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Abstract

A parameterized set of finite-difference formulas have been developed
for the permanent. One parameter setting produces Ryser’s [2] inclusion
and exclusion formula. Other parameter settings yield formulas that can
be computed more efficiently.

One group of settings introduces symmetry, so only half the terms
need to be computed. Some of these settings produce formulas that have
many zero-valued terms when applied to matrices drawn from random
distributions. Gathering the zero-valued terms and removing them from
the computation substantially reduces the time required to compute the
permanent [1].

This paper explores methods to tailor the parameter settings to specific
matrices, choosing the formula based on the problem instance to increase
the number of zero-valued terms.
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1 Introduction

The permanent of an n x n matrix A = [a;;] is defined as follows.

per A=Y aij, -+ -ang, (1)

Jredn

where ji ...Jjn is a permutation of 1...n. Computing the permanent is a #P-
complete problem [3].
Ryser [2] developed the following inclusion and exclusion formula to compute

the permanent.
per A= E (—1)|5| H Z aij (2)

SC{L,...n} i=1j¢5

The formula is a sum over 2" terms, each of which can be computed in polyno-
mial time. Each term is a product of row sums, with the columns that correspond
to the elements of S zeroed.

Finite-difference formulas [1] are a generalization of Ryser’s formula. Each
term is a product of row sums, with the columns of A multiplied by a choice of
values. Define the term P(x1,...,#,) to be the product of row sums of matrix
A with each column j multiplied by variable ;.

P(zy,...,2y) =

7

aijT; (3)
1

n n
=1j=
The finite-difference formulas for the permanent have the following form.

1

(w1 —v1) - (un — vn)

(_1)3(5'1:'--»“’")]3(331, ey m‘n)
{21, 8} €{u1,01} X X {tn,vn}
4)

where s(x1, ..., #,) is the number of variables z; set to v;, and for all 7, u; # v;.
The choice of column multipliers u = [u;] and v = [v;] determines a specific
finite-difference formula.

Setting (u,v) = (1, 0) produces Ryser’s formula. The formula with column
multipliers (u, v) = (1, —1) often has many zero-valued terms P(x) when applied
to matrices drawn from a random distribution. Methods have been developed
to reduce computation by collecting and eliminating these terms [1].

In this paper, the goal is to tailor the column multipliers (u,v) to specific
matrices A to increase the number of zero terms in the resulting formulas. We
consider the (1, —1) formula to be a standard for comparison. First we develop
a method to choose between £1 and +2 multipliers for each column. Then we
develop methods to choose column multipliers from a larger domain.



2 Even and Odd Rows, +1 and +2

If every row in matrix A has an odd number of 1’s, then the (1,—1) formula
does not produce any zero terms at all. Consider the following problem instance
matrix and the corresponding matrix with columns multiplied by variables.

1 1 1 11 xy ®3 X3 X4 3
1 11 0 0 ry ¥ X3 0 0
A=(0 1 1 1 0|B= 0 3 3 x4 O (5)
001 11 0 0 r3 Xg s
1 10 01 z; 2 0 0 x5

Each row of B has an odd number of variables, so it is impossible to assign an
equal number of +1’s and —1’s to the variables in any row.

Zero terms can be introduced by setting u; = 2 and v; = —2 for some
variable x; and setting u; = 1 and v; = —1 for the other variables. For example,
setting u; = 2 and v; = —2 introduces zero terms in every row containing zi.

A row is zeroed when the sum of the variables in its last four columns equals
the value assigned to z;. For the top row of B, there are C(4, 3) ways to assign
+1’s and —1’s to the variables z5 through 5 to get a sum of +2. By symmetry,
there are also C(4,3) assignments that sum to —2. So each assignment to z;
has C(4,3) zero terms, and the top row now has 2C(4, 3) = 8 zero terms. By
the same reasoning, the second and fifth rows now have 2C(2,2)} = 2 zero terms
each. On the other hand, the third and fourth rows do not contain x, so their
column sums are still odd for all assignments. Hence, they have no zero terms.

2.1 41 and 42 Procedures

One approach to choosing column multipliers u and v is to set all column mul-
tipliers to £1 initially, then set some multipliers to £2 to introduce zero terms
in odd rows. Define Z;’___l a;ju; to be the row total for row 7. For a row to
have zero terms in a (u, —u) formula, the row must have an even row total —
otherwise exact cancellation of variables is impossible. Thus, toggling a column
multiplier between +1 and 42 toggles the possibility of zero terms for each row
of B with a variable in the column.

One goal in allocating £1’s and +2’s as column multipliers is to maximize
the number of rows with even row totals. Another goal is to limit the number of
+2’s. In the (+1,—1) formula, each row’s zero terms come from the center of
the binomial distribution. As more +2’s are introduced, the zero terms recede
away from the center of the distribution. For example, suppose a row has 10
variables. In the (+1, —1) formula, the row has C(10,5) = 252 zero terms. Now
suppose two of the variables have column multipliers £2. In 2 cases, the =2
variables cancel, and there are C(8,4) zero terms. In the other two cases, the
+2 variables sum to 4 or —4, and there are C(8,2) zero terms. This is a total
of 2C(8,4) + 2C(8, 2) = 196 zero terms.



Suppose a row has k variables, d with £+2 column multipliers and k — d with
+1 column multipliers. Also, suppose the total is even. Then the row’s zero
terms can be counted as a sum of cases. In each case, let m be the number of
+2 variables assigned +2. The sum of the £2 variables is +2(m) — 2(d —m) =
4m — 2d. If there are not enough &1 variables to cancel the £2 variable sum,
ie. if k —d < |4m — 2d|, then the case has no zero terms. Otherwise, in each
zero term, |4m — 2d| of the k — d £1 variables cancel the £2 variable sum. Also,
half of the remaining (k — d) — |[4m — 2d| &1 variables cancel the other half. So
this formula counts the row’s zero terms:

d

> C(d,m)C(k — d, |4m — 2d| + %[(k — d) — |4m — 2d]]) (6)
m=1

k—d> |4m — 2d|

d
)» 1 Od,m)C(k—d, {(k—d) + Mm —2d]) (1)
k—d> |4m — 2]

The following procedure assigns =1 and £2 column multipliers. Initially,
all column multipliers are assigned +1. Each step executes one of the column
multiplier toggles which most increases the number of rows with even totals.
Since each step increases the number of rows with even totals, the procedure
terminates after at most n steps. The procedure returns u and v = —u.

choose_multipliers_41_42

{

define even(A,u) = |{i| Z;L:l aiju; is even }|

(w1, o1, 1, %541, .o, Un) }fuj =2
(1, =1, 2, U415 .. Up) iy =1

define toggle(u, j) =
initially u = 1
while 3 j € {1,...,n} such that even(A4,toggle(u, j)) > even(4,u)
T = {j| even(4,toggle(u, j)) = maxz.(; 3 even(A,toggle(u, 7))}
choose j from T

u := toggle(u, j)

return(u, —u)

}



2.2 41 and £2 Tests

Figures 1 and 2 compare the number of zero terms in the permanent formula with
(u,v) selected by choose_multipliers +1_+2 to the number of zero terms in the
formula with (u,v) = (1, —1). The results displayed in the figures are averages
over several tests performed on random 0-1 matrices drawn from the distribution
A(n,p). The figures show that the procedure choose_multipliers 4+1_42 produces
a modest increase in the number of zero terms.
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Figure 1: Results averaged over 100 10 x 10 matrices.
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Figure 2: Results averaged over 10 16 x 16 matrices.



3 Choosing (u,v) by Iterative Ascent

In this part of the paper, we consider methods to increase the number of zero
terms by adjusting the column multipliers iteratively. We begin with some
column multipliers (u,v). We estimate the number of zero terms that would
occur if the corresponding formula was applied to the problem instance at hand.
We consider adjustments to some of the column multiplier values, estimating
the number of zero terms that would be produced by each adjustment. We per-
form the adjustment that would produce the most zero terms, according to our
estimates. Then, we perform the same process on our new column multipliers.

3.1 TIterative Ascent Procedures

We restrict our search to integer-valued column multipliers. Since column mul-
tipliers (u,v) with uw = —v have computational advantages due to symmetry
[1], we restrict our search to these multipliers. Thus, we search for a vector u
such that the (u, —u) formula has many zero terms when applied to problem
instance A. Since the finite-difference formulas require u; # v; Vj, we restrict
the search to values of u with u; # 0 Vj. Note that if we exchange column
multipliers u; and vj, then the resulting formula has the same number of zero
terms as the original formula. Thus, any formula can be converted to a formula
with u > 0 and with the same number of zero terms by exchanging u; and v,
for each negative u;. Thus, we restrict our search to u > 0.

Our iterative procedures perform local ascent steps in the lattice of positive
integer-valued vectors. These procedures are subject to all of the problems
associated with gradient ascent methods. For example, our iterative procedures
may settle on local maxima that are not optimal.

Let f(u) be an estimate of the number of zero terms in the (u, —u) formula
for the permanent of matrix A. Let u’ be an initial value for u. Let N(u)
be a set of column multiplier candidates that includes u. Our iterative ascent
procedures have the following form.

iterative_ascent

{

u=u’

repeat
u= minweN(u) f(w)

until the termination condition is satisfied

return (u, —u)

}



The intial value can be set randomly, set to 1, or set by the procedure
choose_multipliers +1_42. If the values are drawn at random, it is probably
best to favor small values in the distribution.

The termination condition can consist of a test for convergence coupled with
a limit on the number of iterations. The iterative methods presented here are
not guaranteed to converge, so a test for convergence alone is not sufficient.

Larger sets of candidates N(u) produce more robust search steps, but they
also have higher computational costs. It is tractable to conduct line searches,
in which a single element of u is varied over some range. It is also feasible to
vary a few elements at once. However, varying all elements independently is
intractable, since it produces an exponential (in n) number of candidates.

Random sampling can provide an estimate f(u) of the number of zero terms.
Choose some assignments (z) at random from {u;, —u1} X - - - X {un, —u,}. For
each assignment, compute the term P(x). Multiply the fraction of the sampled
terms with value zero by 2" to estimate the number of zero terms. The accuracy
of the estimate grows with the samplesize. On the other hand, the higher variance
resulting from smaller sample sizes may encourage escape from local maxima.
So the best strategy may be to begin with a small sample size and increase it
over the course of the iterations — a simulated annealing technique.

An estimate of the number of zero terms can be calculated by assuming
independence among the terms zeroed by individual rows. Define U to be the
set of assignments to x in the permanent formula.

U={ug,—ur} XX {tp,—un} (8)

Define Z; to be the set of assignments for which row 7 has sum zero after the
columns of A are multiplied by the elements of x, i.e. let Z; be the set of
assignments x for which the terms P(x) are zero because row ¢ has sum zero.

Z,' = {x| Zaijwj = 0} (9)

Define ¢; = %ﬁ‘—, i.e. ¢; is the fraction of assignments that zero row 1.

If the row zeroings were independent, then the fraction of assignments that
zero no row would be:

[10-a (10)

The fraction of zero terms would be the difference between this number and one.
So we have the following estimate of the number of zero terms.

fu) =271 - T - )] (11)
i=1 .



10

This estimate can be computed efficiently by using the following dynamic pro-
gramming procedure to calculate each |Z;|. The procedure’s operation is based
on the principle that each assignment to the first k¥ — 1 variables zq,..., 251
that generates sum s in the first £ — 1 elements of row i after column multiplic-
ation (s = Ef;ll a;;x;) is the prefix of two assignments to the first k variables
&1,...,%. The assignment with z; = ug has sum s+ uy in the first k elements,
and the assignment with z; = v; has sum s + v in the first k& elements. In the
procedure, b* is the minimum sum of the first k elements of row i after column

multipliers have been applied to A.

k
bk = xmeigrlza,’jmj (12)
i=1

The variable t* is the corresponding maximum value.

k
t* = max a4 (13)

U
x€ j=1

On termination, each variable c® contains the number of column multiplier as-
signments x that produce a row sum of s over the first k£ elements of row 1.

k
ok = {x € U|Y_ aijz; = s}| (14)
=1

Hence, ¢} is the number of assignments that zero row ¢. (The procedure is
written for the general (u,v). To compute the estimate f(u), call the procedure
with v = —u.)

compute.| Z;|(A,u,v i)

define b¥ = S°5_, a;; min(uj,v;) V k€ {1,...,n}, 0 =0
define t* = Zj_:l a;; max(uj,v;) Vke€{l,...,n}, =0
initially ¥ =0V k€ {1,...,n}, s € {b*,.. ., #*}, =1

fork=1ton

Vse {1 ... tF 1}
{

k e K k-1
Cotaipur *= Cstairu + Cs

k ok k-1
Cstamvr = Cstanuy T Cs
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}

return cj

}

In reality, row zeroings can be highly correlated. For example, suppose
(u,v) = (1,—1) and A has no zero rows. The assignment x = 1 makes every
row sum positive, so each row has probability zero of having a zero sum. On the
other hand, among assignments with about half of the elements of x assigned +1
and about half assigned —1, each row has a relatively high probability of being
zeroed. Thus, intersections of the sets of terms that zero each row are larger
than they would be if row zeroings were independent. Consequently, the union
of row zero sets is smaller than it would be if row zeroings were independent. So
f(u, v) overestimates the number of zero terms |Z; U...U Z,|.

Recall that when (u,v) = (1,-1), each row’s zero terms are drawn from
the center of the binomial distribution. Hence, ¢; :O(ﬁ) for each row i.

Substituting ¢; = ﬁ into (10) gives a rough estimate of the expected fraction

of nonzero terms if the row zeroings were independent:

g Ly At
Eu 7)== 7= = (15)

Earlier in this paper it was shown that the expected fraction of nonzero terms

is actually much higher, e.g. it is O(\/ﬁioﬂ) when p = 1.

The intersections of row zero sets can be decreased by varying (u, —u) from
(1,—1). But this process generally shrinks the row zero sets themselves. So
there is a tradeoff. If the elements of u are too small, then the row zeroings are
highly correlated, so the union of row zero sets is small. If the elements are too
large, then there are very few row zeroings, so once again the union of row zero
sets is small.

Our approximation function f(u) can be extended so that it depends on some

. A . .
of the row zero set intersections. Define g5 = lUJ'IUSI—l, and ¢g = 1. By inclusion

and exclusion:

U—(Z1U...UZ, .
U = IIUI )| _ E (=1)=15lgg (16)
SC{i,...,n}

Assuming independence (g5 = [[;c5 ¢i) gave the estimate:

|IJ—(Zl‘L(JJ.|..uZn)Iz Y P [e=T[0-a 7

Sg{ll"')n} @.ES ":=1
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Expand the product, group the factors by pairs, and expand each pair:

n

[[i-a)=(0-a)...(1-¢n) = (1—q1—g2+0192) ... (1= Gn_1 — Gn -+ Gn—-10n)
i=1

(18)
To introduce some intersections, replace q192, . . -, gn—-19n With g(1 23, .., ¢{n—1,n},
1.e. remove the independence assumption on these pairs of row zero sets.

U—(Z1U...UZ,
= IIUI ) H(l-gi—gq2+9(1,2) - (L= @no1—tn +n-1,n}) (19)

So we have the following estimate of the number of zero terms |Z; U...U Z,|.
f(u) = 2n[1 - (1 —q1—q2+ Q{I,Z}) v (1 —qn-1—qn + Q{n—-l,n})] (20)

The dynamic programming procedure to compute |Z;| can be extended to

compute |Z;, N Z;,|. On termination of the following procedure, cfl’ s, contains

the number of assignments x that produce partial row sum sy over the first &
elements of row 7; and partial row sum sy over the first k elements of row i
after column multiplication.

k k
ek =X EUIY iz =51 and Y aiiz; = 55} (21)

ji=1 i=1

Hence, c’g’o is the number of assignments that zero both row ¢; and row ;.

compute_|Z;, N Zi, [{A,u,v,i1,i3)

{
define b% = E’?ﬂ ai,; min(uj,v;) Vk € {1,...,n}, 8 =0
define #§ = )°_; @i,y max(uj,v;) Vk € {1,...,n}, ] =0

define bk = El?zl aijmin(uj,v;) Vk€{l,...,n}, b3 =0
define 5 = 3°7_; @i,y max(uj,v;) Vk € {1,...,n}, 43 =0

initially ¢* ,. =0V k€ {1,...,n}, (s1,52) € {b},.. ., 15} x {85, ..., 85}, cfp =1

fork=1ton
{
Y (s1,82) € {b’f’l, .. .,t]f_l} X {bg_l,...,t’g_l}

{

k — ok + k—1

= . c
Csitaiyntun,sataigrtur *— Cs14ai kuk,sat+ainur T Cs1,55

— ok
Cs1+ai1k‘vk,52+ai2kvk T cs1+a¢1kﬂk,52+ai3kvk §1,82
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}
}
return cg o

}

Similar estimates can be derived using intersections of three or more sets.

3.2 TIterative Ascent Tests

Figure 3 shows the results of tests to compare several iterative search methods
against the (1,—1) formula. In each test, a random 0-1 matrix is drawn from
A(n,p), and each iterative method is applied to the matrix to produce some
(u, —u). Then the fraction of zero terms is computed for each (u, —u) formula
given by an iterative method, and for the standard (1, —1) formula as well. The
results shown in the figure are averages over several tests.

In all of these tests, the initial value u® is 1. The searches are terminated
after 20 iterations. In each iteration, a pair (j1,j2) is selected at random from
{1,...,n}?, and N(u) is two-dimensional with a “radius” of two in the j; and
jo elements:

wy, € {uj, —2,...,u5 + 2}, wy, € {uj, —2,...,u5,+2}, and w >0} (23)

The sampling estimator draws 50 random terms to estimate the nonzero term
fraction for each w in the search. Figure 3 shows that iterative search with the
sampling estimator generally failed to produce a formula with more zero terms
than the standard (1, —1) formula. The accuracy may be improved by drawing
more samples, but, given the size of the test matrices (10 x 10), using even 50
random terms is infeasible. Computing the permanent formula using u = —v
symmetry requires calculating at most %210 = 512 terms. But the iterative
formula to find multipliers computes 20 x 5 x 5 x 50 = 25,000 terms!

The estimators based on computing the cardinality of row zero term sets
fared better. The estimator that computes the cardinality of some intersections
generally outperformed the estimator that assumes independence among all row
zero term sets.
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Figure 3: Results averaged over 10 10 x 10 matrices.
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4 Conclusion

Our tests indicate that, on average, either of two simple strategies increases
the number of zero terms in the permanent formula by adapting the column
multipliers to the problem instance at hand. One succesful strategy is to assign
+2 column multipliers to create zero terms in rows with odd numbers of entries.
Another succesful strategy is to choose the column multipliers by iteratively
ascending on an estimate of the number of zero terms in the formula. Both of
these strategies are efficient. They operate in polynomial time to reduce the
permanent computation, which requires exponential time in the worst case.

The strategies developed here are simple and ad hoc. Their success demon-
strates the utility of adapting the permanent formula to the problem instance
at hand. There is no reason to believe that the methods developed in this pa-
per are optimal in any way; there are probably much better methods yet to be
discovered.



16

References

[1] E. Bax and J. Franklin, A finite-difference sieve to compute the permanent,
CalTech-CS-TR-96-04.

[2] H. J. Ryser, Combinatorial Mathematics, The Mathematical Association of
America 1963, Ch. 2.

[3] L. G. Valiant, The complexity of computing the permanent, Theoretical
Computer Science, 8 (1979) 189-201.



