements of a process vector to operate concurrently�
that concurrency could not be used to a performance advantage� because the
elements would all reside on the same node�

This example is but an instance of a more general problem of naming

���� MANAGING CONCURRENCY ��

constituent elements of distributed objects �
�� ��� There are two issues that
are central to the solution of this problem� The �rst issue is that there should
exist a single name �address� of a distributed object� and a way of addressing
constituents given this name� The second issue is that the programmer should be
able to compute on references� not just store them at process�creation time and
fetch them when they need to be used�

A simple solution that takes only the �rst issue into the account could employ
an address�manager process� The manager�s address would represent the address
of the distributed process as a whole� All the requests would be directed to this
process� and then forwarded to appropriate constituent processes� This solution
obviously introduces an access bottleneck� but may be acceptable for element
processes that exhibit a large ratio of computation�communication�

We consider this problem to be too important to be left to ad hoc approaches�
particularly for such often�used paradigms as arrays of processes� Accordingly�
C�� o�ers a runtime�system�supported mechanism for address management that
preserves the C�� address�computation semantics�

The example in Program
� shows that the creation of a process array

�

processdef P � ��

P� p � new P������ �� is equivalent to	

�

P� p � unique

CPM�����sizeof�P���

for �int i��� i����� i���

new ��p�i� P�

�

�

Program
�� Creating A Vector of Processes

consist of two stages� First� a set of unique references is allocated by invoking
the unique CPM function� with arguments specifying how many references are
required� and what the stride between the adjacent references should be� This
function returns a pointer of the generic process�pointer type� pointer t�
analogous to void� in C��� Next� the actual process creation is requested�
specifying that each new element process be placed in such a manner that it can
be located through the given pointer� A description of various �avors of process
creation is presented in Section ��
�
� A set of algorithms that provide e�cient
support for process placement and lookup is described in ����

�� CHAPTER �� C��

������ Summary

The programming examples in Section ��� illustrate that a small set of mechanisms
supported by C�� is su�cient to express a variety of concurrent�programming
paradigms� This set consists of� process creation� asynchronous request�
synchronous request �remote procedure call�� and selective servicing of requests
�active�passive mechanism�� In Chapter �� we shall present an implementation
framework for this set of mechanisms�

��� Managing Program Complexity

In the introductory section of this chapter� we discussed how object�oriented
programming techniques came about through e�orts to aid programmers in
managing program complexity� All of the object�oriented techniques supported
by C�� are extended to managing processes in C��� The interested reader may
consult the wealth of available literature on C��� including� but not limited to �
���
In the remainder of this section� for completeness� we shall mention brie�y two

of those techniques� inheritance and virtual functions� We shall then discuss the
techniques that are speci�c to C�� and concurrent programming� process layering�
process libraries� and customizing of the data exchange�

��	�� Class Inheritance

Class inheritance is the C�� mechanism that enables user�de�ned types to be
derived from more basic types� inheriting data members and functions from the
base type� possibly adding new ones and�or overriding old ones� Access rights are
associated with each class member� For example� in Program
�� privatemembers
of the base class shape can be accessed only by member functions of shape�
protectedmembers of shape can� in addition� be accessed by member functions of
any class derived from shape �for example� circle�� and publicmembers of shape
can be accessed by any piece of code anywhere in the program� The class circle

is derived from class shape by adding a data member �radius� and a member
function �modify radius���� and by overriding the member function draw���
A typical memory layout for the two classes is shown in Figure ���� The point to

int color�

int origin� int origin�

int color�

int radius�

circle	shape
shapeshape

Figure ���� Class Inheritance vs� Memory Layout

be remembered is that C�� class inheritance is a compile�time rather than a runtime

���� MANAGING PROGRAM COMPLEXITY ��

class shape

�

private	

int origin�

void modify
origin���

protected	

int color�

void modify
color���

public	

void draw���

��

class circle 	 shape

�

private	

int radius�

public	

void modify
radius���

void draw���

��

Program
�� Class Inheritance

mechanism�� Every instance of class circle contains a part corresponding to an
instance of class shape� it is the de�nition of class shape that is shared� not
any particular instance of it�

The C�� class�inheritance mechanism is mimicked by process de�nitions in
C��� they too can be speci�ed through their similarities with and di�erences from
previously�de�ned process de�nitions�

��	�� Virtual Functions

The virtual�function mechanism supported by C�� is a mechanism that enables
programmers to separate the design of member�function interfaces from the design
of member functions themselves�

For example� in Program
�� given a shape� sp� and a circle� cp� the
invocation of sp�
draw�� and cp�
draw�� will result in calling shape��draw��

and circle��draw��� respectively� The compiler decides which call to generate
based on the type of pointer through which the function has been called�

Had the two draw�� functions been virtual� the invocation of sp�
draw��
could have invoked either of the two functions� depending on what the pointer

�Neglecting� for the time being� such C�� features as multiple inheritance and virtual
functions�

�� CHAPTER �� C��

sp pointed to� In this case� the compiler generates an indirect call through the
class�speci�c table�

��	�� Process Layering

The standard C�� inheritance mechanism allows one to describe process de�nitions
hierarchically� However� once a process is created� it is an independent entity� The
hierarchy is re�ected in its structure� not in its relationship with other processes�
There are important applications where� in addition to hierarchy in structure�

it is useful to have runtime�exercised hierarchy in control� For example� in
operating or runtime systems ���� user processes are created and managed by
system processes� In simulators ����� processes that model the behavior of physical
elements are managed by time� or event�driven schedulers�
The mechanism that C�� uses to support such applications is process layering�

also called dynamic process inheritance� As illustrated in Program
� and
Figure ���� every instance of processdef gate is managed by an instance of

processdef scheduler

�

private	

int time�

��

processdef gate 	 dynamic scheduler

�

protected	

gate� output�

��

processdef two
input
gate 	 gate

�

private	

int state�

atomic void input��int��

atomic void input��int��

��

Program
�� Process Layering

processdef scheduler� The details of process layering will be discussed in
Section ��
� which describes the C�� runtime�system interface� The relationship
between the manager process and the managed process is established at the
creation time of the managed process� The manager provides a set of services
to all processes that it manages� with the same access protection that is o�ered

���� MANAGING PROGRAM COMPLEXITY ��

int time�

two input gate 	 gate

scheduler

gate 	 dynamic scheduler
gate� output�

int state�

Figure ���� Process Layering vs� Memory Layout

through the class�inheritance mechanism� The manager decides when an atomic
action of any of the processes managed by it is executed �as opposed to invoked��
while conforming to the de�nitions of process behavior as speci�ed in Section ����

��	�	 Process Libraries

Libraries of C�� processes can be organized in the same way as libraries of data
structures in C��� In most cases� the remote procedure calls to atomic actions
of processes form a suitable interface� and these calls replace the class member�
function interfaces� In these cases� it is su�cient that programs include header
�les that contain interface�process de�nitions�

There are cases� however� in which imposing the RPC interface would overly
serialize computations that are otherwise concurrent� For example� a process
library might initialize a set of processes for FFT computation� as illustrated in
Section ������ employing several input and several output data streams� A stream
of input values can be represented by a sequence of non�blocking atomic�action
invocations� If a stream of output values were represented as a sequence of replies
obtained through the RPC mechanism� just as in the sequential�search example
of Section ������ the computation could not be pipelined� However� unlike in this
search example� this problem could not be resolved with call forwarding�

The mechanism typically used for C�� libraries with multiple input and output
streams is as follows� an input stream is represented by a sequence of non�
blocking atomic�actions invocations of an input�interface process� an output stream
is� similarly� a sequence of non�blocking atomic�actions invocations of a process
provided by the library user� In this arrangement� the library�user process must
be derived from the output�interface process of the library it uses �Section �����
When a process uses multiple libraries� multiple inheritance is employed to derive
such a process from all of the output�interface processes from which it requires
results�

�� CHAPTER �� C��

��	�
 Data Exchange

The designers of C�� made a commendable e�ort to provide an overloading
mechanism that enables programmers to pass arguments by value� even when these
arguments are arbitrarily�complicated� linked� data structures� This mechanism is
not su�cient for concurrent�programming systems� which must take into account
some additional considerations� On multicomputers� object pointers have local
meaning� Also� concurrent computers may be heterogeneous ensembles comprised
of machines with di�erent data layout� alignment� size� or representation�
C�� addresses all of these potential problems at the inter�process�communication

level �invocations of atomic actions� with mechanisms that are described in the
remainder of this section� The communication speci�cations are declarative� as
opposed to imperative� the programmer speci�es what special actions should be
taken when a data item of certain type is communicated� the compiler guarantees
that actions thus speci�ed will be invoked on every occurrence of communication�

Communicating Arbitrarily�Complex Data Structures by Value

One of the premises of �ne�grain concurrent programming is that large data
structures are implemented in terms of many small� cooperating processes� so it is
tempting to claim that process pointers that can be globally dereferenced are all
that programmers might possibly want� However� an important use for pointers in
C�� is for data structures that are only partially speci�ed at compile time� linked
data structures and arrays of variable size� If proper support and clean semantics
for this feature were not o�ered� users would have resorted to ad hoc solutions�
The mechanism supported by C�� enables the programmer to specify what

extra actions should be taken when communicating an object of some class by
value� In its most common form� it amounts to �attening the linked data
structure before sending� and relinking it upon receiving� As will be illustrated in
Section ��
� variants of this mechanism can also be used to express more intricate
�but sometimes much more e�cient� communication protocols�
Suppose that the data type of choice is a singly�linked list of elements of type

list� each of which contains a pointer to the next element in the list� a pointer to
a vector of integers� and a �eld specifying the size of the integer vector� Figure ���
illustrates what is required to pass a data item of type list by value� Part �a�
shows a data item scattered around in memory� Part �b� shows the �attened data
structure� with the dashed parts corresponding to other arguments that may be
sent in the same communication� If the concurrent computer at hand is a shared�
memory multiprocessor� and if the �attened argument list is in the shared address
space� the task is completed� Now suppose that passing arguments moves them
from one address space to another� as typically happens on a multicomputer� When
the message that encapsulates the argument list is received� all the pointers are o�
by a constant �c�� and have to be re�linked� as in �d��

���� MANAGING PROGRAM COMPLEXITY �

�a� �b� �c� �d�

Figure ���� Flattening Linked Data Structures

Program
� is the speci�cation of the �attening and re�linking tasks� The
operator space computes how much extra space is needed in the argument list
when an instance of list is passed as an argument to an atomic action� The
operator send speci�es that� in addition to this instance of list� a vector of
integers and the remaining part of the list should be passed along� The operator
recv requests that the vector of integers �data� and the rest of the list next be
re�linked in place on the receive side�

This special handling will be invoked not only for instances of list� but also
for all objects derived from list� and for all objects that contain instances of list
as members� C�� data�structure libraries can� accordingly� be built in a way that
allows library users to be indi�erent about the details of the implementation�

This example illustrates how arbitrarily complex� linked� data structures can be
passed by value� However� to avoid copying� and when sharing of data structures
between processes is needed� structures must consist of linked processes� not of
linked objects�

�� CHAPTER �� C��

class list

�

private	

int size� �� number of integers �data� points to

int� data�

list� next� �� a pointer to the next of kin

public	

size
t operator space ��

�

size
t s � space�data�size�� �� space for size integers

if �next� s �� space�next�� �� space for the rest

return s� �� of the list

�

void� operator send �void� v�

�

v � send�v�data�size�� �� send size integers

if �next� v � send�v�next�� �� send the rest

return v� �� of the list

�

void operator recv ��

�

recv�data�� �� re�link int�

if �next� recv�next�� �� re�link the rest

� �� of the list

��

Program
�� Passing Linked Data Structures By Value

Communicating Across Heterogeneous Machine Boundaries

The C�� compiler assembles all messages �argument lists to atomic actions�� and
initiates all instances of communication �invocations of atomic actions�� This
information enables the compiler to handle the size and alignment of the basic
data types �integers� �oating�point numbers� etc�� for a programmer�speci�ed set
of machines that may be involved in direct communication�
The example in Program
� speci�es that� in addition to the local�machine

type� communication may be established with machines of types I��� and Sparc

�arbitrary� user�speci�ed names�� The entries within each machine description
correspond to the data size and alignment �measured in units of size equal to the
minimum�addressable memory unit on the machine running this program�� and
any special treatment that may be required for a particular basic data type���

��The following is the complete list of C�� basic data types� char� short� int� long�

float� double� long double� signed char� unsigned char� unsigned short�

unsigned int� unsigned long� void�� entry t� and pointer t�

���� PUTTING IT ALL TOGETHER ��

machine I� !

�

char� �� ��

short� �� ��

int� �� ��

long� �� ��

��

machine Sparc

�

char� �� ��

short� �� �� send
lib� recv
lib�

int� �� ��

long� �� ��

��

Program
�� Machine Descriptions

For example� for a machine of type Sparc� short integers are of size � and have
to be positioned on addresses divisible by �� When sending a short integer to a
process residing on a machine of type Sparc� the data item has to be converted
using the user�supplied and user�named function send lib� when receiving a short
integer from such a process� the data item has to be converted using the function
recv lib�
The compiler implicitly generates type machine t� de�ned as�

enum machine�t � local��CPM� I���� Sparc �	

and the user is obliged to de�ne the function

machine�t machine��CPM �pointer�t�	

that maps process pointers into machine types�

��� Putting It All Together

The examples of C�� programs shown so far were chosen to illustrate programming
techniques� We have deliberately chosen clarity over completeness� and� indeed�
some of these examples require the addition of forward declarations to be accepted
by the compiler�
In this section� we shall show an example of a complete program that computes

the N �point FFT� as illustrated in Figure ���� Our concurrent program will
closely match this data�dependency graph� with one addition� We shall introduce a
column of nodes whose purpose is to rearrange the input values from the standard�
linear ordering of indices to the bit�reversed ordering required at the input of the

�	 CHAPTER �� C��

FFT�computing graph� Figure ��� shows the modi�ed graph� with circled parts
corresponding to sub�computations performed by individual processes�

WN
�

�	

�	

�	

�	

�	

�	

�	

WN
�

WN
�

WN
�

WN
�

WN
�

WN
�

WN
�

WN
�

�	

�	

�	

�	

�	

WN
�

WN
�

WN
�

X���

X�
�

X���

X���

X�	�

X���

X���

X���

x���

x�
�

x���

x���

x�	�

x���

x���

x���
WN

�

�	

�	

�	

�	

�	

�	

�	

WN
�

WN
�

WN
�

WN
�

WN
�

WN
�

WN
�

WN
�

�	

�	

�	

�	

�	

WN
�

WN
�

WN
�

X���

X�
�

X���

X���

X�	�

X���

X���

X���

x���

x�
�

x���

x���

x�	�

x���

x���

x���

Figure ���� An ��Point FFT Computation� with the Processes Circled�

Typically� writing C�� programs consists of four stages�

� Choosing a concurrent algorithm�

� Designing an input�output interface�

� Designing the process hierarchy� and�

� Describing process behavior�

We shall organize the program as a library package� Figure ��
� illustrates the
user�level view of this library� Input values are to be sent to processes of type
fft� and output values will be delivered to processes of the same type� For an
N �point FFT computation� there are N input and N output processes� all of which
have to be derived from fft� The set of pointers to N input processes could be
represented in a variety of ways� but it is often most intuitive to represent these
processes as members of a process vector� as described in Section ������ The same
is true for the set of pointers to N output processes�
Program �� is the header �le that the user must include to access the library�

A user program might look like Program �
� Since the library sends the output
values to the vector of fft processes� the consumer processes are derived from fft�
and have to be created using the distributed�process mechanism� The producer
processes� on the other hand� don�t have to be elements of any vector unless some
other part of the user code needs to treat them so�

���� PUTTING IT ALL TOGETHER ��

fft��
in��

fft��
in��

fft��
in��

fft��
in��

fft�fft�

fft�fft�

fft��
in��

fft�fft�
fft��
in��

inputs outputs

graph

FFT

�

N �

inputs outputs

graph

FFT

�

N �

Figure ��
�� User View of the FFT�Library

�� CHAPTER �� C��

�� fft�h

�include �c���h
 �� The runtime�system header file

�include �Complex�h
 �� The complex�arithmetic package

processdef fft 	 public CPM �� The runtime system requires that

� �� every process be derived from CPM

public	

atomic virtual void connect�fft�� � �� �� The �� �� syntax in C�� denotes

atomic virtual void in�Complex� � �� �� that this is the specification

�� �� of an interface� leaving it to

�� the derived processes to specify

�� how the requests are serviced

processdef fft
graph 	 public CPM �� This process represents the

� �� whole graph

private	

fft� inputs� �� The pointer to the first input

int order� �� Size of the FFT graph

public	

atomic fft
graph�int� fft��� �� Creating the fft process graph

atomic �fft
graph��� �� Deleting the fft process graph

atomic fft� input�int�� �� Finding out the address of a

�� particular input

��

Complex W�int N� int i�� �� A function that computes

�� complex roots of �

int bit
reverse�int N� int i�� �� A bit�reversing function

Program ��� The FFT�Library Header File

���� PUTTING IT ALL TOGETHER ��

�include �fft�h

processdef consumer 	 public fft

�

public	

atomic virtual void in�Complex�� �� Do something with the result

��

processdef producer 	 public CPM

�

public	

atomic producer�fft��� �� Produce input values

��

const int N � ���

root		root �int argc� char�� argv�

�

fft� outputs � new consumer�N�� �� Create the vector of consumers

fft
graph� g � new fft
graph�N�outputs��

�� Create the computation graph

fft� inputs � g�
input���� �� Get the reference to the inputs

for �int i��� i�N� i��� �� Create N producers

new producer�inputs�i��

�

Program �
� An Example of FFT�Library Usage

�� CHAPTER �� C��

Figure ��

 shows the process�speci�cation hierarchy that we chose to
implement� and Programs �� and �� specify this hierarchy�

join

join fork

join mult fork

�

mult fork

fork

fft

relay

WN
i WN

i

�

join

join fork

join mult fork

�

mult fork

fork

fft

relay

WN
i WN

i

�

Figure ��

� Process�Speci�cation Hierarchy

The fft process de�nition is just an interface speci�cation� and does not
describe any computation� The remaining process de�nitions specify that the
process activity consists of four distinct stages�

� Establishing a connection� ie� obtaining output references�

� Getting one or two input values�

� Computing the result� which may involve an addition and a multiplication�
and�

� Outputting one or two output values�

The common parts of the code are shared between di�erent process de�nitions
through the process�inheritance mechanism� Using multiple inheritance �whereby
process de�nitions can be derived from more than one process de�nition� would
have resulted in better code reuse� Nevertheless� we felt that� in the examples
in this thesis� multiple inheritance would not have contributed to reader�s
understanding of C���

���� PUTTING IT ALL TOGETHER ��

�� fft��h

�include �fft�h�

processdef relay 	 public fft

�

protected	

fft� out� �� Output reference

Complex result� �� The result

virtual void compute�Complex�� �� How to compute the result

virtual void output��� �� How to generate the output

public	

atomic virtual void in�Complex��

atomic virtual void connect�fft���

atomic relay��

� passive�in�� �

��

processdef join�

processdef fork 	 public relay

�

protected	

join� out�� �� Fork adds an output reference�

virtual void output��� �� and produces two output values

public	

atomic virtual void connect�fft�� join���

��

processdef mult
fork 	 public fork �� Mult
fork also needs to multiply

�

protected	

Complex W� �� so here is the multiplicand

virtual void compute�Complex�� �� and how to compute

virtual void output��� �� It must generate the �� output

public	

atomic virtual void connect�fft�� join�� Complex��

��

Program ��� Process Hierarchy for FFT Computation� Part

	� CHAPTER �� C��

�� fft��h

�include �fft��h�

processdef join 	 public relay �� Join has two distinct inputs

�

protected	

virtual void compute�Complex�� �� How to compute the result

public	

atomic virtual void in �Complex��

atomic virtual void in��Complex��

atomic join��

� passive�in�� passive�in��� �

��

processdef join
fork 	 public join �� The same modifications

� �� as from relay to fork

protected	

join� out��

virtual void output���

public	

atomic virtual void connect�fft�� join���

��

processdef join
mult
fork 	 public join
fork �� The same modifications

� �� as from fork to mult
fork

protected	

Complex W�

virtual void compute�Complex��

virtual void output���

public	

atomic virtual void connect�fft�� join�� Complex��

��

Program ��� Process Hierarchy for FFT Computation� Part �

The behavior of various process types is speci�ed in Programs �	� �� and ���

���� PUTTING IT ALL TOGETHER 	

�� fft��cpm

�include �fft��h�

atomic

void

relay		connect �fft� f�

�

out � f�

active� �� make all atomic function active

�

atomic

void

fork		connect �fft� f� join� j�

�

out � f�

out� � j�

active�

�

atomic

void

mult
fork		connect �fft� f� join� j� Complex c�

�

out � f�

out� � j�

W � c�

active�

�

atomic

void

join
fork		connect �fft� f� join� j�

�

out � f�

out� � j�

active�

�

atomic

void

join
mult
fork		connect �fft� f� join� j� Complex c�

�

out � f�

out� � j�

W � c�

active�

�

Program �	� The FFT Computation� Part

	� CHAPTER �� C��

�� fft��cpm

�include �fft��h�

atomic

void

relay		in �Complex c�

�

compute�c��

output���

�

void

relay		compute �Complex c�

�

result � c�

�

void

mult
fork		compute �Complex c�

�

result � W � c�

�

void

relay		output ��

�

out�
in�result��

�

void

fork		output ��

�

out�
in�result�� out��
in��result��

�

void

mult
fork		output ��

�

out�
in��result�� out��
in��result��

�

Program ��� The FFT Computation� Part �

���� PUTTING IT ALL TOGETHER 	�

�� fft��cpm

�include �fft��h�

atomic

void

join		in �Complex c�

�

if � passive�in�� �

� compute�c�� output��� active�in��� �

else

� result � c� passive�in�� �

�

atomic

void

join		in� �Complex c�

�

if � passive�in� �

� compute�c�� output��� active�in�� �

else

� result � c� passive�in��� �

�

void

join		compute �Complex c�

�

result �� c�

�

void

join
mult
fork		compute �Complex c�

�

result � �result � c� � W�

�

void

join
fork		output ��

�

out�
in�result�� out��
in��result��

�

void

join
mult
fork		output ��

�

out�
in��result�� out��
in��result��

�

Program ��� The FFT Computation� Part �

		 CHAPTER �� C��

Finally� Programs ��� �� and �� contain the code used to build theN �point FFT
process graph� Depending on how time�critical this creation task is� solutions range
from entirely sequential� taking O�N logN� steps� to maximally concurrent� taking
just O�logN� steps� Our solution follows an intermediate approach� in which the
process creation is concurrent and takesO�logN� steps� whereas passing references
around is sequential for each process column� and takes O�N� steps�

�� fft��h

�include �fft��h�

processdef build
top
fft 	 public CPM

�

public	

atomic build
top
fft�int� join�� int� int� fft���

��

processdef build
btm
fft 	 public CPM

�

public	

atomic build
btm
fft�int� join�� int� int� fft���

��

Program ��� Building the FFT Graph� Part

���� PUTTING IT ALL TOGETHER 	�

�� fft��cpm

�include �fft��h�

fft
graph		fft
graph �int N� fft� outs�

�

order � N�

inputs � new relay�N��

if � N
 � �

�

join� j � new join�N��

new build
top
fft�N� j� �� N����� inputs��

new build
btm
fft�N� j� N��� N��� inputs��

for �int i��� i�N� i���

�j�i��
connect�outs�i��

�

else

�

inputs�
connect�outs��

�

�

Program ��� Building the FFT Graph� Part �

	� CHAPTER �� C��

�� fft��cpm

�include �fft��h�

build
top
fft		build
top
fft �int N� join� outs� int from� int to� fft� inputs�

�

int n � to � from � ��

if � n
 � �

�

join
fork� f � new join
fork�n��

new build
top
fft�N� f� �� n����� inputs��

new build
btm
fft�N� f� n��� n��� inputs��

for �int i��� i�n� i���

f�i��connect�outs�i�outs�n�i��

�

else

�

fork� f � new fork�

f�
connect�outs�outs����

�inputs�bit
reverse�N�from���
connect�f��

�

�

build
btm
fft		build
btm
fft �int N� join� outs� int from� int to� fft� inputs�

�

int n � to � from � ��

if � n
 � �

�

join
mult
fork� f � new join
mult
fork�n��

new build
top
fft�N� f� �� n����� inputs��

new build
btm
fft�N� f� n��� n��� inputs��

for �int i��� i�n� i���

f�i��connect�outs�n�i�outs�i�W�N�from�i���

�

else

�

mult
fork� f � new mult
fork�

f�
connect�outs���outs�W�N�from���

�inputs�bit
reverse�N�from���
connect�f��

�

�

Program ��� Building the FFT Graph� Part �

Chapter �

Implementation Issues

There are two major components to the C�� programming system� the translator
from C�� to C��� and the C�� runtime system� This programming system
is currently supported on the Mosaic� and on all systems that support the
Cosmic Environment�Reactive Kernel �CE�RK� ��
� message�passing primitives�
which includes sequential computers� networks of workstations� and a variety of
commercial multicomputers and multiprocessors�
The translator is written in C��� and is both compile�machine� and target�

machine�independent� Most of the runtime�system code is portable as well� with
the exception of a small set of C�� library functions that are illustrated in
Section ��
�

��� The Runtime�System Framework

The relationship between the C�� programming notation and the C�� runtime
systems is symbiotic� Programs written in C�� require runtime�system support�
C�� runtime systems are typically written in C���
Although most of the runtime�system code is portable� the resource�allocation

requirements on various machines are quite di�erent� Given a su�ciently large
node memory� the amount of runtime�system support that C�� programs require
is minimal� The runtime systems for C�� implementations on computers with
workstation�size nodes typically consist of less than a thousand lines of C�� code�
The Mosaic �ne�grain multicomputer consists of nodes with severely restricted
memory resources� hence� the runtime system for the Mosaic employs much more
sophisticated runtimemechanisms� Various con�gurations of MADRE� the MosAic
Distributed Runtime systEm� range from two to ten thousand lines of C�� code�
MADRE was written by Nanette J� Boden� and its design and the distributed
algorithms it employs are described in detail in her Ph�D� thesis ���� This work
demonstrates that the complexity of runtime systems for �ne�grain multicomputers
need not result in large penalties in speed� nor does it imply large chunks of node�

	�

	� CHAPTER �� IMPLEMENTATION ISSUES

resident code that reduce the available node memory even further� MADRE is itself
a concurrent program that employs distributed solutions to manage distributed
resources ����
The mutual dependence of the C�� programming notation and the C�� runtime

systems is only apparent� In fact� the runtime system is just a pre�written
part of any user program � a part that includes an interface to the resource�
allocation and communication capabilities of the machine it is running on� The
C�� programming model and programming notation supply only the framework
for implementing process management and data communication� striving not to
restrict the spectrum of possible runtime�system implementations� The remainder
of this section describes this framework� Since the primary target for executing C��

programs is the Mosaic� the names and default semantics of functions that we use
correspond to message�passing communication primitives� This does not� however�
imply that these primitives are the only ones that can be used� shared�memory
communication primitives� for example� are equally suitable for implementing the
necessary low�level routines�

����� Process Creation

An example of how process creation may be implemented in C�� is given in
Program ��� In general� process creation consists of the following three stages�

� Choosing a manager� by invoking the manager CPM function� corresponding
to the type of the process being created� This function must return a
pointer to the process that will be asked to instantiate the new process�
It is possible to de�ne multiple versions of this function� some of which may
take arguments� For example� di�erent versions may correspond to di�erent
process�placement strategies�

� Requesting the creation from the chosen manager by invoking the manager�s
create CPM atomic action� The two arguments� correspond to the size of the
process and the address of the constructor to be invoked� If the constructor
takes arguments� those are passed as well� Various �avors of process creation
can coexist in the system� with one of them selected at creation time�

� Instantiating the process is done by a manager process� not necessarily the one
originally chosen� The creation can be delegated to other potential manager
processes� and is eventually done in the consenting manager�s address space
����

�This function must be declared static� which is a C�� feature that makes a member function
generic� associated with a certain class de�nition� not with any particular instance of that class�

�The size t is a C���de�ned integer type that can represent the size of the largest possible
object �or process�� The entry t type is introduced by C��� and will be described in Section ��	�
�

���� THE RUNTIME�SYSTEM FRAMEWORK 	�

processdef Manager

�

public	

atomic P� create

CPM �size
t� entry
t� �����

��

processdef P 	 dynamic Manager

�

public	

static Manager� manager

CPM���

atomic P���

atomic P�int��

��

�

new P� �� is equivalent to	

P		manager

CPM���
create

CPM�sizeof�P���P		P����

new P������ �� is equivalent to	

P		manager

CPM���
create

CPM�sizeof�P���P		P�int�������

�

Program ��� Process Creation

����� Runtime Services

All of the protected and public members of a manager can be accessed by
the processes it manages� This access is handled transparently by the compiler�
The programmer need not be concerned whether some service is provided through
regular inheritance or through dynamic inheritance� with the latter requiring one
or more levels of indirection �Program �
��

����� Process Dispatch

A problem that emerges in the design of all operating and runtime systems is that
of specifying an interface for invoking user programs� This task is typically done
in an ad hoc way� For example� user programs written in C and run under UNIX
must have a function called main� which is the user�code entry point� However� this
approach does not enable the operating system code to merely call this function�
since the address of main is not known at the operating�system linking time� The
typical solution is to require that main always be at the same address� or to �nd
its address at loading time�
Every C�� process has a �xed number of entry points� corresponding to its

atomic actions� each of which could take di�erent numbers and types of arguments�
and return values of di�erent types� If the runtime system itself is to be expressed
in C��� there must be a way of dispatching to any atomic action of any process� or

�� CHAPTER �� IMPLEMENTATION ISSUES

processdef Manager �� runtime�system code

�

protected	

int i�

void f���

��

processdef P 	 dynamic Manager �� user code

�

private	

int j�

void g���

public	

atomic P��

�

j � �� �� accessing local data

i � �� �� accessing manager�s data

g��� �� calling local function

f��� �� calling manager�s function

�

��

Program �
� Accessing Runtime Services

of any process in some prede�ned set� In the remainder of this section� we describe
the C�� atomic�action dispatch mechanism�

As illustrated in Figure ��
� every process P is a node of a process tree� with
its path toward the root of a tree leading through its manager M� its manager�s
manager MM� etc� Several such trees may coexist on each physical node� Every
processdef M that could be used as a dynamic base for some process de�nition�
which means that an instance of M could be a manager of some process� must
have a special atomic action de�ned� atomic �M�entry t�� called the dispatcher�
A generic dispatcher� atomic ��entry t�� also has to be de�ned� its job is to
dispatch to root processes of process trees�

The entry t is a type introduced by the compiler� corresponding to any and
all types of entry points of processes that could be de�ned with M as their dynamic
base� A variable of this type can be used like a regular C�� member�function
pointer� with one important distinction� one need not know the interfacing details
of all atomic actions that a variable of type entry t may be used to invoke� How
arguments are passed to anonymous atomic actions is discussed at the end of this
section� How values are returned from atomic action is presented in Section ��
���

Speci�cation � An execution of an atomic action of a process can be requested
only from the body of its manager�s dispatcher atomic action�

���� THE RUNTIME�SYSTEM FRAMEWORK �

processdef P 	 dynamic M

processdef M 	 dynamic MM

processdef MM

f atomic �MM�entry t�� g

f atomic �M�entry t�� g

f atomic int f�int�char�� g

atomic ��entry t��

Figure ��
� Process Dispatch

For the process hierarchy in Figure ��
� this speci�cation means that the
execution of an atomic action of processdef P� say P��f� consists of executing the
generic dispatcher �� which calls MM���MM� which calls M���M� which calls P��f� It
is this layered execution that enables �managers� to manage other processes� The
semantics of atomic�action executions can be changed by modifying the runtime�

system code� As stated in The Annotated C�� Reference Manual� �� � � this opens
vast opportunities for generalization and language extension in the general area
of� What is a function and how can I call it�� �
��� This feature could strike the
reader as intolerably under�speci�ed and inviting of hacking and abuse� However�
the safety properties of this mechanism are not as weak as they may appear to
be� The runtime�system�speci�ed mechanisms cannot be changed by users � the
manager always gets to run before dispatching to the managed process� We have
come to believe that the support for some mechanism of this kind is essential for
a notation that is intended for expressing operating and�or runtime systems�
Another way of thinking about this layered dispatch mechanism is that every

process provides a set of services �its atomic actions�� and an escape mechanism to
which it can defer the execution if it cannot handle the requested service itself�

Arguments to Atomic Actions

The memory layout of the arguments to atomic actions is the same as that for
regular functions in C��� with additional arguments being passed to the dispatcher
actions of the manager processes �Figure �����
These additional arguments are� by default� generated by the compiler� but� as

discussed in Section ��
��� this default behavior can be replaced by one de�ned by
the programmer�
An additional feature is that the arguments are assumed to be members of the

�� CHAPTER �� IMPLEMENTATION ISSUES

�P��f

�M���M

�MM���MM

arguments to P��f

arguments to M���M

arguments to MM���MM

char

int

arguments to �

Figure ���� Atomic�Actions Arguments Layout

compiler�introduced structure args t� and can be accessed as a unit through a
pointer variable args t� args	 �similar to the this variable in C����

����	 The pointer t and the entry t Types

In the programming examples wemade use of pointer t and entry t types� always
referring to them as �introduced by the compiler�� These two types are actually
de�ned by the runtime�system in a �le that has to be included by every C��

program �
c���h
�� The C�� translator makes the structure of every process
pointer the same as that of pointer t� and the structure of every pointer to a
member of a process the same as that of entry t�

����
 Process State

As discussed in the previous sections� the state of a C�� process consists of its�

� data members�

� active�passive set� and

� a pointer to the manager process�

What are the semantics of process assignment in the context of processes with the
state de�ned above� The default C�� semantics for process assignment are bit�
wise copying of data members and of the representation of the active�passive set�
the pointer to the manager process is left untouched� The example in Program ��
shows process assignment as equivalent to sending a request to the source process
to send a copy of itself to the speci�ed destination process�

����� Process Migration

No notion of process migration is supported directly in C��� A process pointer
typically contains an absolute address of a piece of memory representing the

���� THE RUNTIME�SYSTEM FRAMEWORK ��

processdef P

�

private	

int i�

public	

atomic int copy

CPM �P� pp�

�

forward pp�
copy

CPM��this��

�

atomic int copy

CPM �P p�

�

�this � p�

return ��

�

��

�

P p�� p��

p� � p�� �� is equivalent to	

await � p��copy

CPM��p�� ��

�

Program ��� Process Assignment

state of a process� However� the example in Program �� shows how simple it
is to copy the state of a process� Furthermore� with the ability of the runtime
system to de�ne the structure of process pointers �Section ��
�	�� the runtime�
system framework described in this chapter was su�cient to implement distributed
processes �Section ������� The support for distributed processes requires the
same indirection mechanism that might be used for process migration� The work
reported in ��� is a �rst step towards a thorough examination of the issues involved
in process migration� The results presented in this work establish conditions under
which� for example� process state can be shipped to where the atomic�action code
is located just as readily as code can be cached where the process state is located�

����� Invoking Atomic Actions

As illustrated in Program �	� an atomic�action invocation consists of three stages�

� Introductory Stage � Upon calling operator space to determine the size of
the argument list� the operator head is invoked to build the dispatcher list�
Given a data type TYPE and a process type PROCESS� the default operator
semantics are as follows�

�	 CHAPTER �� IMPLEMENTATION ISSUES

size
t operator space�TYPE t�

�

return sizeof�t��

�

static

void� PROCESS		operator head�void� v� pointer
t p� entry
t e� size
t s�

�

return operator send�v�e��

�

� Main Stage � For each element in the argument list� the operator send is
invoked� The default operator semantics are bit�wise copy�

void� operator send�void� v� TYPE t�

�

TYPE� tp � v�

�tp � t�

return tp���

�

� Final Stage � The operator tail is invoked� with no�op default semantics�

static

void PROCESS		operator tail�void�� void��

� �

At the time of atomic�action execution� operator recv is invoked for each
element in the argument list� The default semantics for this operator are a no�op
�Program ����
The set of operators described above provides runtime�system programmers

with a powerful tool that they can use to de�ne how process communication
is actually implemented in terms of lower�level routines� The same set of
operators is available to users� An example of an application that might bene�t
signi�cantly from the ability to exercise total control is a program that implements
communication�network protocols� The general usability of the above mechanism�
however� is highly questionable� Once the compiler relinquishes control over
data layout to a naive user� obscure problems abound� For a great majority
of applications� the e�ciency of the data�exchange mechanisms described in
Section ��	�� is su�cient�

���� THE RUNTIME�SYSTEM FRAMEWORK ��

void operator recv�TYPE t�

� �

Program ��� Default operator recv

�� CHAPTER �� IMPLEMENTATION ISSUES

processdef MM

�

public	

atomic �MM�entry
t��

��

processdef M 	 dynamic MM

�

public	

atomic �M�entry
t��

��

processdef P 	 dynamic M

�

public	

atomic void f �int� char��

��

�

P� p�

int i�

char c�

p�
f�i�c�� �� atomic action invocation is equivalent to

�

size
t size � operator space��MM		�MM� �� assuming there are

� operator space��M		�M� �� no alignment problems

� operator space��P		f�

� operator space�i�

� operator space�c��

void �b� �v�

pointer
t pp � p�

b � v � operator head � pp� �MM		�MM� size��

v � MM		operator head �v� pp� �M		�M� size��

v � M		operator head �v� pp� �P		f� size��

v � operator send�v�i��

v � operator send�v�c��

v � M		operator tail � v� pp� �P		f� size��

v � MM		operator tail � v� pp� �M		�M� size��

operator tail �b� v� pp� �MM		�MM� size��

�

�

Program �	� Atomic�Action Invocation

���� THE RUNTIME�SYSTEM FRAMEWORK ��

����� Active�Passive

The active�passive mechanism� because of its simplicity and e�ciency� is the
C�� synchronization mechanism of choice� The runtime�system interface for this
mechanism is presented in Program ��� If a di�erent synchronization mechanism
is required� it can be implemented following the same approach�

processdef P

�

public	

atomic void f���

atomic int g���

��

atomic

void

P		f ��

�

active f� �� is equivalent to	

P		active

CPM��P		f��

passive g� �� is equivalent to	

P		passive

CPM��P		g��

�

Program ��� Active�Passive Implementation

����� Remote Procedure Call

When invoking an atomic action that returns a value� the sequence of events is
identical to that described in Section ��
��� except that an extra argument is passed�
This extra argument is the pointer to the currently�running process � the process
that expects the reply� This pointer is obtained by calling the runtime�system�
de�ned function current CPM���� The NULL extra argument implies that the
returned value is not required�

Values Returned From Atomic Actions

Inside an atomic action� the extra argument is called reply CPM� As illustrated
in Program ��� returning a value from an atomic action is equivalent to invoking
the return CPM����� atomic action of the process pointed to by the reply CPM

pointer�

�Note that it was not possible to use the this variable� because a process might be suspended
while executing a non�member function�

�� CHAPTER �� IMPLEMENTATION ISSUES

processdef P

�

public	

atomic int f���

��

atomic

int

P		f ��

�

return ���� �� is equivalent to

�

if �reply

CPM�

reply

CPM�
return

CPM������

return�

�

�

Program ��� Atomic Actions Returning Values

Suspending A Process

Whenever a returned value is expected from an atomic action� the compiler
introduces a placeholder for that value� and the runtime system is passed a pointer
to this placeholder through the wait CPM�void�� function� Multiple placeholders
can be active at any time� as discussed in Section ���� When the process attempts
to access the placeholder and �nds it uninitialized� it suspends itself by invoking
the suspend CPM�� function�

��� From C�� to C��

There are a number of reasons for translating from C�� to C�� instead of compiling
from C�� directly to Mosaic code� First� this was a faster way to build a running
system� Second� the wide availability of C�� compilers guaranteed machine�
independence� Third� we had good experience in re�targeting the Gnu C�� compiler
to produce excellent code for the Mosaic processor� And fourth� since C�� is
syntactically so similar to C��� C�� debugging tools and other programming�
support tools can be used with few or no modi�cations� One disadvantage of the
translation approach is that the compile time increases� because programs must
be parsed twice� A possible disadvantage is that some optimization opportunities
may be lost when using C�� as an intermediate target notation� However� we have
identi�ed no such lost opportunities so far�

���� FROM C�� TO C�� ��

����� Parsing

The translator is a C�� program built within the framework of a Bison�produced
parser �
��� Practically every person who has ever worked on a project that involved
parsing of C�� has already expressed their distaste that C�� syntax cannot be
described by an LALR�
� grammar� Nevertheless� we feel that our own distaste
should be on record� too� We acknowledge that it is not the compiler writer�
but the language user� who should be the ultimate judge of the value and style
of a programming notation� However� if syntactic issues are subtle enough to be
di�cult for a compiler� what hope does a user have of not making obscure mistakes
writing programs using that syntax� Fortunately� beginners tend to use a small
set of basic language constructs� whereas experienced users tend to develop their
own programming style from a subset of the rich C�� o�ering� In our experience�
the complexity of handling the few special cases in parsing C�� is comparable to
the complexity of all of the remaining issues of translating C�� into C��� Su�ce
it to say that we are looking forward to the ANSI standard for C�� syntax�
In our implementation of the translator� each grammar rule corresponds to

a class de�nition� For example� given the grammar rule in Program ��� three

expression 	 assignment
expression

� expression � assignment
expression

�

Program ��� An Example of a Grammar Rule

class de�nitions have to be written� as shown in Program ��� Parsing a C��

program generates a parse tree that consists of nodes that are instances of classes
such as these illustrated in Program ��� We developed a program that� given an
input grammar such as the one illustrated in Program ��� generates the default
class de�nitions �similar to those described in Program ���� the code that builds
the parse tree� and the default de�nitions of output�� functions� The resulting
program code is a parsing speci�cation for Bison� which can be used to produce
a default parser� When a source program is fed to this default parser� the parser
builds the parse tree� It then invokes the output�� function at the topmost level
of the tree� thereby causing the entire source program to be produced as the
output� This default behavior can be modi�ed by de�ning additional elements
of class de�nitions� by specifying extra actions to be taken while building the
parse tree� and by providing customized versions of the output�� routine for any
class de�nition� This simple tool for developing programs for source�to�source
transformation� a program of less than two thousand lines of C�� code� has been
crucial to our ability to experiment with numerous versions of C�� syntax� This
tool generates about two�thirds of the approximately ������ lines of C�� code of a
complete C�� translator�

�� CHAPTER �� IMPLEMENTATION ISSUES

class expression

�

void output�� � ��

��

class expression� 	 public expression

�

assignment
expression� member��

public	

void output��

�

member��
output���

�

��

class expression� 	 public expression

�

expression� member��

assignment
expression� member��

public	

void output��

�

member��
output���

member��
output���

�

��

Program ��� A Part of the De�nition of the Parse Tree

����� Code Generation

Once the hurdle of parsing C�� is overcome� the translation from C�� to C�� is a
fairly simple task� The description of the runtime�system framework in Section ��

also speci�es this translation task� Since the process concept is the only extension
that C�� introduces to C��� the focus of the translator is on keeping track of
processes and various other process�related types� The translator considers each
segment of a source program to be a type transformation� For example� a process�
pointer type� when dereferenced� is transformed into a process type� and a function
call transforms a list of argument types into the type of the returned value� Since
the translator keeps track of all of the type transformations in a program text�
operations on processes are detected� and the replacement code� as illustrated in
Section ��
� is generated�

���� FROM C�� TO C�� �

����� Code Splitting

In addition to the transformations described in Section ��
� there is one more
requirement on the translator� Since the Mosaic� a machine with limited node�
memory resources� is the most important target machine for executing C��

programs� the C�� translator must provide support for code splitting� Pieces of
code are cached in each node by the runtime system� and invoked through the
indirect�function�call mechanism� A design decision had to be made on what the
code�splitting target should be�
The default object�code unit provided by the regular C�� compilers is a piece

of code produced by the compilation of one source �le� We considered this
default setup to be unacceptable� Programmers would have to organize their code
according to the code�splitting policy rather than according to the programming�
abstraction requirements of the application� This setup would unavoidably lead to
loss of portability� whereby the source code would have to be rearranged and split
into smaller pieces when moving to a machine with less node memory�
Given that the default code�splitting policy was deemed unusable� we identi�ed

three well�de�ned code�splitting targets� These three targets� with increasing
granularity� are to split the code so that each piece corresponds to�

� an atomic action of a process�

� a function and�or an atomic action of a process� or

� a block of code within a function� with strictly sequential execution �no
conditional execution��

The next�higher�granularity target would be equivalent to turning the runtime
system into a pseudo�code interpreter�
If the block of code with strictly sequential execution is the code�splitting

target� only code that is certain to be executed is ever brought to the code cache�
However� this implies more frequent code�cache updates�
If the code corresponding to a function or an atomic action is the code�splitting

target� there is no unnecessary code duplication� as every named piece of code is
a stand�alone unit� In this case� an indirect�call overhead has to be paid for each
function call�
Even though each of these options could be supported by the C�� translator�

we decided to split the code into pieces that correspond to atomic actions of
processes� This was the least�complicated and the best�understood approach�
and it still allowed us to provide an experimental testbed that can be used to
determine the e�ect of code�splitting granularity on the machine performance�
Code of a function is linked with every atomic action that invokes it� Some of the
runtime�system services� such as sending messages and creating new processes�
are accessed by virtually every user process� and replicating that code would

�� CHAPTER �� IMPLEMENTATION ISSUES

be equivalent to including a large fraction of the runtime system in the code of
each user�process atomic action� Access to these services is through the indirect�
function�call mechanism� but its speci�cation is left entirely to the runtime�system
implementation ���� We consider this an acceptable compromise� particularly
because any e�cient code�caching policy must distinguish such often�used code
anyway�

Bibliography

�
� Gul Agha� Actors� A Model of Concurrent Computation in Distributed

Systems� MIT Press�
����

��� William C� Athas� Fine�Grain Concurrent Computation� Caltech Computer
Science Technical Report ��	��TR��� �Ph�D� thesis��
����

��� J� Backus� Can programming be liberated from the Von Neumann style��
A functional style and its algebra of processes� CACM� �
���� �
�
�	
�
August
����

�	� Nanette J� Boden� A Study of Fine�Grain Programming Using Cantor�
Caltech�CS�TR����

�
����

��� Nanette J� Boden� Runtime Systems for Fine�Grain Multicomputers� Caltech�
CS�TR����
��
����

��� Andrew A� Chien� Concurrent Aggregates� MIT Press�
����

��� K� Mani Chandy� Carl Kesselman� Compositional C��� Compositional Parallel
Programming� Caltech�CS�TR����
��
����

��� K� Mani Chandy� Jayadev Misra� Parallel Program Design� A Foundation�

Addison�Wesley�
����

��� K� Mani Chandy� Stephen Taylor� A Primer for Program Composition
Notation� Caltech�CS�TR����
��
����

�
�� William Douglas Clinger� Foundations of Actor Semantics� MIT AI Lab
Technical Report AI�TR����� May
��
�

�

� Ole�Johan Dahl� Edsger W� Dijkstra and Charles A� R� Hoare� Structured

Programming� Academic Press�
����

�
�� William J� Dally� A VLSI Architecture for Concurrent Data Structures�

Kluwer Academic Publishers� Norwell MA�
����

��

�	 BIBLIOGRAPHY

�
�� Edsger W� Dijkstra� Cooperating Sequential Processes� in Programming

Languages� edited by F� Genuys� Academic Press�
����

�
	� Edsger W� Dijkstra� A Discipline of Programming� Prentice�Hall�
����

�
�� Charles Donnelly and Richard Stallman� BISON� The YACC�compatible
Parser Generator� The Free Software Foundation� June
����

�
�� Margaret A� Ellis and Bjarne Stroustrup� The Annotated C�� Reference

Manual� Addison�Wesley�
����

�
�� Ian Foster and Stephen Taylor� STRAND� New Concepts in Parallel

Programming� Prentice Hall�
����

�
�� A� Gotlieb et al� The NYU Ultracomputer � Designing and MIMD Shared
Memory Parallel Computer� IEEE Transactions on Computers�
��

���
February
����

�
�� Per Brinch Hansen� Structured Multiprogramming� CACM�
����� ��	
����
July
����

���� Carl Hewitt� Viewing Control Structures as Patterns of Passing Messages� in
Arti�cial Intelligence� An MIT Perspective� edited by Winston and Brown�
MIT Press�
����

��
� Carl Hewitt and Henry Baker� Laws for Communicating Parallel Processes�
IFIP���� Toronto� August
���� pp� ���
����

���� C� A� R� Hoare� Communicating Sequential Processes� CACM� �
���� ���

���� August
����

���� Waldemar Horwat� Andrew A� Chien� William J� Dally� Experience with CST�
Programming and Implementation� in Proceedings of the ACM SIGPLAN ��	

Conference on Programming Language Design and Implementation�
����

��	� Kirk Johnson� Anant Agarwal� The Impact of Communication Locality
on Large�Scale Multiprocessor Performance� MIT�LCS�TM�	��� MIT�
February
����

���� Charles R� Lang� Jr� The Extension of Object�Oriented Languages to a
Homogeneous� Concurrent Architecture� Caltech Computer Science Technical
Report ��
	�TR����
����

���� Sigurd L� Lillevik� The Touchstone �� Giga�op DELTA Prototype� IEEE
���
�����������
���������
���
��� ��

���� March
��
�

BIBLIOGRAPHY ��

���� Alan V� Oppenheim and Ronald W� Schafer� Digital Signal Processing�

pp� ��	
���� Prentice�Hall�
����

���� Charles L� Seitz� The Cosmic Cube� CACM� ���
�� ��
��� January
����

���� Charles L� Seitz� Multicomputers� Chapter �ve in Developments in

Concurrency and Communication� edited by C� A� R� Hoare� Addison�Wesley�

����

���� Charles L� Seitz� W� C� Athas� C� M� Flaig� A� J� Martin� J� Seizovic�
C� S� Steele and W�K� Su� The Architecture and Programming of the
Ametek Series ��
� Multicomputer� in The Third Conference on Hypercube

Concurrent Computers and Applications� Pasadena� California�
����

��
� Charles L� Seitz� Jakov Seizovic� Wen�King Su� The C Programmer�s
Abbreviated Guide to Multicomputer Programming� Caltech�CS�TR����
�

����

���� Jakov N� Seizovic� The Reactive Kernel� Caltech�CS�TR����
��
����

���� Jakov N� Seizovic� The Architecture and Programming of a Fine�Grain
Multicomputer� Caltech�CS�TR����
��
����

��	� Ehud Shapiro� editor� Concurrent Prolog� Collected Papers� MIT Press�
����

���� K� Stuart Smith� Arunodaya Chatterjee� A C�� Environment for Distributed
Application Execution� MCC Technical Report ACT�ESP��������
����

���� Craig S� Steele� A�nity� A Concurrent Programming System for Multicom�
puters� Caltech�CS�TR�������
����

���� Leon Sterling� Ehud Shapiro� The Art of Prolog� Advanced Programming

Techniques� MIT Press�
����

���� Wen�King Su� Reactive�Process Programming and Distributed Discrete�Event
Simulation� Caltech�CS�TR����

�
����

���� Stephen Taylor� Parallel Logic Programming Techniques� Prentice Hall�
����

�	�� Akinori Yonezawa and Mario Tokoro� editors� Object�Oriented Concurrent

Programming� MIT Press�
����

	CSTR 1993 (2) 65
	CSTR 1993 (2) 64
	CSTR 1993 (2) 63
	CSTR 1993 (2) 62
	CSTR 1993 (2) 61
	CSTR 1993 (2) 60
	CSTR 1993 (2) 59
	CSTR 1993 (2) 58
	CSTR 1993 (2) 57
	CSTR 1993 (2) 56
	CSTR 1993 (2) 55
	CSTR 1993 (2) 54
	CSTR 1993 (2) 53
	CSTR 1993 (2) 52
	CSTR 1993 (2) 51
	CSTR 1993 (2) 50
	CSTR 1993 (2) 49
	CSTR 1993 (2) 48
	CSTR 1993 (2) 47
	CSTR 1993 (2) 46
	CSTR 1993 (2) 45
	CSTR 1993 (2) 44
	CSTR 1993 (2) 43
	CSTR 1993 (2) 42
	CSTR 1993 (2) 41
	CSTR 1993 (2) 40
	CSTR 1993 (2) 39
	CSTR 1993 (2) 38
	CSTR 1993 (2) 37
	CSTR 1993 (2) 36
	CSTR 1993 (2) 35
	CSTR 1993 (2) 34
	CSTR 1993 (2) 33
	CSTR 1993 (2) 32
	CSTR 1993 (2) 31
	CSTR 1993 (2) 30
	CSTR 1993 (2) 29
	CSTR 1993 (2) 28
	CSTR 1993 (2) 27
	CSTR 1993 (2) 26
	CSTR 1993 (2) 25
	CSTR 1993 (2) 24
	CSTR 1993 (2) 23
	CSTR 1993 (2) 22
	CSTR 1993 (2) 21
	CSTR 1993 (2) 20
	CSTR 1993 (2) 19
	CSTR 1993 (2) 18
	CSTR 1993 (2) 17
	CSTR 1993 (2) 16
	CSTR 1993 (2) 15
	CSTR 1993 (2) 14
	CSTR 1993 (2) 13
	CSTR 1993 (2) 12
	CSTR 1993 (2) 11
	CSTR 1993 (2) 10
	CSTR 1993 (2) 9
	CSTR 1993 (2) 8
	CSTR 1993 (2) 7
	CSTR 1993 (2) 6
	CSTR 1993 (2) 5
	CSTR 1993 (2) 4
	CSTR 1993 (2) 3
	CSTR 1993 (2) 2
	CSTR 1993 (2) 1

