PHYSICAL REVIEW C

VOLUME 46, NUMBER 6

RAPID COMMUNICATIONS

DECEMBER 1992

Effective summation over intermediate states in double-beta decay

J. Engel
Bartol Research Institute, University of Delaware, Newark, Delaware 19716

W. C. Haxton
Institute for Nuclear Theory HN-12 and Department of Physics FM-15, University of Washington, Seattle, Washington 98195

P. Vogel
Physics Department, California Institute of Technology, Pasadena, California 91125
(Received 24 July 1992)

We consider two separate schemes for eliminating the explicit summation over states in the intermedi-
ate nucleus in double-beta decay. The first, known as the operator expansion method, has recently been
applied in several calculations; we show in a variety of simple models that the method fails and isolate its
weaknesses. We then describe an efficient technique for generating Green’s function matrix elements,
based on the Lanczos algorithm, and apply it to a full fp-shell calculation in “®Ca. The method
efficiently generates an exact (to within machine accuracy) result while the operator expansion method is

again inaccurate.

PACS number(s): 23.40.Hc, 21.60.Cs

Several recent papers [1-4] contend that the nuclear
matrix elements governing two-neutrino double-beta de-
cay can be easily and accurately evaluated without expli-
cit consideration of the intermediate nucleus. The claim
rests on a collection of approximations known as the
operator expansion method (OEM). Briefly, the denomi-
nator in the second-order perturbation expression for the
two-neutrino matrix element
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where in our convention 7_ changes a neutron to a pro-
ton, A=1(E;—Ep), and Z is a parameter that must even-
tually be set to unity, is expanded in powers of Z, mani-
pulated by replacing energies with Hamiltonian opera-
tors, and then partially resummed, with intractable terms
discarded. Provided the two-body Hamiltonian can be
written in the form [4]
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the procedure, which amounts to an approximation for
the nuclear Green’s function 1/(E,—H), can be fol-
lowed, yielding the result
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(Here Q, and 1, are projectors onto spin singlet and trip-
let states, and r is shorthand for r;.) Were this result
correct, it would remarkably simplify two-neutrino
double-beta decay calculations; the full nuclear Green’s
function has been replaced by a simple effective two-body
operator. Accepting Eq. (4), however, requires several
leaps of faith. The first is in the belief that the power-
series expansion of the denominator in Eq. (1) can be car-
ried out beyond its radius of convergence. The second is
the assumption that the kinetic-energy operator T can be
ignored in the resulting commutators, despite the usual
argument that nuclei are weakly bound so that
(T)=(V). A third assumption is that only two-body
terms need be retained in the commutators, contradicting
the long-held view that the Green’s function for strongly
interacting systems contains many complex and highly
linked contractions. While the authors argue that their
approximations are reasonable, they neither test them
nor posit any “small parameter” that would justify the
exclusion of the omitted terms.

Properties of matrix elements calculated in the OEM
immediately cast doubt on one or all of the assumptions
involved. First of all, as is apparent from Eq. (4), a zero-
range O-force causes the matrix element to vanish, in
clear contradiction to the results of other studies [5,6].
Equally puzzling is the lack of any significant dependence
on the parameter g,,, which multiplies the particle-
particle force, when the method is used in conjunction
with QRPA [3]. Reference [3] argues that the widely
noted dependence is artificial, caused by QRPA-induced
errors in the intermediate-nucleus states that the OEM
avoids. Yet studies have shown that even the “closure”
matrix elements (in which the intermediate-state sum is
removed) are sensitive to g,,, and a model calculation in
the f shell clearly indicates that the same is true of the
exact shell-model M5t [6], for which no approximations
in the intermediate nucleus are made.
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This report has two purposes. First, to isolate the
weaknesses of the OEM, we apply it to several simple
models that can be solved exactly. The OEM fails these
tests, generating matrix elements that are much too
small. Second, we describe an efficient method for exact-
ly evaluating the desired Green’s function, and compare
it to the OEM in an application to the decay of **Ca in a
full fp shell-model space. Our method, based on a Lanc-
zos algorithm for inverting linear operators, removes the
need for Green’s function approximations, particularly if
they are as unreliable as those in the OEM.

We begin with a toy system in which two neutrons,
bound in a charge-independent harmonic oscillator well,
decay to two protons. Since there are only two particles
in the model, we will be testing the omission of the kinet-
ic energy in the OEM, independent of any additional
errors caused by the neglect of higher-order
(“multiparticle-scattering”) terms in the OEM commuta-
tors. We assume that the oscillator #iw is large enough
compared to the residual interaction that the particles re-
side exclusively in the Os orbital. The ground states in
the initial and final nuclei are therefore both given by the
product of two s-wave spatial wave functions and a sing-
let in spin space. The intermediate nucleus contains two
states, a singlet and triplet, the splitting of which is deter-
mined by the residual two-body interaction, which we
take to be a square well of radius a with independent
strengths V,, and ¥V, in the singlet and triplet channels.
To simplify matters even further, we neglect the
Coulomb energy, so that A—0; i.e., the initial and final
ground states become degenerate (to prevent the inter-
mediate ground state from lying lower we may choose ¥V,
to be more attractive than V; this of course is not the
case in the real world). Double-beta decay proceeds only
through the spin-triplet (isosinglet) state, and the com-
plete matrix element can be easily calculated. The in-
teraction may then be rewritten in the form Eq. (2) and
the OEM matrix element just as easily evaluated. The re-
sult is

g
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and b is the oscillator parameter. We show the function
F?%in Fig. 1. At small ranges a the ratio goes to zero like
(a/b)% at very long ranges it approaches but never
exceeds 1. These results are not mysterious. The OEM
neglects derivatives of the potential, which arise in (re-
peated) commutators of the kinetic and potential energy
operators. For a force with essentially no r dependence,
the resulting error is small. For a short-range force, how-
ever, with a steep drop, the error is apparently very large;
indeed, we have already remarked that a d force yields no
double-beta decay at all in the OEM. References [2-4]
argue that the effects of the kinetic-energy operator
should be small; these arguments, however, concern ki-
netic energies of the nuclear states rather than the com-
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FIG. 1. The ratio F? of the OEM to exact two-neutrino ma-
trix element for two nucleons in the Os, ,, shell. The interaction
is a square well of range a.

mutators with the potential that appear in the OEM ex-
pansion, and are not convincing.

We now turn our attention to a somewhat more realis-
tic model, the decay of “®Ca in the approximation that
only the f,, orbital is active. In Ref. [2], the two-
neutrino matrix element is calculated in the OEM with
wave functions from Ref. [7] and compared to the results
of closure calculations with energy denominators taken
from Ref. [8]. One problem with this approach is that
the interaction used in J;; is not consistent with the f;
two-body matrix elements that generate the wave func-
tions. But consistency aside, working in closure with an
estimated energy denominator is unnecessary because the
full M5t in the f;,, model space can be easily calculated.
The transition proceeds through a single excited 17 state
in *8Sc, and so the closure approximation is exact, provid-
ed the energy denominator is taken from the energy of
this excited state [9]. The wave functions of Ref. [7] yield
a Mgt of 0.034, while the OEM method (with a Paris-
potential-based force in Ji;;) gives 0.019. The compar-
ison is complicated by the inconsistency between force
and wave function, but once again, the OEM method un-
derestimates M, in part, at least, because it neglects ki-
netic energy.

A consistent calculation in the f,,, model space is easy
to carry out. We begin by using an r-independent
(schematic) force to eliminate possible errors in the OEM
caused by neglect of the kinetic energy; our intention
here is to test the truncation of the series expansion at the
two-body level. In this limit, the OEM matrix element is
simply proportional to the closure matrix element, where
the constant of proportionality is the inverse of some
“effective” energy denominator. (The same is true of the
exact solution, as we have already noted.) To avoid issues
associated with the Coulomb force, which is not con-
sistently treated in the OEM, we take ground state ener-
gies directly from our calculation, without adjusting to
obtain experimental Q values. We fit the four parameters
in the most general r-independent force, Eq. (2), to the
eight two-body matrix elements of Ref. [9] (the quality of
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the fit, unfortunately, is not particularly good). With the
prescription just described, the shell-model energy
denominator is 4.04 MeV, while the OEM gives an
effective denominator of 13.07 MeV. In this example, at
least, the neglect of “multiparticle scattering” therefore
has the same effect as ignoring the kinetic energy: it
reduces M st from its true value. This conclusion is not
changed substantially when we allow intermediate states
with particles in the f5,, level, which can in principle be
excited by our simple r-independent Green’s function.

We may also use the f,,, model to test the accuracy of
the OEM for more realistic finite range forces, where all
the approximations come into play. To this end, we cal-
culate the exact and OEM Mgt for a series of general
Yukawa forces with different ranges. For each range, we
fit the strengths of the four Yukawas in Eq. (2), again so
as to best reproduce the two-body interaction matrix ele-
ments of Ref. [9]. We treat Coulomb effects in the usual
way, by taking A and the ground-state energy of the in-
termediate nucleus *3Sc from experiment. Figure 2 shows
the exact and OEM results. The exact Mgy varies even
though at each point we have reproduced the same eight
interaction matrix elements as well as possible. The
reason is that the result of Ref. [7], which is best approxi-
mated by the Yukawa force with range 0.4 fm, is small
because of a close cancellation between components in
the final wave function with neutron angular momenta 0
and 2; a small change in the wave function can weaken
the cancellation significantly. In any event, the impor-
tant feature of Fig. 2 is that the OEM approximation is
always smaller than the true Mg, and behaves more or
less randomly as the range is changed, even crossing zero
for a range of about 2 fm.

We conclude our discussion of the f;,, model by fixing
the range of the force (somewhat arbitrarily) at 0.55 fm
and multiplying the strength of the potential in the
J=1,T=0 channel by a factor g,,. This procedure
mimics very closely the variation [6] of the particle-
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FIG. 2. The exact and OEM two-neutrino matrix elements
for the decay “*Ca— **Ti in the f5,, shell for Yukawa forces of
varying range. The triangles are the exact result and the
squares the OEM approximation.
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particle strength that is typically carried out in QRPA
studies. Figure 3 shows the exact and OEM results for
8y, between —2 and 2. The exact matrix element
changes significantly over this interval (though more
slowly than in the QRPA calculations, at least partly be-
cause of the small model space we use here), while the
OEM results are nearly constant. This “stability,” touted
in a recent application of the OEM in conjunction with
the QRPA [3], is not real, and the claim that the steep
variation of QRPA matrix elements with g,, has some-
thing to do with the way intermediate states are handled
is clearly wrong. Taken together, the arguments present-
ed here so far make it difficult to trust the OEM in any
context.

The uncontrolled approximations in the OEM are in
fact unnecessary; there exists a well-tested, exact, and
efficient algorithm for evaluating the fully interacting nu-
clear Green’s function appearing in double-beta decay.
The technique is based on a general method of inverting
linear operators discussed, for instance, by Haydock [10].
The specific method we employ starts from the tridiago-
nal Lanczos matrix and has been tested extensively by
one of us in calculations of nuclear anapole moments,
electric dipole moments, etc. [11]. (Similar techniques
were used for the double-beta decay of *®Ca in Refs.
[12,13]. Reference [14] contains additional information
on Lanczos-generated strength functions.) The method is
iterative and the convergence is so rapid that the comput-
er time required to evaluate the Green’s function is a
small percentage of that needed for calculating the initial
and final ground-state nuclear wave functions (which it-
self, unfortunately, is still too long to make complete
shell-model calculations in heavy nuclei feasible). We
will illustrate the procedure in an unrestricted fp-shell
calculation of the transition **Ca—**Ti, using both a
modified Kuo interaction and a Serber-Yukawa force.
Although interactions that better reproduce fp-shell ob-
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FIG. 3. The exact and OEM two-neutrino matrix elements
for the decay “*Ca— **Ti in the f,,, shell with a Yukawa force
of fixed range with varying g,, (defined in the text). The trian-
gles are the exact result and the squares the OEM approxima-
tion.
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servables are available [12,15], these choices allow in-
teresting comparisons to be made. The modified Kuo in-
teraction is the same one that was used in the closure cal-
culations of Ref. [8]; the Serber-Yukawa force contains
only central terms, allowing us to compare exact results
to those of the OEM. These complete Ofiw calculations
have the virtue of preserving exactly the Gamow-Teller
sum rules governing the single-beta strength.

Consider a Hamiltonian H, defined over a finite Hilbert
space of dimension N, and a starting normalized vector
|v, ) in that space. We begin to construct a basis for
representing H by

Hlv)=a,lv,)+Blv,) , )

where |v,) is a normalized vector representing that part
of H|v, ) orthogonal to |v, ). Proceeding, we have

Hlv,)=Blv,) +a,lv,) +B,lvs)
Hlvy)=B,lvy) +aslvy) +Bslvy ) (8)

and so on. The term B3,|v, ) must appear in the first line
above because H is Hermitian. Furthermore, |v,) does
not appear in the second line above because everything
that connects to H|v, ) other than |v, ) is defined as |v, ).
Similarly, H|v,) will contain nothing proportional to
[v,) or |v,). Thus H is cast in the tridiagonal form

a, B 0 O
B a, B, O

0 ﬁz aj B3 . 9)
0 0 B3 ay

If this procedure were continued for N steps, the full H
would then be in tridiagonal form. The power of the al-
gorithm, however, derives from the information in the
Lanczos matrix when the procedure is truncated after n
iterations, n << N. If {1{15’,, i=1,...,N} are the exact

eigenfunctions of H, then

Cor[HHo) — 3 [0 [ )PEF= S FE)E} . (10)

i=1 i=1

The distribution { f(E;), i =1,...,N} can be thought of
as a set of N weights f(E;) and measures E; (the eigen-
values) fully characterizing the distribution of |v; ) in en-
ergy, i.e., the f’s determine a complete set of moments.
The truncated Lanczos matrix, when diagonalized, pro-
vides the information needed to construct a distribution
{g(E;), i=1,...,n} which has the same 2n —1 lowest
moments in E as the exact distribution { f (E;)}. In other
words, the Lanczos algorithm at each iteration provides a
solution to the classical moments problem [16]. As
Whitehead has emphasized [16,17], the speed and numer-
ical stability of this algorithm is a very special property
of the Lanczos method, and leads to surprisingly efficient
procedures for evaluating response functions.
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FIG. 4. The distribution of B~ strength in **Sc from “®Ca re-
sulting from the modified Kuo-Brown force.

If we choose

A4 _
|v1>:0GTi07)E2‘/302(])T*(1)|0;> 5 (11)

i=1

where, in this application, [0; ) is the *3Ca shell-model
ground state, we can use the Lanczos algorithm to deter-
mine, iteratively, the resulting Gamow-Teller distribution
in ¥Sc. The results for our more realistic interaction are
given in Fig. 4, and the analogous results for
V30,(j)T,(j) acting on the **Ti ground state are present-
ed in Fig. 5. The latter strength function differs some-
what from those of recent calculations [12,15], because of
the more accurately determined forces used there.

The action of the full Green’s function on a vector can
also be represented as an expansion involving the Lanc-
zos vectors |v; ) and the entries in the tridiagonal matrix.
This can be accomplished by rewriting Eq. (7) in terms of
the operator 1/(E,—H), rather than H, or by using
Haydock’s [10] recursion relations for the Lanczos repre-
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FIG. 5. The distribution of 87 strength in **Sc from “*Ti re-
sulting from the modified Kuo-Brown force.
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sentation of H. One finds

1

T g 1) =81(Eo)lv ) +gy(Eollogd + -, (12)
0

where the |v;) are the Lanczos vectors and the g;(E)
continued fractions formed from the entries in the tridi-
agonal Lanczos matrix. For example,

1

g (Eq)= (13)

B}

EO—al— BZ
2

Ey—a,— B
3

Ey—a3—~—

As iterations proceed, the coefficients g;(E) are updated,
and additional Lanczos vectors |v; ) contribute to the ex-
pansion. In practice, the convergence is very rapid. In
our double-beta decay applications, machine accuracy
was achieved in 12 iterations. For comparison, the Lanc-
zos diagonalizations we performed to determine the *“*Ti
and “®Ca ground states required ~ 100 iterations.

We can write the two-neutrino matrix element Eq. (1)
in the form

1
‘/ . .
> 302(1)7'_(1)E0_H

X 3 V3a,(j)r_(j)

0,*> (14)

with E, given by E;—A. Thus we choose |v; ) as in Eq.
(11) and evaluate Eq. (12) iteratively, in effect completing
the sum over a complete set of fp-shell 17 states in *3Sc.
The result for the 2v matrix element with the more realis-
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tic Kuo-Brown force is Mgr=—0.0539/MeV, corre-
sponding to a half-life of 1.18 X 10%° years. (Perhaps this
number and those of Refs. [12,15] are sufficiently close to
the experimental lower bound to inspire renewed effort to
observe “Ca double-beta decay.) The matrix element ob-
tained from the simple Serber-Yukawa force is
M;r=0.0428 /MeV. The OEM, applied to the same
force, yields —0.0115/MeV, a factor of more than three
smaller than the correct result and with the wrong sign.
Once again, here in a “realistic’” model space, the OEM
fails badly.

In conclusion, we have shown in a series of calculations
ranging from the simplest schematic models to a com-
plete fp-shell diagonalization that the OEM is systemati-
cally unable to reproduce exact results. The failure is in-
herent in the uncontrolled approximations that lead to
Egs. (3) and (4). In all of the tests, including the most so-
phisticated, the OEM result is significantly smaller in
magnitude than the correct matrix element, and often has
the wrong sign. We have also pointed out the existence
of an elegant and efficient algorithm that generates
Green’s functions to arbitrary accuracy. The technique
would seem to obviate the need for any work to improve
approximate methods like the OEM. Instead, effort
might be more profitably applied, in conjunction with the
Green’s function method outlined here, to improving the
interactions and model spaces used to generate ground
state wave functions in the parent and daughter nuclei.
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