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1 Introduction

Training with early stopping is the following process. Partition the in-sample
data into training and validation sets. Begin with a random classifier g;. Use
an iterative method to decrease the error rate on the training data. Record the
classifier at each iteration, producing a series of snapshots g1, ..., gyr- Evaluate
the error rate of each snapshot over the validation data. Deliver a minimum
validation error classifier, g*, as the result of training.

The purpose of this paper is to develop a good probabilistic upper bound on
the error rate of g* over out-of-sample (test) data. First, we use a validation-
oriented version of VC analysis [8, 9] to develop a bound. Because of the nature
of VC analysis, this initial bound is based on worst-case assumptions about the
rates of agreement among snapshots. In practice, though, successive snapshots
are similar classifiers. We exploit this feature to develop a new bound. Then
we test the bound on credit card data.

2 VC(C-Style Bound

2.1 Framework

Our machine learning framework has the following structure. There is an un-
known boolean-valued target function and an unknown distribution over its
input space. For example, the input distribution could be typical data about
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credit card applicants, and the target function could be 1 if the applicant de-
faults within 5 years of being issued a credit card and 0 otherwise.

We have a sequence of snapshot classifiers g1, ..., gy We have d validation
examples which were not used to train the classifiers. We also have d’ test inputs
(but not the corresponding outputs). The validation and test inputs were drawn
independently at random according to the underlying input distribution. The
validation outputs were determined by the target function. We desire a bound
on the error rate over the test inputs of a classifier g* € {g1,...,gm} that has
minimum error rate over the validation data. (The error rate of a classifier over
a data set is the rate of disagreement over the inputs between the classifier and
the target function.)

2.2 Single-Classifier Bound

The first step to develop a VC-style bound for the test error of g* is to develop
a bound for an arbitrary snapshot g,, chosen without reference to validation
error. Let v, be the validation error of g,,, and let v], be the test error. Let
n = d + d’, the number of inputs in the validation and test data combined.
The probabilities in our error bounds are over partitions of the n inputs into
d validation examples and d' test examples. Since the inputs are drawn i.i.d.,
each partition is equally likely.

Let w be the number of the n inputs for which classifier g,, produces the
incorrect output. The probability that the validation error is % is
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Bound by maximizing over w.

Pr{v,, > vy +e} < max Pr{v, > v, +¢cw} (3)
we{0,...,n}

We refer to the bound as B(e).

2.3 Initial Test Error Bound for ¢*

The single-classifier bound

Pr{v), > vy + €} < B(e) (4)



is based on probabilities over random partitions of the n inputs into validation
and test sets. Classifier g* is chosen according to validation error. To compute
validation error, we implicitly use information about which inputs are in the
validation set. So g* is chosen by reference to the partition at hand, and hence
the single-classifier bound is not valid for g*.

However, the snapshot sequence g1, . . ., gar is chosen without reference to the
partition since training references neither validation nor test data. We develop
a uniform bound over the gi,...,gn. The uniform bound includes a bound on
g" since g* € {g1,...,9m}-

To obtain a uniform bound, consider the probability of failure for at least
one single-classifier bound.

Pr{v; > vy +eor ... or vy > vy + €} (5)
Bound the probability of the union event by the sum of event probabilities.
<Pr{vi>vi+e}+...+Pr{vy, > v +€} (6)
Use the single-classifier bound for each probability.
< MB(e) (7)
Subtract M B(e) from one to bound the probability of the complement of (5).
Pr{v; <vi +eand ... and v}; <vpy +¢€} > 1— MB(e) (8)
This uniform bound applies to g* since it is a snapshot.
Pr{v, <v.+e}>1— MB(e) (9)

where v, and v, are the test and validation error rates of g*.

3 Central Classifier Bound

Choose a set of “central” classifiers ¢y, ..., cg without reference to the partition
of inputs into validation and test sets. For example, select central classifiers by
sampling the snapshots at intervals of 100: ¢; = g100, - --,C10 = 1000-

Let ¢* be a central classifier which may be chosen with reference to the
partition. Let /. and v be the test and validation error rates of c¢*. Since the
central classifiers are chosen without reference to the partition, we can use a
uniform bound over them as a bound for ¢* in the same manner as we used a
uniform bound over the snapshots as a bound for g* in (9).

Pr{v} <vi +¢€}>1—-S5B(e) (10)



As before, let v, and v, be the test and validation error rates of g*. Add v —v/,
to both sides of the inequality in the event.

Pr{v} + (v, —v}) <vy + (v, —v)) +€} >1—SB(e) (11)

This implies
Pri{v, <vi+ (v, —v})+e} >1—S5B(e) (12)

Note that the difference in error rates between any two classifiers can be no
greater than the rate of disagreement. Let § be the rate of disagreement between
g* and c¢* over the test inputs. Since § > v, — v/,

Pr{v, <vy+6+¢€} >1—SB(e) (13)
Let 8 = vi — v4. Rewrite vy as v, — 3.
Pr{v, <vi.+pB+6+¢€}>1—-5B(e) (14)

This is the central classifier bound, in which the test error of ¢* is bounded by
reference to a central classifier ¢*. Note that the bound is valid for ¢* chosen ac-
cording to the partition. So it is valid to use the central classifier that minimizes
B+ 6 as ¢* in the bound (14). However, the set of central classifiers ¢y,...,cs
must be chosen without reference to the partition. Hence, the set cannot be
chosen to minimize 8 + ¢ directly.

4 Selecting Central Classifiers

We may use the validation and test inputs to select the set of central classifiers
as long as we do not differentiate between validation and test inputs. In this
way, we choose the same set of central classifiers regardless of the partition.
Since the probabilities of bound (14) are over partitions, the bound is valid.

Let rp,s be the number of validation and test inputs for which g,, and c;
disagree. Note that the difference in validation error rates 3 is no greater than
the rate of disagreement over validation inputs. So 8+ ¢ is no greater than the
sum over validation and test examples of disagreement rates between g* and c¢*.
The sum of rates is maximized when the disagreements are concentrated in the
smaller data set. Note that g* could be any g,,, and we choose ¢* to minimize
B+0. .

. ms
B+6< max min min(d, @) (15)
Refer to the bound as ~.

We can choose bounding methods and select central classifiers using any
approximation of 3 + ¢ that neither references validation and test outputs nor
differentiates between validation and test inputs. We can approximate 3 + &
by altering the bound (15). The average rate of disagreement in each data set



is mm= 5o substitute == for #dfd,). We still have the rate of disagreement
over validation inputs bounding the difference in validation errors 3. Scale the
disagreement to reflect any a priori beliefs about the relationship between dis-
agreements and error rate differences. For example, to express a belief that, on
average, the validation error difference is half the rate of disagreement, replace
Ims by Ims(1d 4 %) Finally, instead of maximizing over classifiers g,,, take an
average, weighted according to any a priori beliefs about which classifier is g*.
For example, if the initial classifiers have high training error, then give them

less weight.

5 Tests

This section outlines the results of tests on a set of credit card data. Each
example corresponds to a credit card user. There are six inputs that correspond
to user traits. The traits are unknown because the data provider has chosen
to keep them secret. There is a single output that indicates whether or not
the credit card user defaulted. The data were obtained from a machine-learning
database site at the University of California at Irvine. The discrete-valued traits
were removed, leaving the six continous-valued traits. Of the 690 examples in the
original database, 24 examples had at least one trait missing. These examples
were removed, leaving 666 examples. The data were cleaned by Joseph Sill. For
further information, see [7].

There were 10 tests. In each test, the 666 examples were randomly parti-
tioned into 444 training examples, d = 111 validation examples, and d' = 111
test examples. In each test, a classifier was trained, producing M = 1000
snapshots. The classifiers are artificial neural networks with six input units, six
hidden units, and one output unit. The hidden and output units have tanh acti-
vation functions. The initial weights were selected independently and uniformly
at random from [—0.1,0.1]. The networks were trained by gradient descent on
mean squared error over training examples, using sequential mode weight up-
dates with random order of example presentation in each epoch. After each
epoch, a snapshot was recorded.

In each test, eight sets of central classifiers were extracted. The first set
contains all snapshots. Hence, the error bounds based on the first set of central
classifiers are the traditional error bounds. The other sets of central classifiers
were drawn from the snapshots at regular intervals of 10, 20, 50, 100, 200, 500,
and 1000 classifiers. For example, the set drawn at intervals of 10 contains
S = 100 central classifiers, snapshots gi0, g20, - - - , 91000-

In each test, the validation data was used to determine g*, the snapshot with
minimum validation error, and v,, its validation error. For each set of central
classifiers, the validation data and the test inputs were used to determine c*, the
best central classifier, v, its validation error, and 8, the rate of disagreement
between g* and c¢* over the test inputs. This information was used to derive



S Vs Vi 6 Jé;
1000 | 0.198 | 0.198 | 0.000 | 0.000
100 | 0.198 | 0.205 | 0.000 | 0.006

50 | 0.198 | 0.205 | 0.006 | 0.006

20 | 0.198 | 0.207 | 0.012 | 0.009

10 0.198 | 0.212 | 0.014 | 0.014

5 0.198 | 0.221 | 0.033 | 0.023

2 0.198 | 0.222 | 0.072 | 0.023

1 0.198 | 0.234 | 0.094 | 0.036

Table 1: For S central classifiers, validation error v, of g*, validation error
v; of ¢*, test set disagreement rate 6 between ¢* and g¢*, and validation error
difference 8 between c¢* and g*. (Average over 10 tests.)

test error bounds for g* using formula (14).

Table 1 shows the averages over the 10 tests of the validation error of g*,
the validation error of ¢*, the rate of disagreement ¢ between ¢* and g* over the
test inputs, and the difference 8 between the validation errors of ¢* and g*. In
the top line, each snapshot is a central classifier, so ¢* is g*. As the number of
central classifiers S decreases, the validation error of the best central classifier
increases and its rate of disagreement with the classifier chosen by early stopping
also increases.

Table 2 shows the average upper bound on the test error of g* that is achieved
with 90% confidence when a fixed number S of central classifiers are used for
all tests. To derive the bound, recall formula (14).

Pr{v, > vy +6+¢€} < SB(e) (16)

Let €yin(S) be the minimum € such that SB(e) < 0.10. The best upper bound
with failure probability no more than 10% is vy + § + €min(S). At first, the
bound improves as the number of central classifiers is decreased. The decrease
in €min(S) more than offsets the increase in vy + 6 as fewer central classifiers are
used. Eventually, there are too few central classifiers to attain a good match
between some central classifier and the classifier chosen by early stopping. After
this, the best bound increases as the number of central classifiers is decreased.

Tables 3 and 4 show the results of tests to select the number of central
classifiers using estimates of 3 + 6, as discussed in the previous section. The
bound 7, as defined in inequality (15), was computed for each test. This bound
proved too loose to be useful because the central classifiers have high rates of
disagreement with the initial snapshots in the training sequences. These rates
determine the bound since it maximizes over snapshots. However, the initial
snapshots are almost never chosen by early stopping.

An alternative estimator, 75, was computed by ignoring the first 10 snap-



S Vi +6 | €min(S) | avg. bound
1000 | 0.198 0.253 0.451
100 | 0.205 0.208 0.413

50 0.211 0.199 0.410

20 0.219 0.181 0.400

10 0.225 0.163 0.388

5 0.254 0.145 0.399

2 0.294 0.118 0.412

1 0.328 0.091 0.419

Table 2: For S central classifiers, average upper bound on test error of g* with
90% confidence. (The value €yin(S) is the minimum e such that SB(e) < 0.10.)

S | B+ s Ya
1000 | 0.000 | 0.000 | 0.000
100 | 0.006 | 0.042 | 0.006
50 | 0.012 | 0.052 | 0.009
20 | 0.021 | 0.084 | 0.015
10 | 0.028 | 0.095 | 0.020
5 | 0.056 | 0.143 | 0.037
2 | 0.095 | 0.228 | 0.078
1 |0.130 | 0.273 | 0.124

Table 3: For S central classifiers, the actual value of 8+ é§ and the estimates v,
and ,. (Average over 10 tests.)

shots. Hence,
. Tms
= max min —— 17
Vo = Ao min(d,d") (17)
where 7,,s is the number of validation and test inputs for which g,, and c;
disagree. Another estimator, 7,, was computed by averaging disagreement rates
over snapshots (instead of maximizing).

o . Tms
Ya = Em min min(d, d') (18)

Table 3 compares the average of 3+ to the average of v, and ,. On average,
v, is more accurate than -, 7, underestimates 540, and -y, overestimates 5+0.

Table 4 compares the bounds derived by choosing the number of central clas-
sifiers in four different ways. (The choiceis over S € {1,2, 5,10, 20, 50, 100, 1000}.)

1. Set S = 1000. This gives the bound without central classifiers: v, +
€min(1000).

2. Choose S to minimize v, + €min(S) + 7s, i-€. use s to estimate 5 + 6.



method avg. bound | std. dev. of avg.
traditional 0.451 0.007
estimator v, 0.414 0.015
estimator 7, 0.386 0.016
ideal 0.365 0.016

Table 4: Performance of four bounding methods. Statistics are over 10 tests.

3. Choose S to minimize v, + €min(S) + 74, i.€. use v, to estimate 3 + 6.

4. Choose S to minimize vi + €min(S) + B + §. In practice, it is not valid
to choose S this way, since computing 3 + ¢ requires knowledge of the
partition of inputs into validation and test sets. (See the previous section.)
This is the “ideal” bound that would be achieved by a perfect estimator
of B+ 6.

Table 4 displays the average bound for each method and the standard devi-
ation of the average bound as an estimate of the mean bound over all partitions
of the data set into training, validation, and test sets, i.e. over all possible tests.
This statistic shows that the average bounds obtained through selecting central
classifiers with our estimates are statistically significantly less than the bounds
obtained without central classifiers.

6 Analysis

We analyze the central classifier and VC-type bounds to examine the roles
of relevant parameters and variables, including number of central classifiers,
data set size, difference in validation errors, and rate of disagreement over test
inputs. To simplify the analysis, we use the Hoeffding bound [6] 26*%52D, where
D = min(d,d’), in place of the partition-based bound B(e). (The Hoeffding
bound is smooth, and it is often used in VC analysis [8].)

For a chosen confidence level, compare the test error bounds produced by
the VC-type and central classifier methods. The VC-type bound (9) becomes

Pr{v, > v. + €} < 2Me~ 7D (19)
The central classifier bound (14) becomes
Pr{v. > v, +B+6+¢€} <28e"3 P (20)

with € substituted for € because we will use different values in the two bounds.
Choose € and €' so that the bounds have equal confidences.

2 M
"=/ — Z1n— 21
€ €= 5l (21)



The central classifier bound is lower, and hence stronger, when
Vit B+8+€ <vite (22)

Cancel vy, and substitute for €, using (21).

/ 2. M
,6'—!—5—!— 62—51n§<€ (23)

Note that the central classifier bound has an advantage when there is less
data. In practice, there is a tradeoff between the ratio of snapshots to central
classifiers, %, and the value 6 + 3. As fewer central classifiers are used, %
increases, which should improve the bound. However, with fewer central classi-
fiers, g* is less likely to have similar outputs to c¢*, so 6 + 8 increases, weakening
the bound.

7 Alternative Central Classifiers

The central classifiers need not be snapshots. For example, a central classifier
could be defined as the result of voting among a set of snapshots. In this case,
it is possible for ¢* to have lower validation error than g*, improving the error
bound. Also, a central classifier could be defined as the following process. For
each example, choose a member at random from a set of snapshots and apply
it. The error rate of this process can be validated with the same confidence as
the validation of a single classifier [4]. The validation error is the average over
set members. The rate of disagreement between the central classifier and g* is
the average rate of disagreement between the set members and g*.

8 Undetermined Test Inputs

If the test inputs are undetermined, but the underlying input distribution is
known, then the test error of g* can be bounded by combining the central
classifier bound (14) with a probabilistic bound on §. First, choose central
classifiers without reference to the validation data. Then choose € to determine
the confidence of the central classifier bound (14). Next, compute the validation
errors of the central classifiers and identify g*. Let v be the validation error of
classifier ¢;. Let 65 be the (unknown) rate of disagreement between ¢y and g*
over the test data. By the uniform bound (8)

Pr{v, >vi+e+b6 or ... or v, >vs+e+ 65} < SB(e) (24)

Let ps be the probability that c¢; and ¢g* disagree on a random input. The
values py, ..., ps can be uniformly estimated to arbitrary accuracy by examining
the rate of disagreement over random inputs. (Since we can generate as many



random inputs as we desire, we can generate independent samples to estimate
each value p,. Each of these values is the mean of a Bernoulli process that takes
value 1if ¢; and g* disagree and value 0 otherwise. By the central limit theorem
[5], the sample mean converges to ps almost surely.)

Choose ¢* to be the central classifier with minimium vs + ps. Let v4 be the
validation error of ¢*. Let p be the probability that ¢* and ¢g* disagree on a
random input. For a random test set

Pris= 1) = (‘,i')p’*a —p)t (25)
Hence,
Pr{s>Cl= 3 (i)pk<1—p>d’k (26)
{k| £ >¢}

To bound the test error, note that
Pr{v. >vy+e+(} <Pr{v. >vy +e+6ord>(} (27)

since the event in the first probability implies the event in the second. Bound
the probability of the union of events by the sum of probabilities.

U
PI'{V,’,( ZV++€+6 Or6><}SSB(e)+ Z <(]i>pk(1_p)d’k (28)
{kl 3 >¢}
By (27) and (28)
U
PI'{I/:( ZV++€+<} SSB(e)—F Z <(]i>pk(1_p)d’k (29)
{kl27>¢}

To obtain the error bound, take the complement of the LHS and subtract the
RHS from one.

Pr{v, <vi+e+(>1-[SBle)+ Y (i)p’”’(l — )k (30)

(kI %>}

9 Discussion

We have developed and experimented with a new test error bound for the clas-
sifier chosen by early stopping. We analyzed the central classifier bound to
explore how various parameters and variables determine its quality. Also, we
briefly discussed alternatives to selecting central classifiers by sampling from
the snapshots. Furthermore, we outlined a method to use the central classifier
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bound when the test inputs are undetermined, but the input distribution is
known.

This work presents several opportunities for future research. Alternative
central classifiers, including voting committees and other ensemble methods,
deserve further attention. The present method of sampling from the snapshots
is simple but not necessarily optimal. Also, the central classifier bound should
be extended beyond the realm of classification problems to regression problems,
in which the target function is not boolean. The different error metrics used for
regression problems, e.g., mean squared error, give different analogues to the
rule for boolean problems that the rate of disagreement bounds the difference
in error rates. The new rules may require different uses of central classifiers to
develop error bounds and different methods to select the central classifiers.

There is a technical report [2] on applying the central classifier bound to the
full VC framework. For more advanced applications of bounding by inference,
see [1]. Finally, for improved uniform bounds over the central classifiers, see [3].
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