
JAN ��� ��

Proxac� an editor for program transformation

Jan L�A� van de Snepscheut

This note is an introduction to an editor oriented to the production of programs and proofs�

� Introduction and overview

The development of programs from their speci�cation via a process known as transformational program�
ming is in principle well�known� Yet it is rarely practiced because the process is often tedious and
error�prone� We have developed an editor that supports this programming method by automating the
tedious parts of it�

The editor	 called proxac for program and proof transformation and calculation	 can be found in

modula��edit�proxac� Writing this editor was	 and is	 a challenging undertaking� Diana Finley was
instrumental in getting this project underway� Greg Davis contributed many ideas and helped getting
the program to the point where it actually became usable� My thanks go to both of them�

Figure � contains a view of the editor� It shows the con�guration after expression

max�sum�segs

has been entered �on the �rst EDIT line� and the three de�nitions in the rightmost window have been
applied to it� The example as well as the transformation rules are taken from 
��� The notation used
is some concise programming language	 and doesn�t concern us too much now� The underlining of the
last line in the edit window indicates the expression that is the focus of attention� We illustrate how a
transformation step is carried out� Figure � contains the con�guration after the �rst transformation rule
has been selected� This selection is carried out by moving the mouse to the rules window and depressing
the � and � �keys until the proper rule is underlined�

Next	 pushing the a�key will apply the rule to the expression that is the focus of attention� The
editor attempts to match the focus against the left�hand side or the right�hand side of the rule� In this



JAN ��� ��

Figure �� The window

case� no such match will be found and then the editor proceeds by attempting to match a subexpression
of the focus against the rule� 	To suppress this recursive matching� hold down the Control key when
pushing the a�key�
 In this particular case� the subexpression that matches the left�hand side of the rule
is expression

�������������

provided that �� is substituted for f in the rule� Given this substitution� which is automatically generated
by the editor� the right�hand side of the rule reduces to

�������������������

and these two results are then displayed by the editor as show in Figure �� Line



JAN ��� ��

Figure �� The window

� � MapPromotion�f����� �

indicates that the programs preceding and following it are equal� and that their equality is justi	ed by

the rule labeled MapPromotion
 The justi	cation can be checked by substituting �� for f in the rule
 The

result of the replacement is shown in the new focus


Figure � contains the con	guration after a few more steps
 The same text can be found in Appendix

where the font size is not as minuscule


The idea of the transformational programming method is that the 	rst line in Figure � is the spec�

i	cation� a program that clearly expresses the job to be carried out� but possibly in an ine�cient way


Each of the transformation steps is known to be correct� they are part of the theory that comes with

the programming language at hand
 Each transformation preserves the program
s correctness and may



JAN ��� ��

Figure �� The window

improve its e�ciency� In the example	 the program is given a list of integers	 not necessarily all positive�

A segment is a consecutive sublist of the given list and each segment has a sum� The problem is to

compute the maximum of all those segment sums� The initial program uses some standard functions to


rst generate all segments	 then compute all their sums	 and 
nally compute the maximum thereof� If

the given list has length n� the running time of this program is proportional to n
�
� The 
nal program is

much trickier but runs in time proportional to n� If we know that the transformation rules are correct	

then the resulting e�cient program is known to be correct also�



JAN ��� ��

Figure �� The window

� Expressions

In this section we describe the notation used for expressions� This part is strongly in	uenced by a proof
editor reported in 
��� Compared to most theorem provers or proof checkers
 the outstanding feature is
that the notation is based on in�x �and pre�x and post�x� expressions instead of on function application�
The main reason is that being able to write

a � b � c

instead of the cumbersome

sum�a� sum�b� c��



JAN ��� ��

�let alone having to distinguish between this and sum�sum�a� b�� c� � is such an enormous gain that
in	x expressions are a sine qua non
 Every operator has a number of attributes that determine its
interpretation
 One of its attributes is whether it is an in	x� pre	x� or post	x operator
 Every in	x
operator � has a number of additional attributes


� Every operator has one of the following associativity attributes�

� associative� in which case parentheses can be omitted from expressions like x � �y � z � 
 We
write ASSOCIATIVE��� for associative operators


� left�associative� in which case x � y � z stands for �x � y�� z 
 We write LASSOCIATIVE��� 


� right�associative� in which case x �y�z stands for x��y�z � 
 We write RASSOCIATIVE��� 


� not associative� in which case x � y � z is unacceptable


One may write LASSOCIATIVE��� � RASSOCIATIVE��� for ASSOCIATIVE��� 


� An in	x operator may be conjunctive
 For conjunctive operator �� expression x � y � z equals
x � y � y � z 
 A conjunctive operator is not associative
 We write CONJUNCTIVE��� 
 One
can mix various conjunctive operators
 If both � and � are conjunctive� x � y � z equals
x � y � y � z 


� An in	x operator may be transitive
 For transitive operator �� expression x � y � y � z

implies x � z 
 We write TRANSITIVE��� 


� An in	x operator may be idempotent
 For idempotent operator �� expression x � x equals x �

We write IDEMPOTENT��� 


� An in	x operator may or may not have a dual
 If operator � has dual � then x � y and y � x

are equal
 An in	x operator is symmetric �or commutative� just when it is its own dual
 We write
DUAL��� �� 


� An in	x operator may have a left unit LUNIT��� � and it may have a right unit RUNIT���� If
LUNIT��� � l then l � e � e� If RUNIT��� � r then e � r � e� If both are de	ned� they have to
be equal and we write UNIT��� for the unit of ��

� An in	x operator may have a left zero LZERO��� � and it may have a right zero RZERO���� If
LZERO��� � l then l � e � l � If RZERO��� � r then e � r � r � If both are de	ned� they have to
be equal and we write ZERO��� for the zero of ��

Following Dijkstra� we write an explicit in	x operator for function application� such as �b�n for the
application of function �b to argument n� If function max has two arguments� we write max �x �y and
stipulate that � associates to the left
 This boils down to saying that the previous function application
can be read as �max �x ��y and this in turn corresponds to how we usually Curry a function with more
than one argument� max is a function of one argument that returns a function of one argument


We write � for function composition� which is an associative operator
 We have

�f�g�h��x � f ��g ��h�x ��



JAN ��� ��

We use the following notation for functions� It is inspired by our notation for quanti�cation� For
example	

�
n j n � � � 
n � �
� � 
n � �
 � n�


stands for the universal quanti�cation of term 
n ��
� � 
n ��
 � n� over all n for which n � � holds�
Similarly	

�
n j n � � � 
n � �
� � 
n � �
 � n�


stands for the existential quanti�cation of the same terms� It is therefore useful to think of


n j n � � � 
n � �
� � 
n � �
 � n�


as a unit in its own right to which a quanti�er can be applied� We think of it as the function that
maps n to 
n � �
� � 
n � �
 � n� for all n for which n � � holds� Quanti�er Q is then a pre�x
operator that is applied to a function� It has two attributes in addition to being a pre�x operator�
One is the in�x operator INFIXOPERATOR
Q
 that Q is the continued version of	 and the other is
the constructor function CONSTRUCTOR
Q
 that is applied to all terms before subjecting them to the
in�x operator� In�x operator INFIXOPERATOR
Q
 should be symmetric and associative� Here are some
examples� Universal quanti�cation � has attributes � and id � Summation

P
has attributes �

and id � Numeric quanti�cation N has attributes � and the function that maps true to � and false

to �� Set formation has attributes � and the function that maps x to fxg�

The range of the bound variable
s
 is written between the symbols j and �� The construct jtrue
may be omitted� For example	 the function that yields the average of two numbers is written


x � y � 
x � y
��
 �

By the way	 we switched from the notation


x � y � x � � � 
x � y
��


to


x � y j x � � � 
x � y
��


to keep the door open for the introduction of type declarations	 which might look like


x � y � real j x � � � 
x � y
��
 �

We admit operators as function parameters also� For example	 we write


x � PREFIX �� y � ���


for a function whose �rst argument is any expression	 whose second argument is a pre�x operator	 and
whose third argument is an any expression� Similarly	 one can write



JAN ��� ��

POSTFIX �

INFIX number �

QUANTIFIER Q

for other operators� Pre	x and post	x operators are unary� The integer in the case of an in	x operator
indicates its precedence level� Any integer number can be used as a precedence level
 a higher number
implies that the operator binds more strongly� Pre	x and post	x operators bind even more strongly than
in	x operators�

Below we describe how attributes of operators �such as their associativity� unit elements� and so on

can be described and one may include requirements on operator parameters in the function�s range as
one would for other parameters� Those properties are also used by the parser when parsing the function�s
body�

In some applications �such as the Bird�Meertens calculus ���
 one 	nds in	x expressions from which
the leftmost or the rightmost operand has been omitted� such as �� � These are functions� but it would be
painful having to write �x j true � x ��
 or �x � x ��
 instead of simply �� � These incomplete expressions
have become known as left and right sections �the adjective indicates which operand is missing
�

Quite often� we have a need for writing an expression together with some substitutions that need to
be carried out� The substitutions are understood to be performed simultaneously� so that �x � y
�x ��
y � �� y �� x � �� is equivalent to y � � � x � � �

The goal of the editor is to come up with a sequence of transformation steps that connect a number
of expressions� Such a sequence is called a calculation� It is a sequence of one or more formulae� and each
formula is connected to the next by an operator� The connective is accompanied by a hint� It is typically
something like

��a�b��n��n��	


� � distribution �

�a�n�b�n��n��	


� � reduce �

a�	�b�	

and we treat such a calculation also as an expression� It is the presence of the hints� written in curly
braces� that distinguishes them from other expressions�

� The transformation menu

As shown in Figure �� the last transformation step is not an application of one of the rules from the rule
window� but an applications of one of the prede	ned rules called Reduce� In this section� we describe the
transformations carried out by Reduce and other prede	ned transformations�

��� Reduction

The Reduce action is activated by either pressing the r�key in the edit window� or by downclicking the
mouse button on the Transformation menu� which will pop up a menu� followed by an upclick on the



JAN ��� ��

Reduce option� Reductions are �rst applied recursively to all subexpressions of the current focus� and
then to the expression itself� To suppress this recursive application� hold down the Control key when
activating the Reduce action� The reduction is applied exactly to the focus� the underlined expression�
and not to some subexpression thereof� The reductions are tabulated below�

Let � be a pre�x operator� 	 a post�x operator� and � an in�x operator�

LUNIT�� � the left unit element of �
RUNIT�� � the right unit element of �
UNIT�� � the unit element of �
LZERO�� � the left zero element of �
RZERO�� � the right zero element of �
ZERO�� � the zero element of �
TRANSITIVE�� � the boolean transitivity attribute of �
ASSOCIATIVE�� � similar
LASSOCIATIVE�� � similar
RASSOCIATIVE�� � similar
CONJUNCTIVE�� � similar
IDEMPOTENT�� � similar
DUAL�� � the dual of �
INFIXOPERATOR�Q� the in�x operator of quanti�er Q
CONSTRUCTOR�Q� the constructor of quanti�er Q
x 
 x true

x � x true

x � x true

x �
 x false

x � x false

x � x false

�x�y�range � expr��a�b expr
x�y
a�b provided range

x�y
a�b holds

�x�range � expr��a�b exprxa�b provided rangexa holds

�x�y�z�range � expr��a�b �zjrange
x�y
a�b�expr

x�y
a�b�

�f�g�h��x f��g��h�x��

� � a � b � ��x x � a � b �
� � a � b � c��x x � a � b � c

�a � b � c � ��x a � b � c � x

� � a � b � c � ��x�y x � a � b � c � y

� �x � x

��x x�

� �x�y x � y

� �x x �
id�x x

l � x x if l	LUNIT�� �

x � r x if r	RUNIT�� �

l � x l if l	LZERO�� �



JAN ��� ��

x � r r if r�RZERO�� �

x � x x if IDEMPOTENT�� �

�x � x� id

�x � � x� � if � �� x

�x � x �� � if � �� x

�x � a� x� a� if x not free in a�
�x � x� a� � a if x not free in � a

�x�z � x� y� z� � y� if x�z not free in � y�

expr�x��e�y��f	 expr
x�y
e�f

for quanti	er Q
 let � � INFIXOPERATOR�Q� and c�CONSTRUCTOR�Q�

Q�i 
 false � expr� UNIT�� �

Q�i 
 i�k � expr� c��expr�i��k	� provided i does not occur in k

Q�i 
 i�k � expr� expr�i��k	 if c�id and i does not occur in k

Q�i 
 a � b � expr� Q�i 
 a � � b � expr� � Q�i 
 b � expr�

Q�i 
 a � b � expr� Q�i 
 a � expr� � Q�i 
 b � expr�

if � is idempotent or
if a � b � false

a � fh�gb � fh
gc a � fh�
 h
gc if � and � can be combined to �

In the last rule
 for reducing a calculation
 there is the proviso that � and � can be combined� The
rule for combining operators is tabulated below� For any in	x operator �

� and � can be combined
 giving �

� � � provided � is a transitive operator

� � �

� � �

The last two lines indicate that we should establish some relation between operators � and 	 for which
we have x 	 y � �x � y � x � y�� Right now
 it is an ad�hoc thing�

��� Factorization and distribution

A transformation that is carried out frequently is to switch from a 
 �b � c� to �a 
 b� � �a 
 c�� which
is called distribution
 or vice versa
 which is called factorization� The Transformation menu o�ers two
distribution and two factorization operations� one that operates on the left
 and one on the right� Going
from a 
 �b � c� to �a 
 b� � �a 
 c� is called a left distribution
 whereas going from �b 
 a� � �c 
 a� to
�b � c� 
 a is called a right factorization�

Left distribution is applied to an in	x expression
 say x 
 y 
 z � It distributes the whole expression
minus the last term
 that is section x 
y
� through the last term
 that is through z � The result depends
on the form of z � Notice that x 
 y
 acts just like a pre	x operation
 and one might correctly suspect
that expression �z works in a similar fashion� It is also perfectly okay for x to be missing
 in which
case we have left�sectioned results�



JAN ��� ���

x�y��a�b� transforms to �x�y�a���x�y�b�

x�y��v j R � t� �v j R � x�y�t� provided v does not occur in x�y�

x�y�Q�v j R � t� Q�v j R � x�y�t� where Q is a quanti�er and

v does not occur in x�y�

Factorization is just the opposite�

Observe that the transformation from a � 	b 
 c� to 	a � b� 
 	a � c� makes sense only if � left�
distributes through 
 in the theory that one is working with� This condition is checked by the editor�
Also observe that the transformation from f �	x 
 y� to f �x 
 f �y is an instance of a left distribution�

��� Reverse

This transformation reverses the order of the operands in an in�x expression and changes the operator to
its dual� If the focus is a conjunction� it reverses the order of the operands and operators� and transforms
each operator into its dual� If the focus is a calculation� all steps are put in reverse order� and all
connectives are replaced by their dual�

��� Flatten

If an expression happens to contain super
uous parentheses� as in a 
 	b 
 c�� they can be removed by
Flatten which transforms the expression into a 
 b 
 c�

��� Copy

This operation makes a plain copy of the expression without any transformation being carried out�

��� Swap Exprs

This operation requires the selection of a secondary focus in addition to the �rst focus� See section � for
a description on selecting a secondary focus� The e�ect of executing this operation is to swap the two
expressions� They are assumed to be siblings� operands of one and the same symmetric in�x operation�

��� Regroup

This operation requires the selection of a secondary focus in addition to the �rst focus� They are assumed
to be adjacent siblings� Regrouping inserts a pair of parentheses around these two expressions� For
example� regrouping expression a 
 b 
 c when a and b are the primary and secondary focus� yields
	a 
 b� 
 c�



JAN ��� ���

��� SplitConj

This operation requires the focus to be a conjunctive expression� like a � b � c� and splits it into the
conjunction of its individual terms� like a � b � b � c�

��� Rule with Hint

This operation is a form of rule application where the editor is �rst given a hint as to which substitution
to apply� For example� if rule

RULE CaseAnalysis 	 
a� b � a � 
a � b�� 
a � �b��

is applied to expression

x � y

one might give the hint to choose s � � for b to produce the new expression



x � y� � 
s � ��� � 

x � y�� �
s � ��� �

There is no way that the editor could have determined this substitution for b without further input� We
would write

hint
b 	� s � ��

in the input window to supply the hint� focus on the rule� and then apply the transformation�

���� Substitute

This operation is a form of rule application in which the rule is not given in the rules window� but is
given as an expression in the edit window� This expression is taken from the secondary focus 
see next
section� and is often used to transform an expression like

a � � � r � b � � � a � �

into

� � � � r � b � � � a � �

by selecting a � � with the secondary focus� by selecting the initial a with the primary focus� and by
then applying the Substitute transformation�



JAN ��� ���

� The focus menu

So far� the focus of attention has always been the last line of the calculation in the edit window� Some�
times� we want the focus to be narrowed to a subexpression thereof� And sometimes the focus is on an
expression that is not part of the last line� The operations in the selection menu allow another expression
to be selected as the focus of attention� Six operations are provided	 In� Out� Left� Right� Up� and Down�
Their respective e
ect is to shift the focus to a subexpression� to a superexpression� to the expression to
the left �in some list�� to the right� to the expression one line up� or to the expression one line down� For
example� to shift the focus from c to b in expression �a 
 b� � �c 
 d 
 e�� one cannot just apply Left

because c is already the leftmost expression in its list� Instead� one would go through Out to shift the
focus to c 
 d 
 e� then Left to shift the focus to a 
 b� then In to shift the focus to a� and �nally
Right to shift the focus to b� The Left� Right� Up� and Down operations can also be activated via the
arrow keys�

We have mentioned the need for a secondary focus� Operation Set Focus � sets the secondary focus
to whatever expression holds the primary focus� The primary focus remains unchanged� The primary
focus is indicated by solid underlining� and the secondary focus is indicated by dotted underlining� When
the two foci coincide� the expression is highlighted instead of underlined�

The prseent version of the editor su
ers from some inconveniences that are to some extent due to
my inability to understand the underlying window system� �The program is written in Modula� and
uses FormsVBT to set up the windows and communicate with them�� When the program is started� the
windows are set up� but no underlining is shown� Even so� there is a focus but for some mysterious reason
it is not shown� Click in the edit window �with the left mouse button� and use the arrow keys to change
the focus� You should now see an underlining appear and this is the focus� Whenever you change your
action to another window� for example when you were editing and then want to move up or down the
focus in the rules window� you have to click in the new window �rst� This causes the underlining in the
old window to disappear� It does not remove the focus� but it does remove the underlining�

� The Edit Menu

The Edit menu o
ers four buttons�

� From Keyboard

Replaces the expression that holds the focus with the expression read from the input window�

� To Keyboard

Writes the expression that holds the focus to the input window�

� Delete Step

Removes the last step in a calculation� provided it is the focus�

� Undo

Not yet implemented�



JAN ��� ���

� The File Menu

The File menu o�ers a number of buttons� including the following�

� Open

To read a module from a 	le�

� Save

� Save As

To save a module in a 	le�

� Print LaTeX

Not yet implemented�

� Quit

To terminate the program�

� Notations

We have explained that the editor is primarily based on expressions written in in	x notation� Sometimes
one encounters expressions written in a very di�erent format� For example� one writes jx j for the absolute
value of x � or WHILE b DO s for a loop in some program notation� It is� therefore� possible to introduce
notations other than in	x operators� Right now� this mechanism is sometimes a bit clumsy and not
thought through
 it is likely to change a bit�

A notation like the loop construct can be declared by writing

NOTATION WHILE � DO �

In this example� there are two so�called keywords and two parameters� The parameters are anonymous
and their position is indicated by exclamation marks� One may substitute any expression for such a
parameter� A keyword need not be a sequence of letters
 it may also be an operator� or any of the special
symbols �� �� �� �� or � that cannot be used as operators� Keywords and parameters need not alternate�
One restriction in the present version is that the 	rst element is a keyword� not a parameter�

So much for the simple case in which one expression is substituted for a parameter� Sometimes it
is ever so nice to be able to substitute a list of expressions for a single parameter� For example� when
writing functions� we write a list of variables between the opening � and the j or � symbols� The
appendix contains an example of the speci	cation statement� which is written

SPEC r�q��true��r	
��s�q	

 �� �q�r��
�

in which keyword SPEC is followed by a list of names �interpreted as the names of those variables that
can be assigned a new value through the statement�� It is obviously highly undesirable to having to write
lots of declarations



JAN ��� ���

NOTATION SPEC � � ��� ��

NOTATION SPEC ��� � ��� ��

NOTATION SPEC ����� � ��� ��

Instead� we write

NOTATION SPEC �LIST � ��� ��

and instantiate it with as many expressions as desired �well� one or more	
 They are separated by commas

There is no way to restrict the expressions to being identi�ers only


In some cases� the parameters are actually introducing new scopes
 This is the case for the bound
variables of functions� and it might be the case for newly introduced constructs as well
 In such a case�
we do not write � but write � instead
 For example�

FOR � �� � TO � DO � END

could be an attempt to write a for loop in some programming language with the intent that the control
variable be local to the loop
 To indicate the scope of the newly introduced variable� in this case to
indicate that the scope is the body of the loop but not the two bounds� we name the variable and list it
in the other parameters


FOR �	v
 �� � TO � DO �	v
 END

For the sake of completeness� we also have

�LIST	v


to allow a list of new bound variables� and

�	v�w


to indicate that this parameter is included in the scope of both the v and the w variables
 Warning� Not
all of these constructs have been implemented completely �yet	


� Modules

In this section we discuss the module structure that has been ignored so far
 As can be seen from the
Figures� the edit window starts with the lines

MODULE MaximumSegmentSum

IMPORT squiggol

whereas the actual editing was done on the expression following the line

EDIT



JAN ��� ���

In this section we discuss the role of modules� First� what does a module look like	 A module starts

with a heading that lists the name of the module� In the example� the name is MaximumSegmentSum� A

module contains a list of items� Each item is a declaration of an identi
er� an operator� or a notation�

is an import� is the statement of a property� or is a rule� The second line of our example imports the

module named squiggol� It is read from 
le squiggol�mod� Here is the text of that module�

MODULE squiggol

DECLARE INFIX � ��

PROPERTY ALL�f�g����f	g
�
 � ��f�
 	 �g�




DECLARE INFIX � 
�
�

DECLARE INFIX � 
��
�

DECLARE tails� inits

RULE MapPromotion� �f ��

�f �
 	 ����
 �
 � ����
 �
 	 ��f �
 �



RULE ReducePromotion� �INFIX � � �

� ASSOCIATIVE��
 ��

���
 �
 	 ����
 �
 � ���
 �
 	 ����
 �
 �



RULE HornerScheme� �INFIX � �� INFIX � � �

ASSOCIATIVE��
 �� ASSOCIATIVE��
 �� ALL�a�b�c����a�b
�c
���a�c
��b�c


 ��

���
 �
 	 ����
 �
 �
 	 tails � ���� UNIT��

 	 ��

 
�
� UNIT��




RULE Accumulate� �f�e ��

��f 
�
� e
 �
 	 inits � �f 
��
� e



DECLARE INFIX � �

PROPERTY ASSOCIATIVE��


PROPERTY ALL�a�b�c����a�b
�c
���a�c
��b�c




RULE definition� max � ��
 �

RULE definition� sum � ���
 �
 �

RULE definition� segs � ����
 �
 	 �tails �
 	 inits

This module contains examples of many of the constructs� For example�



JAN ��� ���

DECLARE INFIX � ��

declares �� to be an in�x operator of precedence level �	 Pre�x and post�x operators are declared with
the constructs

DECLARE POSTFIX �

and

DECLARE PREFIX not

and a quanti�er is declared as

DECLARE QUANTIFIER SUM

The squiggol module also shows the declaration of identi�ers tails and inits	 One often declares
identi�ers that are not operators
 but special constants	 In the module above
 tails and inits are
functions that are not de�ned in the module
 although some of their properties are revealed in the rules
that follow	 Properties can also be revealed using a PROPERTY	 An example is

PROPERTY INFIXOPERATOR�SUM��� �	 CONSTRUCTOR�SUM��id

which states that quanti�er SUM is the well�known summation quanti�er	 Often
 properties of operators
are given in such a PROPERTY statement	 One might
 for example
 wonder why

PROPERTY DUAL�
��


was not included in the module	 �It was not needed	� The editor uses the information revealed by
declarations and properties when parsing expressions
 and when checking the applicability conditions of
certain reductions and transformation rules	

The RULE construct is the one to introduce rules	 We have seen that rules are crucial in the operation
of the editor
 and the example shows how they are introduced	 The keyword RULE is followed by the
name of the rule
 a colon
 and the rule itself	 A rule is
 in general
 a function whose body is an equation	
Here is an example	 Horner
s rule is

�� � � � � � tails

�

��UNIT��� � �� �� UNIT���

for associative operators � and � provided

��x � y � z �� �x � y�� z � �x � z �� �y � z ��

holds	 �The interpretation is not �known� to the editor
 so it is not relevant to us here	� The applicability
condition is similar in spirit to the condition on the range of a function
 and that is why it is represented
in the same way	 The range indicates the condition under which the function can be applied to its
parameters	 The parameters are the operators � and � and the function body is



JAN ��� ���

�� � � � � � tails � 	�UNIT	�
 � �
 �� UNIT	�


The body might also be written as a calculation 	of two or more steps
 and then the rule�s body can be
considered to be equal to the reduced version of that calculation 	see section ���
�

The complete rule for Horner�s scheme is shown in the listing of the squiggol module� In the rules
window
 a shorthand version of the rule is printed� It consists of the function body
 preceded by the
rulke name only� If you want to see the full version of the rule that is presently selected 	the one that
is underlined

 press the button on top of the rules window� It pops up a window with the rule in its
complete form�

The main operator of a rule body need not be the equality operator� If a di�erent operator is used

one should be careful in its application� Application of a rule to an expression extends a calculation with
a hint
 an operator
 and a new expression� The operator is copied from the rule body� This may lead to
�surprises� in what are sometimes called �negated� contexts� For example
 rule

RULE twice � 	a j a � � � a � � � a


applied to x in �x produces

�x

� � twice�a�	x
 �

���x

and not

�x


 � twice�a�	x
 �

���x

which would be slighty more correct� The editor attempts to verify that a rule is applied in a monotonic
context
 but these attempts are presently incomplete�

The squiggol module also contains examples of rules that have no parameters and
 therefore
 serve
only as de�nitions�

When a module m is imported in another module n� then the scope of all declarations occurring
in m extends to n� That is why we can use
 for example
 operator �� in module MaximumSegmentSum�
Also
 all properties and rules declared in m extend to n� Declarations
 properties
 and rules that were
imported into m via an import clause in m itself are not extended to n� When needed
 n should
import those directly�

� The De�nitions menu

The Definitions menu contains two buttons� pushing the Operators button produces a window with
all operators that have been de�ned
 and pushing the Notations button produces a window with all
notations that have been de�ned� Either window is closed by pushing the C button in its left top corner�

The prede�ned operators are



JAN ��� ���

� function application LUNIT�id� LASSOCIATIVE

� function composition UNIT�id� ASSOCIATIVE

� boolean negation

integer negation

� integer multiplication UNIT���ZERO���ASSOCIATIVE�DUAL��

	 integer division RUNIT���LZERO���LASSOCIATIVE

n integer remainder LZERO���LASSOCIATIVE


 integer addition UNIT���ASSOCIATIVE�DUAL�


� integer subtraction LASSOCIATIVE

�n boolean conjunction UNIT�true�ZERO�false�IDEMPOTENT�ASSOCIATIVE�DUAL� �n

n� boolean disjunction UNIT�false�ZERO�true�IDEMPOTENT�ASSOCIATIVE�DUAL� n�

� equality DUAL � ��CONJUNCTIVE�TRANSITIVE

� inequality DUAL � ��CONJUNCTIVE


 less than DUAL � ��CONJUNCTIVE�TRANSITIVE


� at most DUAL � ���CONJUNCTIVE�TRANSITIVE

� greater than DUAL � 
�CONJUNCTIVE�TRANSITIVE

�� at least DUAL � 
��CONJUNCTIVE�TRANSITIVE

��� implication DUAL � 
���CONJUNCTIVE�TRANSITIVE�LUNIT�true


�� explication DUAL � ����CONJUNCTIVE�TRANSITIVE�RUNIT�true

ALL universal quanti�cation INFIXOPERATOR� �n �CONSTRUCTOR�id

There are no prede�ned notations�

�� The Modify EDIT menu

The Modify EDIT menu o�ers nine buttons� This part of the interface is sometimes rather clumsy	 and
will hopefully 
make that de�nitely� be improved� The nine buttons and their functions are�

� add EDIT

adds an EDIT item to the module in the edit window

� delete EDIT

deletes the EDIT item containing the focus from the module

� EDIT to RULE

changes the status of an EDIT item to a RULE� This adds the item to the rule window�



JAN ��� ���

� EDIT to PROPERTY

changes the status of an EDIT item to a PROPERTY

� EDIT to IMPORT

changes the status of an EDIT item to an IMPORT

� EDIT to DECLARE

changes the status of an EDIT item to a DECLARE

� RULE to EDIT

� PROPERTY to EDIT

� DECLARE to EDIT

these three have not yet been implemented

�� Appendix A

This appendix shows the complete text of the maximum�segment�sum example� It is identical to the text

in Figure �	 but the font size is not as minuscule�

MODULE module

IMPORT squiggol

EDIT

max�sum�segs

� � definition �

max�sum������	���tails
��inits

� � definition �

max������	�
�������	���tails
��inits

� � definition �

����	�������	�
�������	���tails
��inits

� � MapPromotion�f
����	� �

����	�������	��������	�
�
���tails
��inits

� � ReducePromotion��
��� �

����	�������	�
��������	�
�
���tails
��inits

� � factor �

����	�������	�������	�
��tails
��inits

� � HornerScheme��
����
��� �

����	������UNIT���������	��UNIT����
��inits

� � Accumulate�f
���UNIT���������e
�UNIT���� �

����	�����UNIT���������		��UNIT����

� � reduce �

����	������������		����



JAN ��� ���

�� Appendix B

This appendix lists two modules �refine and sqrt	 and show how they can be used to derive a program
for computing square roots by binary search
 This example is almost straight from Carroll Morgan�s
book ��

 The example shows both weaknesses and strengths of the current editor� but we refrain from
making comments about it now
 The �rst module introduces the re�nement calculus
 Not all rules and
properties are used in the example
 The main thing that is lacking is a statement of the monotonicity
properties of the statement constructors
 One comment might be in order
 I have written

NOTATION VAR �LIST BEGIN � END

instead of

NOTATION VAR �LIST�v� BEGIN ��v� END

because program variables are not exactly like mathematical variables
 I don�t know how to do this well
�yet	


MODULE refine

NOTATION DO � �� � OD

NOTATION IF � �� � � � �� � FI

NOTATION SPEC �LIST 	 
 � � � �

NOTATION ASSIGN � 	
 �

NOTATION VAR �LIST BEGIN � END

DECLARE INFIX � �

DECLARE skip

PROPERTY UNIT���
skip

PROPERTY ASSOCIATIVE���

RULE Assignment	 �x� E� P� Q � P ��� Q
x	
E� ��

SPEC x	 
P� Q�

�


�ASSIGN x	
E��

RULE Assignment	 �v� x� E� P� Q � P ��� Q
x	
E� ��



JAN ��� ���

SPEC v� x� �P� Q�

��

�ASSIGN x��E		

RULE Block� �v� w� P� Q 
�

�� provided w �which may be a list	 does not occur in v� P or Q �	

SPEC v��P� Q�

�

VAR w BEGIN SPEC v� w��P� Q� END	

RULE StrengthenPost� �v� P� Q� R 
 R 

� Q 
�

SPEC v� �P� Q�

��

SPEC v� �P� R�	

RULE StrengthenPost� �v� P� Q� R 
�

SPEC v� �P� Q�

��

SPEC v� �P� Q �� R�	

RULE Semicolon� �v� P� Q� R 
�

SPEC v� �P� R�

��

�SPEC v� �P� Q�� SPEC v� �Q� R�		

RULE IfStatement� �v� P� Q� b�� b� 
�

SPEC v�� P �� �b� �� b�	� Q�

��

IF b� 
� SPEC v��P �� b�� Q� 
 b� 
� SPEC v��P �� b�� Q� FI	

RULE IfStatement� �v� P� Q� b 
�

SPEC v�� P� Q�

��

IF b 
� SPEC v��P �� b� Q� 
 �b 
� SPEC v��P �� �b� Q� FI	

RULE Loop� �v� b� inv 
�

SPEC v� �inv� inv �� �b�

��

DO b 
� SPEC v� �inv �� b� inv� OD	

RULE TerminatingLoop� �v� b� inv� bf 
 inv �� b 

� bf�� 
�

SPEC v� �inv� inv �� �b�

��

DO b 
� SPEC v� �inv �� b �� �bf�BF	� inv �� �bf�BF	� OD	



JAN ��� ���

RULE ContractFrame� �v� w� P� Q ��

SPEC v� w� �P� Q�

	


SPEC v� �P� Q��

RULE RightDistr� �b�� s�� b
� s
� s ��

�IF b� �� s� � b
 �� s
 FI � s�




IF b� �� s�� s � b
 �� s
� s FI�

RULE Skip� �v� P� Q � P ��� Q ��

SPEC v��P� Q�

	


skip�

The second module de�nes functions Floor and Sqrt� or at least the properties that are relevant here	
For example� the Floor rule states a relation between integer x and real number y	 Those types can
presently not be indicated	 The second rule speci�es what in the fashionable jargon is known as a Galois
connection between Sqrt and squaring	 The two rules called NotPromotion should not really be part of
this module� but they are	 One might argue that they should be properties of the operators	

MODULE sqrt

RULE Floor� �x�y �� �x 
 Floor�y� 
 � x 	
 y 	 x�
��

DECLARE INFIX 
� �

RULE Sqrt� �x�y � x�
� �� y�
� �� �x 	
 Sqrt�y� 
 � x�� 	
 y��

PROPERTY �x�y �� �x��	y��� 
 �x	y��

RULE NotPromotion� �x�y �� �x 	 y� 
 ��y 	
 x��

RULE NotPromotion� �x�y �� �x 
 y� 
 ��x � y��

And here is the module that is produced by importing the two modules above� stating that a program is
required for setting integer r to the value Floor��Sqrt�s� and then applying lots and lots of transfor�
mations	 Below is the output of the editor	 I have omitted the output related to veri�cation conditions	

The editor prints questions when it fails to verify side conditions	� Also� I have added some white space
and split up lines because they became too wide	 Furthermore� I have used asterisks to indicate all the
hints that I had to give as input	 No other inputs were supplied 
other than mouse clicks�	

MODULE module



JAN ��� ���

IMPORT refine

IMPORT sqrt

EDIT

SPEC r��true�r�Floor��Sqrt�s�	

































� � Floor�x��r�y��Sqrt�s	 �

SPEC r��true�r
�Sqrt�s
r��	

� � split conjunction �

SPEC r��true��r
�Sqrt�s����Sqrt�s
r���	

� � NotPromotion�x��Sqrt�s�y��r��	 �

SPEC r��true��r
�Sqrt�s�����r��
�Sqrt�s�	

� � Sqrt�x��r�y��s	 �

SPEC r��true��r��
�s�����r��
�Sqrt�s�	

� � Sqrt�x��r���y��s	 �

SPEC r��true��r��
�s������r�����
�s�	

� � NotPromotion�x��s�y���r�����	 �

SPEC r��true�r��
�s
�r�����	

� � Block�v��r�w��q�P��true�Q��r��
�s
�r�����	 �







VAR q BEGIN SPEC r�q��true�r��
�s
�r�����	 END


� � StrengthenPost�v���r�q��P��true�Q��r��
�s
�r������R��q�r��	 �











VAR q BEGIN SPEC r�q��true��r��
�s
�r���������q�r���	 END

� � q�r�� �

VAR q BEGIN SPEC r�q��true��r��
�s
q������q�r���	 END


� � Semicolon�v���r�q��P��true�Q��r��
�s
q���R���r��
�s
q������q�r���	 �
















VAR q BEGIN SPEC r�q��true�r��
�s
q��	�SPEC r�q��r��
�s
q����r��
�s
q������q�r���	 END


� � Semicolon�v���r�q��P��true�Q��r���R��r��
�s
q��	 �









VAR q

BEGIN SPEC r�q��true�r��	�SPEC r�q��r���r��
�s
q��	�

SPEC r�q��r��
�s
q����r��
�s
q������q�r���	

END


� � Assignment�v��q�x��r�E����P��true�Q��r��	 �





 





VAR q

BEGIN �ASSIGN r�����SPEC r�q��r���r��
�s
q��	�

SPEC r�q��r��
�s
q����r��
�s
q������q�r���	

END


� � Assignment�v��r�x��q�E��s���P��r���Q��r��
�s
q��	 �





 







VAR q

BEGIN �ASSIGN r������ASSIGN q��s����



JAN ��� ���

SPEC r�q��r����s�q���	r����s�q��
��	q�r
�
�

END

� � NotPromotion�x��q�y��r
�� �

VAR q

BEGIN 	ASSIGN r���
�	ASSIGN q��s
�
�

SPEC r�q��r����s�q���	r����s�q��
���	q�r
�
�

END

�� � TerminatingLoop�v��	r�q
�b��q�r
��inv��r����s�q���bf��q�r� �

�������

VAR q

BEGIN 	ASSIGN r���
�	ASSIGN q��s
�
�

DO q�r
���SPEC r�q��	r����s�q��
��	q�r
�
��	q�r�BF
�	r����s�q��
��	q�r�BF
� OD

END

� � Block�v��	r�q
�w��m�P��	r����s�q��
��	q�r
�
��	q�r�BF
�Q��	r����s�q��
��	q�r�BF
� �

����

VAR q

BEGIN 	ASSIGN r���
�	ASSIGN q��s
�
�

DO q�r
���

VAR m

BEGIN SPEC r�q�m��	r����s�q��
��	q�r
�
��	q�r�BF
�	r����s�q��
��	q�r�BF
� END

OD

END

�� � Semicolon�v��	r�q�m
�P��	r����s�q��
��	q�r
�
��	q�r�BF
�

Q��	r����s�q��
��	q�r
�
��	q�r�BF
��	r�m�q
�

�������������������������������������������

R��	r����s�q��
��	q�r�BF
� �

VAR q

BEGIN 	ASSIGN r���
�	ASSIGN q��s
�
�

DO q�r
���

VAR m

BEGIN SPEC r�q�m��	r����s�q��
��	q�r
�
��	q�r�BF
�

	r����s�q��
��	q�r
�
��	q�r�BF
��	r�m�q
��

SPEC r�q�m��	r����s�q��
��	q�r
�
��	q�r�BF
��	r�m�q
�	r����s�q��
��	q�r�BF
�

END

OD

END

�� � Assignment�v��	r�q
�x��m�E��	r
q
���P��	r����s�q��
��	q�r
�
��	q�r�BF
�

���� ����������

Q��	r����s�q��
��	q�r
�
��	q�r�BF
��	r�m�q
� �

VAR q

BEGIN 	ASSIGN r���
�	ASSIGN q��s
�
�

DO q�r
���

VAR m

BEGIN 	ASSIGN m��	r
q
��
�



JAN ��� ���

SPEC r�q�m���r���	s�q��
���q
r��
���q�r	BF
���r�m�q
��r���	s�q��
���q�r�BF
�

END

OD

END

�	 � IfStatement�v�	�r�q�m
�P�	�r���	s�q��
���q
r��
���q�r	BF
���r�m�q
�

Q�	�r���	s�q��
���q�r�BF
�b�	s�m��� �

��������

VAR q

BEGIN �ASSIGN r�	�
��ASSIGN q�	s��
�

DO q
r����

VAR m

BEGIN �ASSIGN m�	�r�q
��
�

IF s�m����SPEC r�q�m���r���	s�q��
���q
r��
���q�r	BF
���r�m�q
���s�m��
�

�r���	s�q��
���q�r�BF
�

���s�m��
��SPEC r�q�m���r���	s�q��
���q
r��
���q�r	BF
���r�m�q
����s�m��
�

�r���	s�q��
���q�r�BF
�

FI

END

OD

END

�	 � Assignment�v�	�r�m
�x�	q�E�	m�P�	�r���	s�q��
���q
r��
���q�r	BF
���r�m�q
���s�m��
�

���� ����

Q�	�r���	s�q��
���q�r�BF
� �

VAR q

BEGIN �ASSIGN r�	�
��ASSIGN q�	s��
�

DO q
r����

VAR m

BEGIN �ASSIGN m�	�r�q
��
�

IF s�m����ASSIGN q�	m

���s�m��
��SPEC r�q�m���r���	s�q��
���q
r��
���q�r	BF
���r�m�q
����s�m��
�

�r���	s�q��
���q�r�BF
�

FI

END

OD

END

�	 � Assignment�v�	�q�m
�x�	r�E�	m�P�	�r���	s�q��
���q
r��
���q�r	BF
���r�m�q
����s�m��
�

���� ����

Q�	�r���	s�q��
���q�r�BF
� �

VAR q

BEGIN �ASSIGN r�	�
��ASSIGN q�	s��
�

DO q
r����

VAR m

BEGIN �ASSIGN m�	�r�q
��
�

IF s�m����ASSIGN q�	m���s�m��
��ASSIGN r�	m FI



JAN ��� ���

END

OD

END

References

��	 R
S
 Bird
 Lectures on constructive functional programming
 In M
 Broy� editor� Constructive Methods

in Computing Science� NATO ASI Series F� pages ���
���
 Springer�Verlag� ����


��	 P
 Chisholm
 Calculation by Computer� System Manual
 Technical report� Eindhoven University of
Technology� ����


��	 C
 Morgan
 Programming from Speci�cations
 Series in Computer Science �C
A
R
 Hoare� ed
�

Prentice�Hall International� ����



