A Message-Driven Programming System for
Fine-Grain Multicomputers !

Daniel Maskit
Scalable Concurrent Programming Laboratory
California Institute of Technology
Pasadena, California

In Partial Fulfillment of the Requirements
for the Degree of
Master of Science

February 1, 1994

!The research described in this report is sponsored primarily by the Advanced Research
Projects Agency, ARPA Order number 8176, and monitored by the Office of Navel Research un-
der contract number N00014-91-J-1986. The author is partially supported by an NSF Graduate
Research Fellowship.

Acknowledgments

This work owes a great debt to other members of the research groups at both the
California Institute of Technology and the Massachusetts Institute of Technology. First
among these is my thesis advisor, Steve Taylor, who has always had encouraging words
and guidance when I needed them most. In addition, Yair Zadik and Chris Ziomkowski
implemented the linker, loader, archiver, and floating-point support. Dong Lin collab-
orated on the initial version of the compiler. Andy Fyfe provided invaluable assistance
with the C libraries and floating-point routines. Andrew Chang, Mike Noakes, and other
members of the Concurrent VLSI Architecture project at MIT have provided constant
assistance with low-level software and hardware.

Contents

1 Introduction
2 Related Research

3 System Design

3.1 Programming Model oo
3.2 Abstract View of the J-Machine00,
3.3 The Programming System o
3.3.1 Example Low-Level Program
4 Implementation Details
4.1 Compiler o
4.1.1 Code Generation
4.2 System Tools
4.2.1 Layers and Interfaces
4.3 The Microkernel
4.4 Remote Function Invocations 0 oL
4.5 Process Suspension Lo
4.6 Code Distribution
5 Evaluation
5.1 Performance Results o
5.1.1 One-Way Producer-Consumer Evaluation
5.1.2 Two-Way Producer-Consumer Evaluation

10
11
12

13
13
13
17
18
19
20
21
22

i

5.2 Application Exampleo 0L

6 Experience with the Message-Driven C System

6.1 Remote Function Invocation
6.2 Compiler Problems,
6.3 Code Generation
6.3.1 Floating Point
6.4 High-Level Language Design
6.4.1 Example High Level Program

7 Future Directions

7.1 Code Partitioning

7.2 Communication-Based Compiler Optimizations

8 Conclusion

CONTENTS

Chapter 1

Introduction

Recently, two radical new architectural experiments have been conducted at Caltech and
MIT. At Caltech, the Mosaic architecture, developed by the Submicron Systems Archi-
tecture Project, is designed expressly to support efficient fine-grain process execution [24].
The J-machine is a similar design, developed at MIT by the Concurrent VLSI Architecture
Project, that supports fine-grain processes but also provides on-chip associative memory,
and hardware support for process synchronization [10].

One of the contributions of these fine-grained architectures is that they have changed
the basic set of assumptions for parallel computation. Traditional parallel machines have
supported local computation at a significantly lower cost than communication. The result
of this has been languages and programs that emphasize executing large pieces of code with
minimal communication. Previous reactive programming systems [4, 7, 24| hide latency
by overlapping computation and communication, but strive to minimize communication.
Hardware platforms such as the J-Machine allow the programming system to do far more
communication than earlier machines such as the Intel Touchstone Delta. On the J-
Machine the latency of fetching data from local memory is comparable to sending that
same piece of data to another computer within the machine for processing. This change
in the equation of parallel execution presents new challenges to the compiler writer.

The most obvious new challenge posed by fine-grained machines is that of developing
programming systems that efficiently use the specialized hardware of the machine for
performing communication and synchronization, without complicating the programmer’s
task of specifying concurrency.

This thesis describes an experimental message-driven programming system and its
implementation on a 512-computer J-machine [10]. This machine is an architectural ex-
periment which focuses on the evaluation of hardware mechanisms, such as the integration
of messages and processes, to support concurrent programming. The machine combines
a unique collection of architectural features that include fine-grain processes, on-chip as-
sociative memory, and hardware support for process synchronization. The programming
system utilizes these mechanisms via a simple message-driven process model that blurs
the distinction between processes and messages: messages correspond to processes that

2 CHAPTER 1. INTRODUCTION

are executed elsewhere in the network. This model allows code and data to be distributed
across the computers in the machine, and is supported at every stage of the program de-
velopment cycle. Although the concepts are language independent, the prototype system
is based on GNU-C.

The programming system carries the experience gained from previous experiments [12,
26, 14] into a C-based system, while exploiting the special features available in the un-
derlying architecture. The basic programming model for the system is:

A computation is a collection of concurrent processes that may execute in any
order or in parallel. Processes communicate and synchronize using shared vari-
ables. Mapping is achieved using annotations, for example foo(...)@n which
specifies that process foo(..) is executed at computer n. Processes allocate
and deallocate memory piecemeal when necessary and do not employ a stack;
they may share global variables. A process may suspend at any time during
its execution for the purpose of covering latency while relocating code or data.

The primary goals for the implementation were to support message sending and re-
ceiving, as well as process suspension and resumption, without having to perform copying.
Since the limited amount of memory available at each computer (1/4 megaword) is less
than that required for the code of some of the applications under development in the
research group, a code distribution scheme was necessary from the outset. The resulting
programming system employs a novel implementation strategy for fine-grain programs
that has the following characteristics:

e New architectural features are directly accessed through native code compilation.

e Hardware performance is delivered directly to applications by removing software
overheads associated with message-passing.

e Code and data distribution are provided by a simple run-time microkernel.
e Communication latency is hidden by a process suspension mechanism.

e Processes utilize a heap-based allocation scheme rather than a stack and may thus
suspend without copying overheads.

This thesis describes the programming system and experiences with its development and
use. The prototype system includes a compiler, linker, archiver, loader and microker-
nel. It is currently being used for a variety of large-scale applications experiments in
computational fluid dynamics, circuit simulation, and molecular modeling. Although the
examples presented in this work are of small programs, they represent all of the issues for
concurrency that exist in the larger applications being developed by the group.

Chapter 2

Related Research

The basic concept of message-driven process execution was integrated in Chuck Seitz’s
hardware design philosophy for multicomputer architectures, and incorporated in a vari-
ety of reactive programming systems [4, 24, 25]. This concept has been a recurrent theme
in both hardware and software designs from the Submicron Systems Architecture Project
over the years. It has been incorporated directly into most commercial multicomputer
programming systems. In common with Cantor and Actor [1] programs, this work uti-
lizes message-driven concurrent processes that do not employ a stack. However, unlike
these systems, Message-Driven C processes typically communicate and synchronize via
a simple shared variable concept, suspend to cover latency, and may share global state
for efficiency. It is important to recognize that although global variables are supported,
the intent is to capitalize on their efficiency when used in a good software engineering
style for building abstract data types [11]. Their use for global sharing between program
components in a completely unstructured manner such as that found in most FORTRAN
programs is discouraged. An example of an MDC program that computes n! can be
found in Figure 2.1. Note the use of the mapping anotation @ to specity the location for
execution of each recursive call.

Recently, a new generation of fine-grain systems have appeared. The MADRE [5]
system developed for the Mosaic Architecture [24] distributes the microkernel across mul-
tiple computers, and hides the details of process to processor mapping from the user. The
major emphasis of MADRE is to provide a system that handles resource allocation, and is
capable of using resources across the entire machine if a particular computer exhausts its
local resources. In contrast, the philosophy of the work presented in this thesis is that the
programmer is best able to make decisions about process mapping, and, furthermore, that
this decision-making is simple. If a program exhausts local resources, then it is considered
to be a poorly-formed program. It is left to the programmer to restructure the code to
better balance its resource usage.

The language that is supported on the Mosaic for use with the MADRE runtime system
is C+- [23]. This language is a superset of C++, with additions for process creation and
destruction, and communication. The particular emphasis of this work is on supporting

4 CHAPTER 2. RELATED RESEARCH

int factorial(int n)
{int answer;
if(In)
answer = 1;

else {

int i = factorial(n-1)@next;
* 3.

answer = 1)

}

return ANSWET]

1

Figure 2.1: Factorial Program in MDC

the reactive programming model. Figure 2.2 shows an example of a C+- program. Note
the absence of mapping annotations. While the language does allow the programmer to
specify mappings, it’s authors recommend that this process be left to the runtime system.

processdef factorial
{ public:
atomic int compute(int n) {
if(In)
return 1;
else { factorial f1;
return (n * fl.compute(n-1));
1

}
1

Figure 2.2: Factorial Program in C+-

A Concurrent Smalltalk (CST) [16] system has also been developed for programming
the J-machine. CST requires a larger and more complex microkernel to handle a broad
range of language concepts that applications within the Scalable Concurrent Programming
Laboratory do not require. Figure 2.3 shows an example of a CST program. Note that
CST provides a mapping annotation very similar to that used by MDC. The Message-
Driven C system is currently the only programming system that has been developed
for the J-machine that is broadly considered a useful platform for large-scale scientific

applications.

(Defmethod factorial Integer ():Integer
(if (= self 0)
1
(* self (factorial @(next) (- self 1)))

Figure 2.3: Factorial Program in CST

The Scalable Concurrent Programming group has been involved for several years in
developing portable, high-performance programming systems that execute efficiently on
scalable multicomputers [24]. The high-level programming systems that have been devel-
oped within this group [12, 26, 14], all share the same fine-grain process model present
in this work. An example program written in one of these languages, PCN, can be found
in Figure 2.4. The mapping annotations used by PCN and MDC are identical. Unfortu-
nately, scalable multicomputer architectures have traditionally supported only Unix-style,
coarse-grain, stack-based processes. Thus previous implementations have been forced to
utilize an emulation technique to provide efficient systems [13, 26]. The J-machine sup-
ports fine-grain processes and also provides on-chip associative memory, and hardware
support for process synchronization [10]. The programming system described here pro-
vides a low-level platform that supports both irregular applications and development of
high-level systems on fine-grain multicomputers.

factorial(y, result)
{ 7 y==0— result =1,

y > 0 — {|| result = y*rl, factorial(y-1, rl)@next}
1

Figure 2.4: Factorial Program in PCN

The idea of using a heap-based implementation of a stack-oriented language was earlier
reported for Pascal by Marlin [18]. This work focused primarily on the Pascal-specific
issues of the implementation. In Message-Driven C, heap-based frames are used to support
light-weight processes. Although Marlin’s work was discussed as a predecessor to a system
that supports multi-threaded execution via coroutines, this work shows that a variety of

6 CHAPTER 2. RELATED RESEARCH

means for expressing concurrency can be obtained through trivial extensions to the heap-
based system.

There have been a number of alternative approaches to the issues presented here.
Arvind and Nikhil at MIT have argued that problems with supporting parallelism on a
sequential architecture machine relate to intolerance to the high memory latency required
for concurrent programs and the lack of acceptably fast synchronization mechanisms [3].
These ideas led to the development of the Tagged-Token Dataflow architecture, a ma-
chine that uses additional bits on each data word for synchronization, and is designed
to provide optimal support for dataflow programs. Arvind and Nikhil argued that while
one could run a parallel version of a sequential language on this machine, this compli-
cates compilation significantly, and will not give acceptable runtime performance. Given
the appropriate hardware support, it is clear that efficient parallel implementations of
sequential languages can be constructed. In addition, in earlier publications from the
Scalable Concurrent Programming Laboratory [14], the feasibility of layering concurrency
abstractions on top of a system that provides only the basic support described in this
thesis has been demonstrated. This can be achieved through the use of source-to-source
transformations.

Schauser, Culler and von Eicken have developed the idea of compiler decomposition of
a program into threads, some of which can be statically scheduled [22]. The motivation
for this work is the beliet that high-speed context switching in hardware is hard. The
philosophy of this work is that it is best to leave control of program decomposition to the
user, or to tools specific to a class of applications. The hardware process support offered
by the J-Machine provides acceptable context-switching performance.

Although there have been a variety of systems that have implemented concurrent
versions of the C language, such as [6, 15], the previous systems that have involved
multicomputer implementations have focused on developing a system that relies on UNIX-
style support for system services. The emphasis of this work is on utilizing specialized
multicomputer hardware mechanisms to support process creation, communication and
suspension, thereby minimizing the amount of time that is spent running system code.
In addition, the programming system described here is usable for large-scale applications,
rather than simply providing a minimal system to demonstrate the validity of the ideas.

Gul Agha, in recent work at the University of Illinois at Urbana-Champaign has been
working on expanding the Actor model to better reflect the realities of concurrent pro-
gramming. In [2] he discusses the use of Actors within an object-oriented programming
framework. The rationale behind this type of framework is the need to provide the pro-
grammer with support for abstraction. In particular, the concern of managing concurrency
without unduly restricting the expressiveness of the source language is addressed. The
work also addresses the difficulties of adequately and efficiently supporting concurrency
using an Object-Oriented paradigm. One of the major areas of concern explored is the
problem with locality of objects, and how poor placement or construction of objects can
have an adverse effect on efficiency of the system. One of the approaches to solving this
problem is the use of program transformations to increase locality. An example of an
Actors program, reproduced from [1], can be found in Figure 2.5. As Actors is intended

to provide an abstraction of concurrency which emphasizes processes without reference
to processors, it is not necessary to provide annotations for mapping.

def exp Rec-Factorial()[n]
become Rec-Factorial()
itn=0
then reply [1]
else reply [n * (call self[n-1])]
fi
end def

Figure 2.5: Factorial Program in Actors

Andrew Chien, in similar work also done at the University of Illinois at Urbana-
Champaign explores the use of Concurrent Aggregates to provide an object-oriented ap-
proach to implementing a concurrent version of Actors [8]. The difference between this
work and Agha’s work is that Chien is experimenting with a new variation on Actors
which he calls aggregates. An aggregate is a collection of Actors in which each of the Ac-
tors can concurrently receive messages. This structure allows a relaxation on the ordering
of message reception present within the Actor paradigm. This is useful as it provides
the ability to support the core ideas of the Actors paradigm within the inherently non-
deterministic framework of a message-passing multicomputer, without incurring overhead
costs to handle messages in an order dictated by the software abstraction.

Both projects working with Actors are complementary to the work described in this
thesis. One of the goals of the message-driven C system is to support concurrency without
needlessly complicating the source language. Greater support for abstraction, as well
as the use of transformations to improve communication performance, are both topics
considered as future work.

Chien is also involved in exploring optimization techniques for concurrent object-
oriented programs executing on multicomputers constructed with stock processors, such
as the CM5 [27]. This work [9] describes the design of the Concert system. The key idea
in this system is the performance of optimizations at all points in the program compilation
and execution cycle. Early optimization is performed using source-to-source transforma-
tions in the front-end of the compiler. When there is not enough information to statically
determine the most efficient form of a program, multiple copies are produced, and the
runtime system selects between the different versions, attempting to select the lowest-
cost variation for each invocation. Inasmuch as this system is targeted at commodity
processors, and relies on a substantial runtime system, it is philosophically quite different
from message-driven C. However, the work in static optimization is closely related to Gul
Agha’s work, and is similarly relevant to future research directions.

CHAPTER 2. RELATED RESEARCH

Chapter 3

System Design

This chapter describes the design of the programming system. The design is motivated
first by describing the programming model in use, then by providing an abstract view of
the hardware as seen by the programming system. The remainder of the chapter explains
how the programming system bridges the gap between these two abstractions, concluding
with an example program which illustrates this bridging.

3.1 Programming Model

Recall that the computational model involves a collection of concurrent processes that
may execute at any computer. A process is a sequential locus of control defined using the
C language. To support this model, a hardware abstraction of a fully connected set of
computers numbered from 0 to n—1 is provided. A simple communication library is used
to provide process mapping; it consists of just three functions:

computers(). Returns the number of computers in
the allocated machine.

computer(). Returns the identifier of the cur-
rent computer, an integer in the range 0 to
computers() — 1.

x = f(l,p)@n. Spawns the function named f as a
concurrent process on computer n with two arguments
and returns value z. p is a pointer to program data
and [is the corresponding data length.

10 CHAPTER 3. SYSTEM DESIGN

3.2 Abstract View of the J-Machine

This section provides an abstract description of the J-Machine hardware. The machine
provides three distinct hardware mechanisms to support concurrent programming: mes-
sage queueing and dispatch; a hardware associative cache; and support for synchroniza-
tion. Figure 3.1 provides an abstract view of the hardware that highlights these features.

MESSAGE DRIVEN PROCESSOR

Register File Current
A3 _ Message
I } Code
JPE CPU
7 - Arguments
1P o
CACHE \ Message |
Key |value Queue I roo essag
Codd [| = T T [M ©
\ | Interface
L - -
ON CHIP MEMORY A
[
OFF CHIP MEMORY Incoming
TAG DATA M ©

Figure 3.1: An Abstract View of the J-Machine

A message corresponds to a process in transit. Each message carries the address of
the code to execute and the process arguments. Upon arrival, each message is appended
to a hardware message queue that contains all active processes. A process is executed by
removing it from the message queue, placing its code address into the instruction pointer,
and placing a pointer to its arguments in machine register A3. This message dispatch is
fully implemented in hardware. The process then begins execution with its arguments
residing in the original message, accessed via register A3.

The machine provides an associative memory that allows a full 36-bit association
between a key and its value. This memory can be manipulated via simple enter, translate,
and probe operations. The enter operation adds an entry to the table at some index. The
translate operation reads the data associated with an index. Finally, the probe operation
inspects the table to determine if a location is in use. These functions allow the associative
memory to be used as a hash table.

A final feature that is useful is a 4-bit tag field associated with every memory word.
This can be used to provide a simple process synchronization mechanism. The tag may

3.3. THE PROGRAMMING SYSTEM 11

be preset to an undefined state. If a memory word is accessed while its tag is set to
undefined, for example during an arithmetic operation, an exception is generated and a
fault handler executed.

3.3 The Programming System

A process is defined by sequential C code, however remote processes can communicate and
synchronize using shared variables, which are implemented using hardware tags. Mapping
is achieved using annotations, for example foo(...)@n which specifies that process foo(..)
is executed at computer n. This results in the sending of a message to computer n,
requesting that it locate and execute function foo using the arguments present in the
message. Processes allocate and deallocate memory piecemeal when necessary and do not
employ a stack; they may share global variables. A process may suspend at any time
during its execution for the purpose of covering latency while relocating code or data.

bar(..)@m, m!=n

Message —% Sequential Process == ﬂ ——————— =
/\ 3 J/ Invoke afunction
| :

I

[

I i \ '
| T g
! [

: 3 Functions |
['
| |

foo(...)@n

Invoke afunction !

on another computer.

on local computer. :

Computer N

Figure 3.2: Single Computer Operation

Figure 3.2 outlines the use of the communication library functions for constructing low-
level programs. Remote functions execute as independent concurrent processes and may
invoke other functions at the current computer during their execution. They may also
cause new processes to be created at any computer in the machine using the spawn no-
tation @n. Attempting to access any part of return value z prior to its being available
will cause the calling process to suspend. If function fis a void function there is no
synchronization involved: the calling function proceeds immediately without waiting for
termination of the remote function. Notice that the mechanism for remote process invo-
cation follows the process model provided by the hardware. This allows the hardware to
be directly used by the implementation.

12 CHAPTER 3. SYSTEM DESIGN

3.3.1 Example Low-Level Program

Figure 3.3 shows a simple example of the use of the low-level programming system. The
program begins execution at the keyword main on computer zero. It then traverses the
entire machine one computer at a time in numerical order. At each computer the program
prints the computer number multiplied by the number of times that computer has been
visited. Thus on a multicomputer with three processors, the output would be:

012024036048

#define NUM_REPS 4

main()
{ int rep = 0;
Hop(sizeof(rep), &rep); /* Local call */

1

void Hop(int size, int* rep)
{ int next = (computer()+1) % computers(); /* Where next */

if(computer() ==0) (*rep)++;

if(*xrep <= NUM_REPS) { /* Not done ? */
printf(“%d 7 ,computer()*(*rep)); /* Print computer number */
Hop(sizeof(int),rep) @next; /* Hop on */

1
1

Figure 3.3: Example Low-Level Program

Chapter 4

Implementation Details

This chapter describes the implementation of the programming system. In outline, the
programming model involves a collection of concurrent processes that may be transported
between processors and may suspend while waiting for code or data. These processes are
implemented as J-Machine messages that are scheduled directly by the hardware. From
the programmer’s perspective, this model is supported by the simple communication
library discussed in Section 3.1. The code for the processes may be distributed across the
entire machine. In addition to retargetting the GNU C compiler to support this scheme,
new linker, loader and archiver tools were developed. These tools operate in conjunction
with a small run-time microkernel. The microkernel, which is approximately 200 words
in length, uses the hardware associative cache to keep track of what code is present at a
single computer. Process synchronization is achieved by manipulating tag bits associated
with data in transit. Thus all of the main hardware mechanisms are utilized by the
system.

4.1 Compiler

To support the basic programming model the GCC compiler was retargetted to generate
sequential C code for the J-Machine. The primary motivations for choosing GCC were
the desire to take advantage of the significant amount of optimization that is performed
by the GNU system, the desire to provide a complete and integrated collection of system
libraries, and the proven track record of GCC for being ported to diverse platforms.

4.1.1 Code Generation

Figure 4.1 shows a sample piece of C code that implements a typical producer process. As
stated, this routine will send 100,000 messages to computer 8 from wherever it is running.
Each of these messages will result in the creation of a process that will run the function
consumer with access to a copy of the array a. The compiler output for the example

13

14 CHAPTER 4. IMPLEMENTATION DETAILS

code is shown in Figure 4.2 and Figure 4.3. All of the instructions which are required
have comments next to them describing their purpose. Only 6 out of 108 instructions,
or 5.56%), are unnecessary. Significant time has not been invested in developing peephole
optimizations for the current revision of the compiler. As the compiler matures it is
expected that the number of unnecessary instructions generated will decrease.

#define ITERATIONS 1000000 /* Number of messages to send */
#define TARGET 8 /* Computer to send messages to */
void producer(void)
{ int i

int a[8] = {0, 1, 2,3, 4,5, 6, 7}; /* Data to Send */

for(i = 0; i < ITERATIONS ; i4++) /* Send ITERATION messages */

consumer(sizeof(a), a)QTARGET;

Figure 4.1: Code Generation Example

In terms of communication and synchronization, the generated code has the following
main components (the reference numbers indicate locations in Figure 4.2 and Figure 4.3):

Process mapping. The physical address of the target node, designated with the anno-
tation @TARGET, results in the generation of the physical address of node 8 (1).

Direct compilation. The use of the mapping anotation @ requests the sending of
a message. As can be seen (2) this compiles directly into the use of hardware send
instructions.

Send without copying. As can be seen in between (2) and (3) the message data is
sent directly out of memory without any need to copy it into an intermediate message

buffer first.

4.1.

COMPILER

15

_producer::

(1)

L54:

(2)

move 14, r3
move 0, rl

CALL makeframe

de INT:(LCO)
move [r0,a0], r1
move -14, r0
move rl, [r0, al]

move 0, rl
move -15, r0
move rl, [r0, al]
de INT:(264)
move [r0,a0], r3
add r3, 8, r0
move [r0,a0], r3
move -17, r0
move r3, [r0, al]
move 1, 10
move 10, |
move -17, r0
move [10, al], rl
send rl,0

move -16, r0
move [10, al], r3
de INT:$80200010
move r0, rl
wtag r1,MSG,r3
send r3,0

move -16, r0
move r3, [r0, al]
dc INT: _consumer
move r0, r3
send r3,0

send 0,0

send -1,0

send 0,0

send 0,0

move 1, rl

send rl,0

; Size of local variables

; Size of outgoing arguments

; Create call frame on heap

; Define Constant: Global address of initialization array
; Get O0th element of initialization array

; Generate offset for local variable

; Initialize Oth element of array

; 28 Instructions to initialize the rest of array

; Move 0 into register R1

; Generate offset for local variable

; Initialize loop counter

; Define Constant: Pointer to computer address table
; Load pointer to computer address table

; Add target computer logical number to base of table
; Load physical address of target computer from table
; Generate offset for local variable

; Store physical address of target computer

; Move 1 into register RO

; Disable interrupts

; Generate offset for local variable

; Load physical address of target computer

; Start send with physical address of target computer

; Define Constant: Message Header

; Move into general use register

; Tag word as Message. Required by hardware
; Send message header

; Define Constant: Function identifier for ”consumer”

; Move into general use register

; Send identifier of function to invoke at remote computer

; Send blank word to be used as temporary storage at receiver
; Send -1 to indicate that no return value is necessary

; Field indicating which computer expects return value

; Field indicating memory address for return value

; Move 1 into register R1

; Send number of arguments for remote function

Figure 4.2: Prologue through transmission of argument count

16 CHAPTER 4. IMPLEMENTATION DETAILS
move 8, 13 ; Move 8 into register R3
send 13,0 ; Send length of argument for remote function
move 0, 12 ; Initialize loop counter
move al, rl ; Move address register Al into register R1
wtag rl, INT, rl ; Change tag on R1 to INTeger
ash rl, -10, rl ; Shift out size field from pointer
move rl, rl
add rl, -5, rl ; Add -5 to R1, Now contains address of last item in array+ 2
move -18, 10 ; Generate local variable offset
move rl, [r0, al] ; Store R1 to local variable
L46: move -18, 10 ; Generate local variable offset
move [r0, al], r3 ; Load address of end of array + 2
add r3, r2, r3 ; Add loop counter
add r3, -9, 10 ; Generate address of next element in array to send
move [r0,a0], rl ; Load array data
send rl,0 ; Send array data
add r2, 1, r2 ; Increment loop counter
le r2, 6, r0 ; Have we sent all but one item yet?
bf r0, "L55 ; If we have, break out of loop
de 146 - (* 4 2) ; Generate address of L46 relative to Instruction Pointer
br r0 ; Jump to top of loop
L55: move -7, 10 ; Generate local variable offset

(3)

move [10, al], r3
sende 13,0

move 0, 10
move 10, |

move -15, r0
move [10, al], rl
add rl, 1, rl
move -15, r0
move rl, [r0, al]
de INT:99999

le r1, r0, r0

bt 10, "L56

de L4 - (* 4 2)
br r0

: move [0,a2], r2

move -1, r0
move [r0,al], rl
move [r0,a2], r0

CALL function_end

Idip r0

; Load last element in array

; Terminate send with last data item

; Move 0 into Register R0

; Enable Interrupts

; Generate offset for local variable

; Load loop counter

; Increment loop counter

; Generate offset for local variable

; Store loop counter

; Define Constant: ITERATIONS

; Compare counter to ITERATIONS

; If counter > ITERATIONS, branch to L56
; Generate address of L54 relative to Instruction Pointer
; Jump to top of loop

; Move -1 into R0

; Get address of current frame

; Get address of previous frame

; Call routine to deallocate current frame
; Function Return

Figure 4.3: Transmission of argument length through Epilogue

4.2. SYSTEM TOOLS 17

4.2 System Tools

To support code distribution it was necessary to develop a collection of system tools, and
to devise a scheme that would allow the essential system code to be resident at every
computer. This was achieved by separating all program functions into two categories:
replicated or distributed. Distributed functions are pieces of code that permanently reside
at one computer (the function’s home computer), but can be transported anywhere in
the machine when they are needed. Replicated functions are pieces of code that exist
at all computers. Figure 4.4 shows how these functions are generated in the compilation
pipeline. The MDC compiler compiles files in the usual manner and generates object
code (e.g. a.0, b.o and c.0). The main purpose of our object file format is to allow for
all functions to be treated as independent units that can be mapped onto any computer
and easily moved to any other computer. The linker combines these object files to form
an indexable binary. Object code which is to be replicated is signified using a linker flag
(-r). The resulting binary contains code for each computer, as well as replicated code and
global variables that exist at all computers.

MDC Compiler
___‘
|
' | Global Variables | ===--- Global Variagbles | ===---- Global Variables |
| |
| | Assembled Code Assembled Code Assembled Code i
|
a0] bo co |

\ \b -r / -r

Linker

Global Variables

Replicated Code (b, €)
Distributed Code (a)

Indexable Binary

Figure 4.4: Linkage and Loading Stages

The linker assigns each distributed function to a home computer in the machine. A simple
bin-packing algorithm is used to balance the quantity of code resident at each computer;
there is a standard interface to the linker that allows experimentation with alternative
code mapping algorithms. In the current implementation, global variables are replicated

18 CHAPTER 4. IMPLEMENTATION DETAILS

at every computer and coherence is not maintained between computers.

After code mapping is complete, the linker assigns unique identifiers to all functions.
It a function is invoked during program execution, the microkernel uses these identifiers
to locate the appropriate code. The identifier is a pair of the form:

< logical-computer, function address >.

The logical-computer entry signifies the home computer of the code, and the function
address specifies the location of the code at the home computer. The translation from
logical-computer to physical-computer is made by the loader after allocation of a partition
of the machine.

4.2.1 Layers and Interfaces

The message-driven C system is composed of a number of different programs, with file
formats that act as interfaces between the programs. The description of system tools
above, combined with Figure 4.4, provide context for most of these interfaces. Although
many of these interfaces are based on work done by other people, the final form of the
interfaces in this system reflect special needs and goals particular to message-driven C.

The initial assembly language definition was developed by Waldemar Horwat at MIT [17].
This language was modified by this author as described in [20] to provide explicit sup-
port for code distribution, as well as improved efficiency of other tools in the system.
These modifications included a separation between data and code to facilitate mapping
them to different areas within the machine; the addition of assembler directives to provide
a delineation of the beginning and end of functions to support modularization and code
transport; and a new notation for specifying global variables which simplifies specification
of uninitialized data regions, and provides size information for initialized data.

The original assembler output was a text file containing an ASCII representation of
the assembled code. This output format required substantial work on the part of the
programmer to guarantee that multiple files could be downloaded to the J-Machine and
executed as one program. The assembler output was changed from this simple text file into
a binary object file. The exact layout of this object format was designed by Yair Zadik,
based on the changes made to the assembly language, and the design of the distributed
code mechanism by this author. The format of object libraries is the standard BSD
UNIX format supported by the standard utility program ar. The index for the library
was designed by Yair Zadik.

The layout of the executable file produced by the linker was designed by Yair Zadik
based on the needs of the runtime microkernel, which was designed by this author.

4.3. THE MICROKERNEL 19

4.3 The Microkernel

The microkernel is the portion of the system that provides support at runtime for process
creation, suspension and awakening, as well as code transport of distributed functions.
The general organization of the microkernel is a collection of handlers that may be invoked
at any time upon receipt of a message. The microkernel is notable for its size which is less
than 200 words of memory; this is attained through the simplicity of the computational
model. There are five primary handlers which make up the microkernel; these are shown

in Figure 4.5.

SPAWN_HANDLER:
if (function replicated OR this is home computer OR in hash table)
invoke function
else {
if(not requested already)
send REQUEST message

suspend process in queue associated with function

}

REQUEST_HANDLER:
Send function to requesting process in RECEIVE message

RECEIVE_HANDLER:
Allocate storage for function code
Copy code from message to storage
Enter function in hash table
Wake processes waiting for function

SET_HANDLER:
For each word to be written
If memory not zero wake up suspended processes
Write value into memory

WAKEUP_HANDLER:
Load registers from state stored in process header
Load instruction pointer with suspension address

Figure 4.5: Microkernel Message Handlers

20 CHAPTER 4. IMPLEMENTATION DETAILS

Spawn. The spawn handler is responsible for locating the code of a function and
subsequently executing it. Recall that this occurs when a program executes f(...)@n. The
handler is used to manage both spawn messages, originating at other computers, and local
function invocation. A function can be executed immediately if it is either replicated or
it is distributed and the current computer is the home computer. Otherwise, the code is
either in a local hash table or must be fetched from its home computer and deposited into
the hash table. The hash table is implemented using the assoctative memory provided by
the J-machine hardware. If code is requested from another computer, then the current
process suspends until this code is received locally.

Request and Receive. The request handler deals with a request for code from
another computer and transmits the code from a known location determined using the
function address portion of the code’s unique identifier. Finally, the receive handler is
invoked when requested code is received. It wakes all processes that are suspended await-
ing code reception and updates the local hash table to store the received code. The hash
table is purged to free space when necessary.

Set and Wakeup. The microkernel also has two routines to support the setting of
shared variables being used for synchronization, and the awakening of suspended pro-
cesses. Recall that when a process executes « = f(...)@n, it will suspend if z is accessed
before it is available. The set handler accepts a message containing an address and length,
as well as length words of data to write starting at the specified address. Before writ-
ing each word, this handler checks to see whether or not the present value is 0. If it is
non-zero, than the word contains the address of a list of suspended processes. For each
process on this list, a message is sent to the wakeup handler. The wakeup handler accepts
messages that contain the address of the process header data structure of a suspended
process. This handler loads the machine registers with the state stored in the process
header, and loads the instruction pointer with the address of the instruction that caused
the process to be suspended.

4.4 Remote Function Invocations

The message-driven process model of the hardware is utilized directly for remote function
invocation, using f(...)@n. The remote function calls are compiled directly into the send-
ing of a message which transmits data from memory directly into the message-passing
network; thus, there are no copying overheads associated with message sending. Message
reception results in the creation of a process record which includes the contents of the
received message. The copy from the message buffer into the process record is the only
copying of data that is performed by the system. Since the message data resides in the
process record, it is persistent across suspension without the kernel having to take any
action to preserve it. This persistence has been extended by placing control of deallo-
cation of arguments with the application program. This allows an application to store
a received message in persistent variables for later use without additional copying. By
default a process record, and the message data contained within it, is never destroyed.

4.5. PROCESS SUSPENSION 21

When a program completes operations on the data contained within a specific message, a
free operation is used to deallocate the memory used by the process record that contains
that message.

4.5 Process Suspension

Suspension Process Headers
List o
(U] = nextr—= "
! I
Process running X -
function f. Upon Define
termination sends Variable Wakeup
Process(es)
return value to
node m. Set Handler
Message T
Queue ‘ i
E —_= = > — == :
o
L.
Node n Node m

Figure 4.6: Waking Up a Suspended Process

Processes are created upon receipt of messages. Process creation consists of allocating
a process header data structure. This header includes storage for the data portion of
the incoming message, space to save the instruction pointer and registers, and a next
field. The next field can be used to link a process header into a list. Recall that process
suspension occurs when a process p executes # = f(...)@n, and attempts to access & before
f has terminated. While process p is waiting for the variable z to be defined, z is tagged
undefined, and contains the address of the first process header on a list of suspended
processes. Each process header on the list contains the address of the next process header
on the list in its nezt field.

Figure 4.6 shows a snapshot of the process suspension and awakening mechanism in
operation. When the process p attempts to read the undefined variable z, a hardware fault
is taken and a handler is invoked. This handler saves the instruction pointer and registers
into the process header, adds the process header to the list of processes suspended on
the variable x, and issues a hardware suspend instruction. Process p is now suspended
waiting for z to be defined by a remote process executing function f. When the remote
function terminates, it sends a message to the set handler on the computer containing p.

22 CHAPTER 4. IMPLEMENTATION DETAILS

The set handler will define x to be the value returned by f, and wake up the processes
suspended waiting for the value of z, including process p. The processes are woken up by
sending the address of their process header to the wakeup handler.

4.6 Code Distribution

Recall that many of the applications being developed by the Scalable Concurrent Pro-
gramming Laboratory require more than 1/4 megabyte of memory for code alone. The
program code cannot be replicated at each J-Machine computer, and a mechanism for
distributing a program’s code across the machine is provided. The intent of code distri-
bution is to maximize the memory available to user code at each computer. Recall that
this mechanism utilizes bin-packing within the linker to minimize the amount of code that
is resident at each computer.

Information regarding which distributed functions are present at a given computer is
maintained using the hardware associative memory. A 32-bit function identifier translates
into a pointer to a hash bucket containing a list of function header blocks. Each of these
blocks contains the unique function identifier and the address of the beginning of the code.
When code is requested from another computer, a function header is created, and the code
address field is tagged undefined. Any attempts to locate the code prior to its arrival will
cause the accessing process to suspend. Once the code is present, this field is updated with
the starting address of the code, and subsequent references will return this entry point.
The recetve handler is responsible for waking up all processes suspended waiting for the
received function. Code is purged from the cache when memory is exhausted. When code
is being purged, the next function to be removed is that which was least-recently used.

Chapter 5

Evaluation

5.1 Performance Results

In terms of performance, the goals for this project can be stated as delivering hardware
message-passing performance to application programs; providing an inexpensive code dis-
tribution mechanism; and generating high quality code.

The numbers for the hardware performance are derived from the results reported by
the MIT Concurrent VLSI Architecture Project in [21]. The results reported here are
based on a simple producer-consumer code. This code spawns a producer process on
one computer which sends 100,000 messages, each of which creates a consumer process on
another computer. This program appears in two forms: one-way communication as shown
in Figure 5.1 and two-way communication as shown in Figure 5.2. The one-way version
of the code creates 100,000 copies of the consumer, each of which increments a counter.
When this counter reaches 100,000 the program terminates. In the two-way version of the
code, each of the 100,000 consumers returns a value to the producer. When the producer
has received all of the return values the program terminates.

Each program was compiled in three basic forms, based on the length of the messages
generated. Message lengths of 8, 16 and 64 words were used. The distance that messages
traveled varied based on the value of the constant TARGET. Messages were sent 1, 4, 8
and 14 hops. In addition, the two-way communication program was linked both with and
without code distribution. Finally, a variation on each of the basic programs was created
to approximate the overhead cost involved with executing the programs on one computer
with no communication. This overhead represents the cost of creating processes, and
executing the code. All of the resulting programs were executed 5 times each on the
J-Machine using a 28MHz clock. After the programs had been executed, the 5 runs
were averaged, and the cost of the overhead was subtracted from each of these averages.
The resulting number was divided by 100,000 to provide the cost of communication per
iteration. This number is reported, along with the actual hardware cost of sending a
message of the appropriate length the correct distance.

23

24 CHAPTER 5. EVALUATION

#include "spawn.h”

void producer(void);

void consumer(int len, int *array); /* No return value */

#define ITERATIONS 1000000 /* Number of messages to send */
#define TARGET 8 /* Computer to send messages to */
main()

{ producer()@0; } /* Start the producer on computer 0 */

void producer(void)

{ int i
int array[8] = {0, 1, 2, 3,4, 5, 6, 7}; /* Data to Send */
for(i = 0; 1 < ITERATIONS ; i4++) /* Send ITERATION messages */

consumer(sizeof(array), array QTARGET;

}

int counter = 0; /* Count the number of messages received */

void consumer(int len, int *array)
{ inti,j=0;

/* Message data can be used here without copying */

if(++counter == ITERATIONS) exit(0); /* Terminate program */

else msghkree(&len); /* Release memory for this message */

1

Figure 5.1: One-Way Producer-Consumer

5.1. PERFORMANCE RESULTS 25

#include "spawn.h”

void producer(void);

int consumer(int len, int *array); /* Returns an integer */

#define RUNS 2500 /* Number of sets to execute */

#define ITERATIONS 40 /* Number of messages to send per set */
#define TARGET 8 /* Computer to send messages to */
main()

{ producer()@0; } /* Start the producer on computer 0 */

void producer(void)

{ inti,],k
int array[8] = {0, 1, 2, 3,4, 5, 6, T}; /* Data to Send */
int returns[[TERATIONS]; /* Array for return values from consumer */
for(k = 0; k < RUNS ; k++) { /* Execute RUNS sets */

for(i = 0; 1 < ITERATIONS ; i++4) /* Send ITERATION messages, expect a return */
returns|i] = consumer(sizeof(array), array) @TARGET;

for(i = 0; i < ITERATIONS ; i++)
j = returnslil; /* Make sure all of the consumers are done */
} /* End of loop for RUNS */
exit(0);
1

int consumer(int len, int *array)

{ inti,j=0;
/* Message data can be used here without copying */
msgkree(&len); /* Release memory for this message */
return j; /* Return computed value */

1

Figure 5.2: Two-Way Producer-Consumer

26 CHAPTER 5. EVALUATION

5.1.1 One-Way Producer-Consumer Evaluation

Table 1 shows the data from executing the one-way producer-consumer code. The cost
of sending a message from within a C program is only twice the hardware cost of sending
the message. Compared to the cost of process creation and code execution, this commu-
nication cost is negligible. This is evident in the near-identical costs of sending messages
any number of hops. This occurs because the largest element in the cost is executing the
code, and the next message to be executed can be delivered before the target processor is
ready to execute it. This data suggests that the messages spend significantly more time
waiting to be executed in the message queue at the consuming processor than in transit
from the producer.

‘ ‘ Hops ‘ 1 ‘ 4 ‘ 8 ‘ 14 ‘
8 Word Messages | Hardware | 4.53E-6 | 5.81E-6 | 6.09E-6 | 6.58E-6
Software | 1.50E-5 | 1.51E-5 | 1.53E-5 | 1.49E-5
16 Word Messages | Hardware | 1.02E-5 | 1.04E-5 | 1.07E-5 | 1.11E-5
Software | 2.23E-5 | 2.24E-5 | 2.23E-5 | 2.24E-5
64 Word Messages | Hardware | 3.79E-5 | 3.82E-5 | 3.85E-5 | 3.89E-5
Software | 7.94E-5 | 7.94E-5 | 7.94E-5 | 7.94E-5

Table 5.1: Timings for One-Way Communication, Average Latency in Seconds

5.1.2 Two-Way Producer-Consumer Evaluation

Without Code Distribution. Table 2 presents the timings for two-way communication,
and reveals the cost of synchronization. This data indicates that performing synchroniza-
tion has negligible cost. The increase in latency for larger messages is due to time spent
waiting to deliver the outgoing messages. Once the incoming message buffer at the con-
suming computer has filled, the producer must wait until this buffer begins to empty to
be able to complete a message send. The larger the outgoing messages, the longer it takes
the producer to send them. The time difference between the two programs for 8 word
messages is approximately twice the hardware cost for sending the return value message
from the consumer back to the producer. These performance numbers indicate that our
process suspension and awakening mechanism is efficient. As with the one-way commu-
nication, the cost of splitting the program up across computers is trivial in comparison
to the cost of executing the code.

With Code distribution. Table 3 shows the performance differences for the two-
way communication program with and without code distribution. Compared to code
executed without using the code distribution mechanism the running time for 8 word
messages increases by more than an order of magnitude; 16-word messages perform slightly
better; and 64 word messages show a slowdown of only 1.5. The improvement in relative
times for 64 word messages is due to the cost of code distribution being dwarfed by

5.1. PERFORMANCE RESULTS 27

| | Hops | 1 4 8 14 |
8 Word Messages | One Way | 1.50E-5 | 1.51E-5 | 1.53E-5 | 1.49E-5
Two Way | 2.30E-5 | 2.30E-5 | 2.30E-5 | 2.30E-5
16 Word Messages | One Way | 2.23E-5 | 2.24E-5 | 2.23E-5 | 2.24E-5
Two Way | 3.42E-5 | 3.42E-5 | 3.41E-5 | 3.39E-5
64 Word Messages | One Way | 7.94E-5 | 7.94E-5 | 7T.94E-5 | 7.94E-5
Two Way | 3.20E-4 | 3.20E-4 | 3.21E-4 | 3.21E4

Table 5.2: Timings for One-way versus Two-Way Communication, Average Latency in
Seconds

the amount of time this program spends waiting to complete message sends. This simple
producer-consumer program does not provide any opportunity for the system to mask the
latency of code fetching by overlapping communication and computation. These numbers
demonstrate that a poor usage of the code distribution mechanism can be very expensive.
In this example, the functions consumer and msgFree should be replicated functions
as they are each called 100,000 times.

An examination of the code distribution mechanism suggests an optimization based on
reducing the cost of locating a replicated function that is already present at the current
computer. For every call to a distributed function, the code distribution mechanism
generates a call to a C routine to locate the function in the associative memory cache.
The overhead of calling this routine, primarily creating and destroying a call frame data
structure, is high. The efficiency of code distribution will be improved by inserting the
cache check directly into the kernel. This optimization will decrease the cost of code
distribution by approximately 80%. This optimization is not yet implemented.

| | Hops | 1 4 8 14

8 Word Messages | With 3.96E-4 | 3.96E-4 | 3.96E-4 | 3.96E-4
Without | 2.30E-5 | 2.30E-5 | 2.30E-5 | 2.30E-5
16 Word Messages | With 4.11E-4 | 4.11E-4 | 4.11E-4 | 4.11E-4
Without | 3.42E-5 | 3.42E-5 | 3.41E-5 | 3.39E-5
64 Word Messages | With 4.85E-4 | 4.85E-4 | 4.88E-4 | 4.88E-4
Without | 3.20E-4 | 3.20E-4 | 3.21E-4 | 3.21E-4

Table 5.3: Timings for Two-Way Communication with and without Code Distribution,
Average Latency in Seconds

28 CHAPTER 5. EVALUATION

5.2 Application Example

This section describes an example piece of application code that has been run on the
J-Machine. This program has all of the interesting characteristics of applications being
developed by the Scalable Concurrent Programming Laboratory, and in particular utilizes
a standard set of libraries which provide generic support for organizing applications. This
code uses domain decomposition to solve Laplace’s equation V2?6 = 0 using sinusoidal
boundary conditions. Each process within the program communicates with other pro-
cessors at computers in close proximity. Barrier synchronization is performed at every
timestep.

FORALL computers n {

local norm = initialize();

global norm = barrier(localnorm);

termination condition = EPSILON * global norm;

FORALL time t {

while(global norm > termination condition) {

Send faces to all neighbors;
Receive faces from all neighbors;
local norm = timestep(faces);
global norm = barrier(local norm);

Figure 5.3: Parallel Dirichlet Algorithm

The algorithm being executed is summarized in Figure 5.3. All computers are ini-
tialized, and a barrier is used to ensure that all computers have completed initialization
before continuing. A termination condition is calculated, and processing begins. Until the
termination condition is satisfied, a series of timesteps are executed. At each timestep, a
face in each computer is sent to its neighbors. After a computer has received messages
from all of its neighbors, the local norm is computed. Another barrier is used to recompute
the global norm across the whole machine. The structure of this program is illustrated
in 5.4, which is based on discussion in [7]. The domain of the problem is broken up
into partitions. Each partition is mapped onto a computer. The exchange of information
for each timestep requires the transmission of the edges adjacent to a partition boundary
being sent to the computer containing the neighboring partition.

Using the techniques described in this thesis, this algorithm is implemented as a set

29

5.2. APPLICATION EXAMPLE

ep

ged atEihTime St

Faces Exchan
/

0000000
L JOIGAGIOIO)

e00000@

0000000

00000060

0000000

_ JOIGAGIOIO)
0000000

Boundary Cells

of the Dirichlet Algor

Partitions

ithm

Figure 5.4: Abstract Picture

30 CHAPTER 5. EVALUATION

of handlers. These handlers are shown in Figure 5.5.

Initialization. The startnodes handler runs at every computer, and for each virtual
node at a given computer reads in an initialization file, initializes local state, and then
calls a library routine which implements a barrier. The barrier routine maintains a
counter, and ensures that all virtual nodes have finished executing initial_setup, which
calculates the termination condition and initializes the count of expected messages, prior
to invoking timestep_send at all nodes.

Communication. At the beginning of each timestep, the timestep_send handler is
invoked at all virtual nodes. This handler works through a list of port pairs, consisting
of a sendport representing an outgoing port for the current node, and a recvport which
is the target computer for the sendport. For each of these pairs, a msg is assembled
containing the edge that needs to be sent to the sendport. This message is used as the
argument to the timestep_recv handler, which is invoked at computer recvport using the
mapping annotation @. Fach time that timestep_recv is invoked, it saves a pointer to the
incoming message, and decrements a counter of expected messages. When there are no
more messages pending at a particular computer, the code to execute a timestep is run.
When the timestep is complete, a second barrier is called to check for termination, and
then initiate the next timestep by calling timestep_send.

Termination At the conclusion of each timestep, the terminate handler is invoked.
This handler compares the current global norm against the termination condition. If this
comparison indicates that the computation has terminated, the program exits. Otherwise,
the count of expected messages is reset.

5.2. APPLICATION EXAMPLE

31

startnodes(...) {
while(nodes for this computer) {
read graph description file
localnorm = initialize(node)
barrier(localnorm,initial setup,timestep_send)

}

initial setup(node,globalnorm) {
term_cond = EPSILON * globalnorm
pending = RECVPORTS

}

timestep send(node) {
foreach pair (sendport,recvport) {
msg=get_face(sendport)
timestep recv(msg)@Qrecvport

1

timestep recv(node,msg) {
nodemsgs = msg
decrement pending
if(no messages pending) {
localnorm=timestep(...)
barrier(localnorm,terminate,timestep_send)

1

terminate(node,globalnorm) {
if(globalnorm > term_cond)
pending = RECVPORTS
else
exit()

Figure 5.5: Dirichlet Example Message Handlers

32

CHAPTER 5. EVALUATION

Chapter 6

Experience with the
Message-Driven C System

Recall that the original goals of this project were to allow for message sending and receiv-
ing, as well as process suspension and awakening, without having to perform copying. This
would allow hardware performance to be delivered to the application codes. In general,
both the J-Machine hardware and the programming system we have been able to build are
quite satisfactory. However, there were a number of idiosyncracies in the hardware which
complicated our task. These concerns are being addressed in the M-Machine, the next
generation machine currently being designed by the MIT Concurrent VLSI Architecture
Group. This section describes and discusses what was learned about the J-Machine in
the course of this experiment. This section also contains a discussion of some unforeseen
problems with the compiler which might be of interest to others wishing to retarget GCC
for alternative systems.

6.1 Remote Function Invocation

Conceptually, in the Message-Driven C computational model, function arguments reside
only within a received message, and no copying of the data is required upon message
reception. It was possible to construct a system that achieved this functionality, however
this necessitated considerable contortions. This mechanism became unmanageable when
combined with supporting process suspension, and there was no choice but to accept
copying on receive. It is not possible to leave arguments in the message buffer because the
J-machine hardware distinguishes between message buffer memory, and general memory.
The portion of memory used for message reception is treated as a circular queue. There
are 3 special properties of this piece of memory:

e When accessed through register A3, the hardware handles addressing of messages
that wrap around past the end of the buffer.

33

34 CHAPTER 6. EXPERIENCE WITH THE MESSAGE-DRIVEN C SYSTEM

o When accessed via register A3, a hardware fault is generated if an attempt is made
to read a data word that has not yet been received.

e When the process created in response to a message reception suspends, the storage
for that message is reused by the hardware.

The hardware wraparound issue was dealt with by defining a special data type, a wrapped
pointer, which is a pointer to a data item that wraps around from the end of the queue to
the front. Any access to a wrapped pointer results in the execution of a fault handler which
analyzes the instruction causing the fault and modifies and/or reissues this instruction as
necessary.

The issue of accessing data that has not yet been received is not a problem if message
data is accessed via A3, as this allows the hardware fault mechanism to properly signal
attempts to access unreceived data. The method of dealing with this type of fault is
to back up the instruction pointer and reissue the faulting instruction until it no longer
faults: this indicates that the data has been correctly received.

Although the data in a message will be available in the message buffer when the
process is initiated, once the process suspends the hardware can overwrite the portion of
the message buffer containing this data. To support suspension it is necessary to guarantee
that a process can find its arguments both before and after it has suspended. This requires
copying the message data upon either message reception or process suspension. Although
a mechanism to allow a process to access its arguments properly prior to suspension was
developed, this is not useful if it is not possible to also guarantee that the process will still
be able to access its data after suspension. In order to make this guarantee, all pointers
into the message buffer would have to be updated to reflect the change in location of the
data following the copy. As the cost of locating all such pointers is prohibitive due to the
loose constraints on pointer copying in C, it is necessary to perform a copy on receive.

A preferred approach would be for the hardware not to distinguish between general
memory and message buffers. There would consequently be no difficulty with allowing
received messages to remain where they were originally placed upon reception, and it
would not be necessary to copy on either receive or suspend.

6.2 Compiler Problems

Aside from the usual problems attendant to deciphering any large piece of software, the
difficulties that encountered with GCC were all related to assumptions about the target
architecture which the compiler makes. Even though GCC is designed to be retargetted
for a wide variety of machines, there are certain architectural features which can make
this process very difficult. These items could be better addressed in a compiler written
specifically for fine-grain multicomputers.

Registers. The greatest difficulty associated with GCC was that it expects more
general registers than the 3 available at each Message-Driven Processor. This was manifest

6.3. CODE GENERATION 35

in many ways: excessive numbers of local variables are created for temporary registers;
function values must be returned indirectly because returns in registers would occasionally
be overwritten; double-precision argument passing was problematic because each double-
precision argument requires two data registers and this does not leave enough registers to
do data manipulation.

Stack-Based Architecture. Although GCC does provide enough support to allow
the use of heap-based frames rather than a stack, it does not do so without cost. The main
component of this cost is the necessity to do special-case handling for nested calls to library
functions. This occurs because outgoing function arguments are placed into specific slots,
rather than placed onto a stack. For example, a process could place arguments into the
first three arguments slots, and then discover that it needs to call a library routine. The
arguments to the library routine (e.g. double-precision arithmetic) could require the use
of the first four argument slots. It is therefore necessary to preserve the contents of the
first three argument slots prior to the library call, and restore them afterwards.

Position Independent Code and Data. GCC handles references to functions as if
they are constants. This is a poor assumption within this system: code can be transported
from one computer to another and placed on the heap in a location that is not known
until runtime. Although the compiler does have support for Position Independent Code, to
support systems such as dynamic linking on the Sparc, this requires an address register.
The J-Machine does not have enough address registers for one to be available for this
purpose. A set of linker techniques were developed to work around this problem. These
techniques assign identifiers to functions and patch all references to functions with their
identifiers. Similarly, the linker must calculate the addresses of global variables, and
ensure that these are also correct within the code. Unfortunately, without expanding the
microkernel to allow for intervention every time a global variable is accessed it is necessary
to permanently allocate all global and static data in the same place at every computer.
This makes it impossible to follow the more desirable route of transporting static data for
a function with the code for the function.

Lack of ANSI Compliance. Surprisingly, when using standard ANSI compliant test
suites, such as Metaware, it was discovered that GCC is not an ANSI compliant compiler.
This complicated the running of validation suites, as well as hindering the evaluation of
validation failures.

6.3 Code Generation

A variety of problems occurred in code-generation that were specifically linked to the
design of the Message-Driven Processor.

Integer Division. Recall that the computational model provides an abstraction of
the J-Machine as a collection of consecutively numbered computers. To support this
abstraction, it is necessary to be able to translate from an integer computer number to
a physical address. This operation requires several integer divisions and integer modulo

36 CHAPTER 6. EXPERIENCE WITH THE MESSAGE-DRIVEN C SYSTEM

operations. The cost of software division and modulo is high, making this conversion
expensive. While it is possible to work around this problem by having a conversion table
for virtual to physical computer addresses, such a solution will obviously not scale, and
is expensive in memory usage.

Relative Addressing The instruction set does not allow the use of a negative con-
stant offset for relative addressing. Rather than simply using:

move 12, [-1, a2];

It is necessary to use an additional instruction and register:

move -1, r0;
move 12, [r0, a2];

Address Data Type and Address Registers. As this machine is intended to
function under an object-oriented paradigm, the address data type contains both a be-
ginning absolute address for a data item, and a length of that item. If the length is
non-zero, hardware bounds-checking is performed on all references through the pointer.
The physical layout of these pointers has the length as the low-order 10 bytes, with the
address above it. One result of this structure is that adding an integer to a pointer does
not produce the desired result. In addition, the Message-Driven Processor distinguishes
between data registers and address registers. Relative addressing can only be done using
an address register as the base of the address. Moves to and from memory must have a
data register as the non-memory operand. Most operations require that at least one of
the operands be a data register. The contents of an address register must be an address
data type to be useful. Address data types are extremely limited in their usefulness when
they are in data registers. One example of the code generation problems caused by these
issues can be seen when we want to add 4 to the address contained in register Al. We
cannot do:

add al, 4, al

But must instead use 7 instructions and a scratch register:

move al, r0 ; Move address register Al into register R0
wtag 10, INT, r0 ; Tag contents of RO to INTeger

ash r0, -10, r0 ; Shift out size field from address

add r0, 4, r0 ; Add 4 to contents of R0

ash r0, 10, r0 ; Shift 0 into size field of address

wtag 10, ADDR, r0 ; Tag contents of RO to ADDRess

move 10, al ; Move register R0 into address register Al

6.3. CODE GENERATION 37

Byte Addressing. The Message Driven Processor is a 32-bit processor, with memory
addressable in 32-bit words. There is no support provided for efficiently accessing the
individual bytes of a word. One of the ramifications of this is that strings must be either
inefficient in time due to requiring special handling to treat one 32-bit word as 4 8-bit
bytes; or they must be inefficient in space by using one 32-bit word for each character
in the string. The solution to this problem used in this system is to have the compiler
generate code that is inefficient in space, but provide a packed-string library to support
strings that are inefficient in time.

Processor Status Flags. The processors have a collection of status flags that control
such features as interrupts enable/disable, checked/unchecked mode, faults enable/disable
and whether or not register A3 points into the message queue. These flags can only take
values of 0 or 1. It is not possible to move a value directly into one of these flags, one can
only move the contents of a data register into a flag. Instead of doing:

move 1, U
One must use two instructions and a scratch register:

move 1, 10
move r0, U

6.3.1 Floating Point

The Message-Driven Processor does not provide any hardware support for floating-point
computations. Although there are aspects of the architecture that are geared towards
alleviating this problem, the emphasis in these features is on fast single-precision compu-
tations. As most of the applications being worked on within the SCP group use IEEE
double-precision representation, it was necessary to provide software emulation of this
standard. In the process of creating the support for this emulation, a number of problems
were encountered.

The most striking of these problems deals with the inadequacy of the MDP register
file. This lack of registers is exacerbated by faults in the register allocator of GCC. The
most prevalent problem deals with the issue of returning a double-precision value from
a function. Ideally, return values will be passed back to the caller in registers. In the
case of a double-precision number, this requires two registers. As previously mentioned,
there are only three registers available to the allocator. As a result of this, as soon as
the function value is returned, it must be immediately moved into memory. This process
of moving the value is complicated because under many circumstances GCC generates
code that overwrites one of the return words with an offset into memory. This problem
required special code to be added to the compiler so that under certain circumstances the
decisions of the register allocator are over-ruled.

38 CHAPTER 6. EXPERIENCE WITH THE MESSAGE-DRIVEN C SYSTEM

As an example, the compiler might try to generate the following piece of code (note
that DFDIV performs double-precision division, and returns an answer in R2, R3):

move -11, r0 ; Generate offset for local variable

move [r0, al], r3 ; Fetch address for storage of return value
CALL DFDIV ; Call the division routine

move 12, [r3,a0] ; Store the first word of the result

add r3, 1, r3 ; Increment the address

move r3, [r3,a0] ; Store the second word of the result

There are two major problems with this code. First of all, the return value for the
division routine overwrites the target address into which it should be stored. Secondly,
an increment operation is performed on one of the words of the return value. To correct
these problems, it is necessary to preserve the value of R3 across the division call, and
modify what register is used for the store operations. These modifications result in the
following (less efficient) code:

move -11, r0 ; Generate offset for local variable

move [r0, al], r3 ; Fetch address for storage of return value
move r3, id3 ; Store address value in register 1D3
CALL DFDIV ; Call the division routine

move id3, rl ; Place the address value into R1

move 12, [rl,a0] ; Store the first word of the result

add rl, 1, rl ; Increment the address

move r3, [rl,a0] ; Store the second word of the result
move rl, r3 ; Place the address value back into R3

While this code will perform the correct task, it requires 3 additional instructions, and
1 additional register.

6.4 High-Level Language Design

Part of this research project involved investigating the construction of a high-level lan-
guage system on top of Message-Driven C. This work involved designing a set of modifi-
cations to the PCN Runtime System [13] to take advantage of the hardware capabilities
of the J-Machine. In addition, research was done into extensions to the PCN source
language that would allow optimizations to take greater advantage of the hardware. By
knowing the form of the generic programming techniques, it is possible to construct new
communication-oriented compiler optimizations that capitalize on the structure of the
technique in use. These optimizations take advantage of the hardware without changing
the basic programming semantic. For example, in Figure 6.1 additional information in
the form of an abstract data type stream has been provided. This signifies to the compiler

6.4. HIGH-LEVEL LANGUAGE DESIGN 39

that a particular stream protocol is in use. Furthermore, the direction of communication,
which is from the producer to the consumer, can be determined from the function pro-
totypes. This information makes it possible to generate code that allows the processes
to communicate without an explicit representation of the list structure, thereby avoid-
ing all overheads associated with structure copying. The list notation only signifies the
constraint that message order is preserved.

6.4.1 Example High Level Program

Figure 6.1 shows a generic producer-consumer program that illustrates many of the pro-
gramming concepts used in the construction of concurrent algorithms. Execution begins
in computer 0 at the main function. Initially, a stream is created to carry messages from
the producer to the consumer (1) and the global array A is initialized (2). Subsequently,
two concurrent processes are spawned: The first is a producer that executes at computer
0 (3); The other is a consumer that executes at computer 1 by virtue of the mapping an-
notation @ (4). Notice that the producer and consumer share the communication stream
S. Only when both processes have terminated, does the tidyup function execute (5). Upon
its termination the entire program terminates.

The producer sends a single message to the consumer containing a copy of the array
A (6). It then recursively sends Nn—1 further copies of the array (7) until termination
occurs and the stream is closed (8). The consumer suspends until a message is received by
virtue of the matching operation (9). It subsequently uses the message (10), and finally
consumes any remaining messages recursively (11). Eventually, the consumer terminates
when the stream is closed.

Figure 6.2 outlines how this protocol could be implemented using the J-machine tag-
ging structure and a collection of message handlers provided by MDC. The handlers are
trivial to implement using the systems programming layer described in Section 4.3. In
this figure, the producer is signified by the process P and the consumer by the process C.

The concurrent processes are compiled into two calls to the spawn function. The first
is spawned at computer 0 (the current computer) and simply invokes the producer; the
second causes the consumer to be spawned at computer 1. In order to establish the shared
stream S, the producer is suspended until the location of S at the consumer in computer
1 becomes known. Similarly, the consumer suspends until the first message produced by
the producer is known (A).

Eventually, the stream location becomes known by virtue of communication sent from
computer 1 and the producer is then scheduled (B). The producer now begins to send
messages to the consumer. The first message causes the consumer to be scheduled (C). If
further messages arrive before that consumer is executed they are simply associated with
the stream variable (D). Eventually, the consumer becomes the current process by reaching
the front of the message queue. At this time it may, using a tail recursion optimization,
iteratively consume all of the available messages and suspend to await further messages.

40 CHAPTER 6. EXPERIENCE WITH THE MESSAGE-DRIVEN C SYSTEM

int A[50];

main()

{ stream S; [x1 %]

initialize(A); [*2 */

{| | producer(10,S); [*3 */
consumer(S)@Q1; [*4 %/

1

tidyup(); [*5 %/

1

producer(int n, out stream S)

{ if(n>0) {

S =[A]Ss]; /%6 %/
producer(n—1,Ss); [* T */
1
else
S=1} [*8*/

1

consumer(in stream S)

{ if(S 7= [A]Ss]) { [*9 *x/
use(A); [* 10 */
consumer(Ss); [11 %/

1

1

Figure 6.1: Generic Producer-Consumer Protocol

6.4. HIGH-LEVEL LANGUAGE DESIGN 41
NODE O . . NODE 1
Location of Sin 1
STEPS
v |
S|U SUuU
—~ ~
P
Active P U N
B. / |
SIE Messages
produced
by Pfor
SEAISS Active [N /\
c)
First Message S
forC ——----------------- '
Active
D. s[k]
~__
Subsequent messages for C

Figure 6.2: Stream Communication

42 CHAPTER 6. EXPERIENCE WITH THE MESSAGE-DRIVEN C SYSTEM

A simple counting mechanism is used to provide a barrier that detects termination
of the two concurrent processes. A counter is associated with entry to a parallel block,
this counter is initialized to the number of processes spawned. Both the producer and
consumer are provided with the location of this counter. When a process terminates it
uses communication to decrement the counter. Eventually, termination is signified by a
counter value of zero.

All of the operations we have described involve only one way communication. Further,
all of the synchronization operations can be built on top of variables that are in some
binary state known or unknown. This form of synchronization is precisely that provided
by the tagging structure of the J-machine.

The producer-consumer protocol is the simplest protocol to implement. However, mi-
nor generalizations of the basic implementation strategy described here allow all of the
other basic stream-based programming techniques to be implemented. These implemen-
tation strategies are the subject of ongoing research.

Chapter 7

Future Directions

As with any other research project, there are several interesting questions that arose in the
course of this research that were not pursued. This section covers some of these problems.

7.1 Code Partitioning

The current implementation of the linker uses a simple bin-packing algorithm to place
distributed functions on home computers. The question of what is the best way to perform
this mapping is open. A possible line of research would be to provide the linker with the
ability to receive dependence information from the compiler. This information could
be used to minimize the distance that code needs to travel, as well as possibly placing
functions on more than one computer if space is available. In addition, functions could be
placed into groups so that code transport sends multiple functions in a situation where a
request for one function guarantees that additional functions will soon be required. Also,
it would be interesting to learn if there might not be other types of functions that the
system should support to provide greater efficiency while executing a distributed program.
For example, it might be desirable to have a function that is distributed and assigned to
one home computer, but which becomes permanently resident at any computer to which
it is transported.

7.2 Communication-Based Compiler Optimizations

Although this current work has advanced knowledge of how to compile and run programs
on fine-grained multicomputers, it has not fully addressed the issue of how to efficiently
do so. Future work could focus on developing a set of global, communication-based op-
timizations to improve the quality of the scheduling of an instruction stream. These
optimizations could be implemented using semantics-preserving source-to-source trans-
formations.

43

44 CHAPTER 7. FUTURE DIRECTIONS

An example of such a communication-based optimization is a transformation of a
barrier, such as the one shown in Figure 5.3, to decrease the serialization which generally
occurs when performing this type of synchronization. A barrier code might typically look

like:

int messages;

barrier()
{ Change global state in response to incoming message;
if(messages - 1 = 0)
continuation();

}

continuation()
{ Proceed with computation;

Assume that global state is fully updated;
}

Figure 7.1: Sample Barrier Code

Each time a message to the barrier is received, a counter is decremented. When the
counter reaches zero the continuation function is called at each computer. The naive way
to compile this functionality would be to treat the barrier and the continuation as two
distinct routines, and have the barrier code perform a sequential call to the continuation
function when the counter reaches zero. If an analysis is performed on the data depen-
dence between the barrier and continuation code, it would be possible to detect situations
in which the continuation code can begin execution prior to the end of the barrier code. In
the Message-Driven C system there are high overhead costs associated with function calls.
Being able to execute the code necessary for performing the function call for the continu-
ation function in parallel with execution of the barrier code would yield an improvement
in program execution. This occurs because the processes executing the continuation code
would normally be idle until barrier had completed. The transformed code would execute
the two routines shown in Figure 7.2 in parallel.

7.2. COMMUNICATION-BASED COMPILER OPTIMIZATIONS

45

int messages; /* Count of messages expected */
int syncFlag; /* Flag to coordinate between barrier and continuation */

barrier()
{ Change global state in response to incoming message;
if(messages - 1 = 0)
set syncFlag;

1

continuation()

{ Perform initialization that does not depend on barrier;
Wait for syncFlag to be set;
Proceed with computation;
Assume that global state is fully updated;

Figure 7.2: Transformed Barrier Code

46

CHAPTER 7. FUTURE DIRECTIONS

Chapter 8

Conclusion

This work demonstrates that the specialized hardware in a fine-grained multicomputer
such as the J-Machine can be effectively used to implement communication and syn-
chronization in a concurrent program without incurring large software overhead costs.
The direction of research currently being pursued by the Concurrent VLSI Architecture
Group at MIT, when coupled with the software techniques being developed by the Scal-
able Concurrent Programming Laboratory at Caltech, gives hope that it may be possible
to construct a parallel-programming system in which processor utilization is high without
significant execution time being devoted to software overheads. The techniques described
in this thesis are an important step in this direction. The major contributions of this
project have been the development of compiler and runtime techniques that effectively
use existing hardware mechanisms; and the evaluation of the existing hardware to assist
in the design of the next generation of fine-grained machines.

The implementation techniques allow new architectural features to be accessed directly
via native code compilation. Hardware performance is delivered directly to applications
by removing software overheads associated with message-passing. Messages are copied
directly into the network on sending, and processes may execute directly out of message
buffers on receiving. Code and data may be distributed through a combination of linkage
and run-time microkernel support. Communication latency is hidden by a process sus-
pension mechanism. Processes utilize a heap-based allocation scheme rather than a stack
and thus may suspend without copying. Although some aspects of these concepts have
been found awkward to implement on the J-Machine, these issues have been resolved in
designs currently under construction at MIT.

The main concepts described in this thesis have been implemented and are in use on
prototype J-machines at Argonne National Laboratory, Caltech, and MIT. This system is
currently being used for large scale application development by more than 30 scientists at
Argonne National Laboratory, Caltech, MIT and The Aerospace Corporation. The model
here advocated for concurrent programming is not new and has been used extensively for
applications development in a variety of systems developed by the Scalable Concurrent
Programming Laboratory and others. The contribution of this work rests on new and

47

48 CHAPTER 8. CONCLUSION

simple implementation techniques for fine-grain architectures.

Bibliography

[5]

[10]

[11]

[12]

Agha, G., Actors, MIT Press, 1986.

Agha, G., et. al., Abstraction and Modularity Mechanisms for Concurrent Computing,
IEEE Parallel and Distributed Technology, May, 1993.

Arvind and Nikhil, R.S. “Executing a Program on the MIT Tagged-Token Dataflow
Architecture,” Lecture Notes In Computer Science 259, 1987.

Athas, W. C. and Seitz, C. L., Cantor User Report, Version 2.0, California Institute
of Technology, Department of Computer Science Technical Report, 5232:TR:86, 1986.

Boden, Nanette J., Runtime Systems for Fine-Grain Multicomputers, Ph.D. disser-
tation, California Institute of Technology, Department of Computer Science, 1993.

Canetti, R., et. al., ”The parallel C (pC) programming language, ” IBM Journal of
Research and Development, 35(5/6):727-741, September/November, 1991.

Chandy, K. M., and Taylor, S., An Introduction to Parallel Programming, Jones and
Bartlett, 1991.

Chien, Andrew, "Supporting Modularity in Highly-Parallel Programs”, in research
Directions in Object-Based Concurrent Systems, MIT Press, 1993.

Chien, A., Karamcheti, V., and Plevyak, J., 7 The concert system - compiler and run-
time support for efficient fine-grained concurrent object-oriented programs,” Techni-
cal Report, UITUCDCS-R-93-1815, Department of Computer Science, University of
[linois, Urbana, Illinois, June 1993.

Dally, W. J., et al., “The J-Machine: A Fine-grain Concurrent Computer,” Infor-
mation Processing 89, G. X. Ritter (ed.), Elsevier Science Publishers B.V., North
Holland, TFIP, 1989.

Darnell, Peter A., Margolis, Philip E., and Taylor, Stephen, Software Engineering in
C, Springer-Verlag, revised edition in progress.

Foster, I. and Taylor, S., Strand: New Concepts in Parallel Programming, Prentice-
Hall, Englewood Cliffs, N.J. 19809.

49

20

[13]

[14]

[15]

[16]

[17]

[20]

[21]

[24]

[25]

BIBLIOGRAPHY

Foster, 1., and Taylor, S., “A Portable Run-Time System for PCN,” in Argonne
National Laboratory Technical Memorandum No. 137, ANL/MCS-TM-137, January,
1990.

Foster, 1., and Taylor, S., “A Compiler Approach to Scalable Concurrent Program
Design”, ACM Transactions on Programming Langauges and Systems (to appear).

Gehani, N.H., and Roome, W.D., "Implementing Concurrent C, ” Software Practice
and Experience, 22(3):265-285, March, 1992.

Horwat, W., Concurrent Smalltalk on the Message-Driven Processor, Masters thesis,
Massachssetts Institute of Technology, Computer Science Department, September,

1991.

Horwat, W., Message-Driven Processor Simulator, MIT Concurrent VLSI Architec-
ture Memo 38, Massachssetts Institute of Technology, Computer Science Department,

May, 1991.

Marlin, C.D., “A Heap-Based Implementation of the Programing Language Pascal,”
Software Practice and Fxperience, 9(2):101-119, February, 1979.

Maskit, D., Taylor, S., Fzperiences in Programming the J-Machine, California Insti-
tute of Technology, Department of Computer Science Technical Report, CS-TR-93-
11, 1993.

Maskit, D., et. al., System Tools for the J-Machine, California Institute of Technology,
Department of Computer Science Technical Report, CS-TR-93-12, 1993.

Noakes, M., Wallach, D. and Dally, W., “The J-Machine Multicomputer: An Archi-
tectural Evaluation,” Proceedings of the 20th * International Symposium on Computer

Architecture, May, 1993.

Schauser, K.E., Culler, D.E. and von Eicken, T., “Compiler-Controlled Multithread-
ing for Lenient Parallel Languages,” Lecture Notes In Computer Science 523, 1991.

Seizovic, Jakov N., The Architecture and Programming of a Fine-Grain Multicom-
puter, Ph.D. dissertation, California Institute of Technology, Department of Com-
puter Science, 1994.

Seitz, C. L., “Multicomputers,” Developments in Concurrency and Communication,

C.A.R. Hoare (ed.), Addison-Wesley, 1990.

Su, W., Reactive-Process Programming and Distributed Discrete Event Simulation,
California Institute of Technology, Department of Computer Science Technical Re-

port, CS-TR-89-11, 1990.

Taylor, S., Parallel Logic Programming Techniques, Prentice-Hall, Englewood Cliffs,
N.J., 1989.

Thinking Machines Corporation, Cambridge, MA. CM5 Technical Summary, Octo-
ber, 1991.

