
Is This A Quadrisected Mesh ?

Gabriel Taubin

California Institute of Technology�

Technical Report CSTR 2000.008
December 2000

ABSTRACT

In this paper we introduce a fast and efficient linear time and space
algorithm to detect and reconstruct uniform Loop subdivision struc-
ture, or triangle quadrisection, in irregular triangular meshes. In-
stead of a naive sequential traversal algorithm, and motivated by
the concept of covering surface in Algebraic Topology, we intro-
duce a new algorithm based on global connectivity properties of
the covering mesh. We consider two main applications for this al-
gorithm. The first one is to enable interactive modeling systems
that support Loop subdivision surfaces, to use popular interchange
file formats which do not preserve the subdivision structure, such as
VRML, without loss of information. The second application is to
improve the compression efficiency of existing lossless connectiv-
ity compression schemes, by optimally compressing meshes with
Loop subdivision connectivity. Extensions to other popular uni-
form primal subdivision schemes such as Catmul-Clark, and dual
schemes such as Doo-Sabin, are relatively strightforward but will
be studied elsewhere.

CR Categories and Subject Descriptors:
I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling - surface, solid, and object representations.

General Terms: Subdivision surfaces, 3D Geometry Compres-
sion, Algorithms, Graphics.

1 INTRODUCTION

Subdivision surfaces are becoming a popular multi-resolution rep-
resentation in modeling and animation [18, 17]. For example Fig-
ure 2-AB shows the result of applying Loop’s triangle quadrisec-
tion scheme [6] to a triangular mesh. Since the most popular inter-
change file formats, such as VRML [15], do not preserve the sub-
division structure, a problem exists if the model is saved using one
of these file formats and further editing is required at a later time.
Alternatively, a proprietary file format with support for subdivision
surfaces can be used, but limiting the distribution of the content.
The method introduced in this paper to detect uniform quadrisec-
tion connectivity and to reconstruct the subdivision structure solves
this problem.

Most 3D geometry compression techniques por polygonal meshes
preserve the connectivity information without loss [13]. Lossless
connectivity compression schemes are important for example, when
a mesh is carefully constructed by an artist using a modeling or ani-
mation package. In this framework, changing the connectivity may
destroy important features such as crease lines. In most interactive
modeling systems polygonal meshes are constructed and refined by

�California Institute of Technology, Department of Electrical Engineering, MS-
136-93, Pasadena, CA 91125, taubin@caltech.edu. On sabbatical from IBM
T.J.Watson Research Center, P.O.Box 704, Yorktown Heights, NY 10598

A B

C D

Figure 1: Example with complex topology. A: Coarse triangular
mesh (� � ������ � � ������ � � � � � � ����) is not
a quadrisected mesh because its covering mesh is connected. B:
Quadrisection of coarse mesh (� � ����	� � � 		��
� � �� �

� � ����). The clustering mesh of this quadrisected mesh has
two connected components. Rendering of edges has been turned
off. C: First component of clustering mesh (� � ����
� � �

���� ���� � ����	�). D: Second component of clustering
mesh equivalent to coarse mesh.

recursively applying a sequence of operators to a relatively simple
base mesh. Some of these operators, such as uniform subdivision,
change the connectivity, while others, such as smoothing, change
the geometry. One example of this process is a mesh constructed
by recursively applying a small number of uniform subdivision and
smoothing steps to a coarse mesh [10].

When a 3D polygonal mesh is large and generated by over-
sampling a relatively smooth surface with simple topology, such as
those produced by 3D scanning systems, lossy connectivity com-
pression schemes can be used. Simplification algorithms [3] can
be regarded as lossy conectivity compression techniques. Another
very efficient scheme to compress this kind of data is based on
remeshing, i.e., on approximating the geometry of the given polyg-
onal mesh by a semi-regular subdivision surface within certain tol-
erance, and using wavelet-based coding techniques to compress the

A B

C D

Figure 2: Algorithm overview. A: Coarse mesh (� � ���� � �
����� � �� � � � �). B: Quadrisected mesh (� � ����� � � �
	
��� � � � � � � �). The clustering mesh of this quadrisected
mesh has two connected components. C: First component of clus-
tering mesh (� � ����� � � ��	�� � �� � � � ���
�). Note
the large number of holes and face overlap. D: Second component
of clustering mesh equivalent to coarse mesh.

geometry information [5]. This method does not produce good
compression results when the topology is not simple, though, and
replacing the connectivity of the mesh is not always acceptable.

Uniform subdivision schemes can be regarded as optimal pro-
gresive connectivity compression schemes, because the cost of en-
coding each subdivision step is constant [11]. Unfortunately, cur-
rent geometry compression schemes [13] do not detect subdivision
connectivity, and as a result, the cost of encoding a uniform subdi-
vision step is normally function of the size of the coarse mesh.

For example, Table 1 shows the cost of encoding the connectiv-
ity of a tetrahedron and eight meshes constructed by recursive tri-
angle quadrisection with the MPEG-4 3D Mesh coder [8] in single-
resolution mode [12]. Note that, the total cost of encoding a quadri-

T B B/T
4 64 16.00

16 96 6.00
64 192 3.00

256 384 1.50
1,024 784 0.77

T B B/T
4,096 1,704 0.42

16,384 3,744 0.23
65,536 8,192 0.13

262,144 18,248 0.07

Table 1: Cost of encoding the connectivity of a tetrahedron and eight
meshes constructed by recursive triangle quadrisection with the MPEG-4
3D Mesh coder. T: number of mesh triangles, B: cost to encode connectiv-
ity in bits, B/T average cost to encode connectivity, in bits per triangle.

�

��

����

���

���

���

��

��

����

��

����

���

���

���

A B

Figure 3: Notation used for triangle quadrisection. A: A trian-
gle � � ���� ��� ��� with edges edges ��� � ����� ���, ��� �
����� ���, and ��� � ����� ���. B: The quadrisected triangle with
� -vertices ��, ��, and ��, �-vertices ���, ���, and ��� , and faces
�� � ����� ���� ����, �� � ���� ���� ����, �� � ���� ���� ����, and
�� � ���� ���� ����.

sected mesh is about twice the cost of encoding the original mesh
���	 � � ���	 �, while if optimally encoded, the incremental
cost should be constant ���	 � � ��	 � �
���, corresponding
to the number of bits used to represent the instruction specifying
the subdivision operation in the compressed bitstream. Other sin-
gle resolution schemes [14] are more efficient at compressing these
quasi-regular meshes, but still the incremental cost of encoding a
quadrisected mesh is function of the size of the coarse mesh.

The method introduced in this paper, to detect uniform subdivi-
sion connectivity and to reconstruct the subdivision structure, can
be used to minimize the cost of encoding the connectivity informa-
tion of a fine mesh with uniform subdivision connectivity by repre-
senting the connectivity information as a coarse mesh followed by
one or more uniform subdivision steps, rather than as a fine mesh
compressed with a single-resolution or progressive scheme.

2 ALGORITHM OVERVIEW

A polygonal mesh is defined by the position of the vertices (ge-
ometry), by the association between each face and its sustaining
vertices (connectivity); and optional colors, normals and texture
coordinates (properties). In this paper, we are primarily concerned
with the connectivity of triangular meshes.

Figure 3 shows the notation we use to represent a triangle and
the result of quadrisecting it. We call tile set a group of four con-
nected triangles with the same connectivity as the result of quadri-
secting one triangle, i.e., four trianges connected as in Figure 3-B.
The center triangle of a tile set is connected to three corner tri-
angles through regular edges. The corners of the tile set are the
vertices of the corner triangles not shared with the center triangle.

In a naive traversal algorithm to solve our problem tile sets are
sequentially constructed while the mesh is traversed, say in depth-
first order, trying to cover it avoiding tile overlaps, i.e., every face
is allowed to belong to at most one tile set. If when the mesh traver-

A B

Figure 4: The covering mesh of a triangular mesh. A: quadrisected
mesh. B: covering mesh with color-coded connected components.
The connected components are artificially displaced in space. The
quadrisection of the purple connected component is equivalent to
the input mesh.

sal procedure stops, not all the faces are covered by tile sets, a new
traversal must be started from a tile set not visited during the previ-
ous traversal. Since each triangle is covered by up to four tile sets,
we may need to restart the traversal up to four times to decide if the
fine mesh has subdivision structure or not. Non-manifold situations
are difficult to handle, and may require backtracking.

Instead of this sequential algorithm, we propose an alternative
global approach, where all the traversal is avoided, and replaced
by a parallelizable algorithm to construct the covering mesh of a
triangular mesh. The covering mesh of a triangle mesh is composed
of triangular faces called tiles supported on the same set of vertices.
The tiles are in ��� correspondence with all the tile sets that can
be constructed in the original mesh, and when quadrisected, each
one has the same connectivity as the corresponding tile set.

Our algorithm, motivated by the concept of covering surface in
Algebraic Topology [7], is based on a theorem that states that a tri-
angular mesh is a quadrisected mesh if and only if it is equivalent
to the quadrisection of one connected components of its covering
mesh. Figure 4 illustrates this construction for a simple quadri-
sected mesh. The connected components of the covering mesh are
painted in different colors, and displaced in space (vertex positions
are irrelevant). Note that the quadrisection of the purple connected
component is equivalent to the input mesh.

There is a cannonical mapping between the covering mesh and
the corresponding triangular mesh, that assigns vertices to vertices
and faces to faces. Establishing whether or not the quadrisection of
a given connected component of the covering mesh is equivalent to
the original mesh reduces to simple and linear counting algorithms
that determine if the cannonical mapping restricted to the connected
component is ��� and onto or not.

3 POLYGONAL MESHES

In this section we introduce some definition, notation, and facts
about polygonal meshes that we will need in subsequent sections
to formulate our main results more precisely. It can be skiped on a
first reading.

Connectivity The connectivity of a polygonal mesh � is de-
fined by the incidence relationships existing among its � vertices,
� edges, and � faces. We will also use the symbols � , �, and �
to denote the sets of vertices, edges, and faces. A face with � cor-
ners is a sequence of � � � different vertices. If � � ���� 	 	 	 � ���
is a face, all the cyclical permutations of its corners are considered
identical, i.e., � � ���� 	 	 	 � ��� ��� 	 	 	 � ����� for
 � �� 	 	 	 � �.
Multiple connected faces (faces with holes) are not representable.

procedure ConnectedComponents ���
initialize partition to set of singletons
� � ���� � � � ��
traversal
for each regular edge � connecting �� and ��

if �� and �� are in different partitions
if (� .find���� �� � .find����)

join corresponding partitions
� .union���� ���

find sets of supporting vertices
�� � ���� ���
 � �� 	 	 	 � cc
return submeshes
return � � ���� 	 	 	 ��cc�

Figure 5: Procedure to construct the connected components of a
mesh.

Vertices not contained in any face are called isolated. An edge � is
an un-ordered pair of different vertices that are consecutive in one
or more faces of the mesh. We will denote by � the set of faces in-
cident to the edge. A boundary edge has exactly one incident face.
A regular edge has exactly two incident faces. A singular edge has
three or more incident faces. Because the edges are derived from
the faces, we write a mesh as � � ��� � �. We asume the reader
is familiar with the concepts of manifold, orientable, oriented and
non-manifold mesh. The algorthms introduced in this paper do not
make use of these concepts, though.

Connected Components We say that two faces �� and ��
are connected if we can find faces ��� 	 	 	 � ���� such that each face
�� shares and edge with its successor ���� in the sequence (note
that � � � and � � � are valid choices). This is an equivalence
relation on the set of faces � that defines a partition into disjoint
connected components ��� 	 	 	 � �cc. Each one of these connected
component is a maximal subset of connected faces, i.e., a subset
of faces that satisfies the following property: given a face in the
subset, a second face is connected to the first one if and only if
it also belongs to the subset. Together with its subset of support-
ing vertices �� � � , each connected component �� defines a sub-
mesh �� � ���� ���. Note the subsets of vertices ��� 	 	 	 � �cc are
not necessarily disjoint, i.e., different connected components may
share vertices. We call a mesh connected if it is composed of only
one connected component. It is sufficient to know how to solve
our problem for connected meshes: if the mesh is not connected,
first decompose it into connected components, and then solve the
problem for each component.

An algorithm based on Tarjan’s fast union-find data structure
[9] can be used to partition the set of faces of a mesh into its con-
nected components. It is described in pseudocode in Figure 5. It
first initializes the partition to one singleton per face, and then for
each edge of the mesh, and each pair of different faces sharing the
edge, replaces the subsets corresponding to the two faces by their
union.

Mappings A mapping � � �� � �� from a first mesh ��

into a second mesh �� is defined by a vertex function �� � �� �
�� and a face function �� � �� � �� that satisfy the following
additional property: for every face � � ���� 	 	 	 � ��� � �� of the
first mesh, the sequence of vertices of the second mesh defined by
the vertex function applied to the corners of the face, is (modulo
cyclical permutations) equal to the face of the second mesh that the
face of the first mesh is mapped to by the face function. i.e.,

�� ��� � ��� ����� 	 	 	 � �� ����� � �� 	

A B

Figure 6: Example of triangle mesh quadrisection. A: coarse mesh;
B: quadrisected mesh with � -vertices (red) corresponding to ver-
tices of the coarse mesh, and �-vertices (black).

Equivalence Two meshes �� and �� are called equivalent if
a mapping � � �� � �� exists such that both �� and �� are
� � � and onto functions. In such case the mapping � is called a
mesh equivalence.

Note that since the sets of vertices and faces are finite, the map-
ping � is an equivalence if and only if the vertex and face functions
are onto, and the number of vertices and faces in both meshes are
the same: �� � �� and �� � ��.

And a simple linear time and space algorithm to count the num-
ber of elements of set

����� � � � �� � 	

can be used to determine if a function � � �� 	 between two fi-
nite sets is onto or not. Create a binary ��
 �� array with elements in
correspondence with the elements of 	 and initialized to �. Then,
for each element � � � set the element corresponding to ���� to
�. Finally, add all the values of the array. The function is onto if
and only if the sum is equal to the number of elements of 	.

Quadrisection Figure 6 shows an example of a fine mesh (B)
with 24 triangles resulting from quadrisecting a coarse mesh (A)
with 6 triangles. The vertices of the coarse mesh are a subset of
the vertices of the fine mesh. We call these vertices the � -vertices
of the fine mesh. The remaining vertices of the fine mesh are in
� � � correspondence with the edges of the coarse mesh. We call
these vertices the �-vertices of the fine mesh. Since we are only
concerned with connectivity here, the position of the �-vertices in
space is irrelevant, but for illustration purposes, we draw them as
the mid-edge points of the coarse mesh edges in Figure 6-B. Each
triangular face of the coarse mesh is replaced by four triangles in
the fine mesh. One triangle connects the three incident �-vertices,
and each of the other three triangles connects one � -vertex and two
�-vertices.

In general, the quadrisection operator � transforms a triangular
mesh � � ��
 � � into a new triangular mesh �� � �� �
 ���,
and defines a mapping �� � � ���, which assigns each vertex
of � into a � -vertex of ��, and each face of � into the center
face of the corresponding quadrisected face. Both functions are
� �� but not onto. With respect to the number of vertices, edges,
and faces, the following relations hold:�

� � � � ��
�� � �� � 	�
�� �
�

(1)

The quadrisection operator is one of many subdivision schemes
that introduces new vertices along the edges of the coarse mesh,
and replaces the coarse faces by fine faces supported on the new
set of vertices. In general, because of limitations of the smoothing

��

��
��

���

������

��

��

��

��� �
��

������
 �

��

� � ���

��

� � �����

� � ���

A B

Figure 7: Notation used for tile construction. A: A tile set. B: The
corresponding tile.

procedure CoveringMesh ���
initialization
�� � �
construct tiles
for each face
 � ���
 ��
 ��� � �

if incident edges are regular
if (���
 ���
 ��� are regular)

construct tile and append to set of faces
append ����
 ���
 ���� to ��

�� � ��
 ���
return ��

Figure 8: Procedure to construct the covering mesh of a triangular
mesh. Notation as in Figure 7.

operators associated with these subdivision methods, meshes are
required to be manifold without boundary, and special smoothing
rules can be designed for manifold meshes with boundaries (holes)
[1]. But since the connectivity refinement rules can be applied to
non-manifold meshes, and our algorithm to detect and reconstruct
subdivision connectivity also works on non-manifold meshes, we
allow our meshes to be non-manifold.

Note that the quadrisection operator preserves and reflects con-
nected components, i.e., the connected components of a mesh �
are always in ��� correspondence with the connected components
of the quadrisected mesh ��.

4 CONSTRUCTING TILES

The tiles of a mesh � � ��
 � � are best defined by the algorithm
used to construct them, which we will describe with the notation
introduced in Figure 7. Each face
 � ���
 ��
 ��� � � , with three
regular edges ���, ���, and ��� has three neighboring triangular
faces
��,
��, and
��. Each one of these faces
�� has a vertex ���
opposite to the corresponding edge ��� . The tile corresponding to

 is defined by these three vertices
� � ����
 ���
 ����. Note that
as a mesh the quadrisected tile is equivalent to the submesh of �
defined by the face
 , its three immediate neighbors
�� ,
��, and

��, and their suporting vertices, which we call a tile set of � .

5 THE COVERING MESH

The covering mesh of a triangular mesh � � ��
 � � is a new
triangular mesh �� � �� �
 ��� defined by the vertices and tiles
of � . Figure 8 illustrates the algorithm to construct the covering
mesh of a mesh in pseudocode.

Figure 9: In general, four tiles (defined by the blue corners) cover
each triangle (red). Note that these four tiles have neither common
vertices nor common edges in the covering mesh.

Note that even if the mesh is manifold without boundary, the
covering mesh may be non-manifold and with boundary. Also, as
illustrated in Figure 9, each face may belong to up to four different
tile sets of a triangular mesh, where the given fine triangle occupies
either the center position, or one of the three corners in each one
of the four tile sets. The number of tile sets covering a face may
be less than four, and even zero, though, such as when a fine trian-
gle or some of its immediate neighboring triangles are incident to
boundary or singular edges.

The covering mesh operator �, that assigns a triangular mesh
� � ��� � � to a new triangular mesh �� � �� � � ��� defines
a cannonical mapping � � ��� � � , from the quadrisection of
�� into� . If we partition the covering mesh into connected com-
ponents ��

� � � � ��
�
cc, and apply the quadrisection operator to each

one of them, we obtain a partition of ��� into connected compo-
nents ���

�
� � � ��

��
cc . The cannonical mapping � restricted to the

connected components also define mappings �� � ���
� � � .

Note that in general, the coresponding vertex and face functions of
these mappings are neither � � � nor onto. For example, not all
the faces of � may be covered by faces of ���

� , and up to four
faces of ���

� may be covering the same face of � . With respect
to vertices, restricted to the � -vertices of ���

� , the mapping �� is
� � �, but not necesarily so when restricted to the � vertices; and
some vertices of � may not correspond to any vertex of ���

� .
However, the following theorem, which constitutes the main

result of this paper, holds:

Theorem 1 A connected triangular mesh � � ��� � � has
quadrisection connectivity, if and only if �� � ���

� � � is a
mesh equivalence for some 	.

The proof of the sufficiency is trivial. We refrase the necessity
as follows:

Theorem 2 For every connected triangular mesh � � ��� � �,
the cannonical mapping �� � �

���
� ��� is a mesh equivalence

for some 	.

procedure IsQuadrisection ���
construct covering mesh
�� � CoveringMesh��)
partition �� into connected components
���

� � � � � ���
cc�=ConnectedComponents����

for each connected component
for 	 � �� � � � � cc

determine if equivalent to �
if (IsEquivalence��� � ���

� ���)
return ��

�

return �

Figure 10: Pseudocode of procedure to determine if a mesh has
quadrisection connectivity, and to recover the subdivision structure.

procedure IsEquivalence ��� � ���
� ���

first check the easiest necessary conditions
if (� �� ���

�) return false
if (� �� � �

� ���
�) return false

initialize binary arrays

� � � � � � �

� � � � � � �
traverse faces, subdivide, and count
for each tile �� � ��

�

� � � for each vertex � of the tile set covered by ��

� � � for each face � of the tile set covered by ��

if (� ��
�

�

�) return false

if (� ��
�

�

�) return false

return true

Figure 11: Procedure to determine if the mapping �� � �
��
� ��

is an equivalence.

Proof 2 Each face of � defines one tile set in �� and a cor-
responding tile in ��� . Let � � be the set of all these tiles in
� � � correspondence with � . Since the vertices of these tiles
are supported on � -vertices of � , the set of vertices � � of these
tiles is in � � � correspondence with the set of vertices � . We
have constructed a mesh equivalence between � and the submesh
�� � �� �� � �� of ��� , which can extended to an equivalence
between the corresponding quadrisected meshes. Since subdivision
also preserves conected components, we only need to show that
�� is a connected component of ��� . �� is clearly connected,
because it is equivalent to � , the result of subdividing � is ��,
which is connected, and the quadrisection operator does not change
the number of connected components. It only remains to be shown
that no other tiles are connected to ��. But the tiles in ��� that
are not members of � � are supported on �-vertices, while tiles in
� � are all supported on � -vertices, and so, disconnected.

Theorem 1 is the basis of our algorithm to detect uniform quadri-
section connectivity and to reconstruct the subdivision structure,
described in pseudocode in Figure 10.

To determine if the mapping ��� � �
��
� � �� is an equiv-

alence or not it is not necessary to construct the quadrisected con-
nected component ���

� . It is sufficient to count all the vertices
and faces of tile sets covered by tiles in ��

� . Figure 11 shows such
an algorithm in pseudocode.

6 IMPLEMENTATION AND RESULTS

A polygonal mesh is normally specified only by its vertices and
faces, such as in the IndexedFaceSet node of the VRML stan-
dard [15]. Neither the edges, which contain the incidence relation-
ships among faces, nor the connected components of the mesh are
explicitly represented.

An explicit representation of edges is needed both to partition
the set of faces into its connected components, and by our tile con-
struction algorithms described in section 4.

Efficient data structures to represent edges of oriented manifold
meshes, such as the half-edge data structure [16] or the quad-edge
[2] data structure are well known. For non-manifolds meshes, these
data structures need extensions [4]. We will asume that the data
structure used to represent the set of edges efficiently implements
the edge access function ���� �� � ���� ��, which given two ver-
tices � and �, returns the set of incident faces (which may be empty
if the two vertices do not correspond to an edge of the mesh). In
our implementation, we use a hash table to implement the edge ac-
cess function. This data structure can be populated (constructed) in
linear time by visiting the faces in sequencial order.

The full algorithm described by the pseudocode methods shown
in figures 5, 8, 10, and 11 has been implemented in C++. Figures 2,
and 1 show examples where the algorithm has been run on meshes
of moderate size with simple and complex topology.

7 CONCLUSIONS

In this paper we have introduced a conceptually very simple and ef-
ficient algorithm to detect quadrisection connectivity in triangular
meshes, and we have demonstrated it in a number of examples. As
explained in the introduction, this algorithm has important applica-
tion in modeling systems, and connectivity compression schemes.

In a subsequent paper we plan to extend this algorithm to other
uniform subdivision schemes, such as Catmull-Clark, and Doo-
Sabin; and to some adaptive subdivision schemes.

REFERENCES

[1] H Bierman, A. Levin, and D. Zorin. Piecewise smooth subdivision
surfaces with normal control. In Siggraph’2000 Conference Proceed-
ings, pages 113–120, July 2000.

[2] L.J. Guibas and J. Stolfi. Primitives for the manipulation of general
subdivisions and the computation of voronoi diagrams. ACM Trans-
actions on Graphics, 4(2):74–123, 1985.

[3] P. Heckbert. Course 25: Multiresolution surface modeling. Sig-
graph’97 Course Notes, August 1997.

[4] L. Kettner. Designing a data structure for polyhedral surfaces. In
14th. Annual ACM Symposium on Computational Geometry, pages
146–154, 1998.

[5] A. Khodakovsky, P. Schröder, and W. Sweldens. Progressive geom-
etry compression. In Siggraph’2000 Conference Proceedings, pages
271–278, July 2000.

[6] C. Loop. Smooth subdivision surfaces based on triangles. Master’s
thesis, Dept. of Mathematics, University of Utah, August 1987.

[7] W.S. Massey. A basic course in algebraic topology. Springer-Verlag,
New York-Berlin, 1991. ISBN 0-387-97430-X.

[8] Mpeg4-3dmc-coder.

[9] R.E. Tarjan. Data Structures and Network Algorithms. Number 44
in CBMS-NSF Regional Conference Series in Applied Mathematics.
SIAM, 1983.

[10] G. Taubin. A signal processing approach to fair surface design. In
Siggraph’95 Conference Proceedings, pages 351–358, August 1995.

[11] G. Taubin, A. Guéziec, W. Horn, and F. Lazarus. Progressive forest
split compression. In Siggraph’98 Conference Proceedings, pages
123–132, July 1998.

[12] G. Taubin and J. Rossignac. Geometry Compression through Topo-
logical Surgery. ACM Transactions on Graphics, 17(2):84–115, April
1998.

[13] G. Taubin and J. Rossignac. Course 38: 3d geometry compression.
Siggraph’2000 Course Notes, July 2000.

[14] C. Touma and C. Gotsman. Triangle mesh compression. In Graphics
Interface Conference Proceedings, Vancouver, June 1998.

[15] The Virtual Reality Modeling Language. ISO/IEC 14772-1, Septem-
ber 1997. http://www.web3d.org.

[16] K. Weiler. Edge-based data structures for solid modeling in curved-
surface environments. IEEE Computer Graphics and Application,
5(1):21–40, January 1985.

[17] D. Zorin and P. Schröder. Course 23: Subdivision for modeling and
animation. Siggraph’2000 Course Notes, July 2000.

[18] D. Zorin, P. Schröder, and W. Sweldens. Interactive multiresolution
mesh editing. In Siggraph’97 Conference Proceedings, pages 259–
268, August 1997.

