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Abstract

Compositional designs require component specifications that can be
composed: Designers have to be able to deduce system properties from
components specifications. On the other hand, components specifications
should be abstract enough to allow component reuse and to hide substan-
tial parts of correctness proofs in components verifications. Part of the
problem is that too abstract specifications do not contain enough infor-
mation to be composed. Therefore, the right balance between abstraction
and composability must be found. This paper explores the systematic con-
struction of abstract specifications that can be composed through specific
forms of composition called ezistential and universal.
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1 Motivations

1.1 Specifications and Proofs in Compositional Design

This paper explores proofs of correctness of systems constructed by composing
components. The promise of component technology is that the same compo-
nent can be used in many systems, and thus the effort that goes into specifying,
proving and implementing components can be exploited many times. Com-
positional design is productive when the effort required to find and compose
components is less than the effort required to design an entire system from
scratch. Therefore, greater productivity is achieved by using components that
embody substantial effort. Rapidly growing commercial efforts into develop-
ing libraries of software components (using, for instance, Java beans, Microsoft
DNA or CORBA) demonstrate that developing systems by composing existing
components is useful.

In this paper, we explore the appropriate level of detail for component spec-
ifications. Specifications that are too abstract may be too weak to be useful in
composition. Specifications that are too detailed may require systems designers
to prove more useful, and more abstract, specifications from the detailed ones.
Component designers can help systems designers by employing specifications
that deal with exactly those component properties required for proving system
properties. So, component designers should identify those component proper-
ties that they expect systems designers to need, and design their components
to have these properties. Component designers may have to put a substantial
amount of effort into proving that their components have properties that are
useful in composition.

Figure 1 depicts specifications and proofs in a compositional design.

1.2 Abstract Specifications that Compose

We introduce an informal concept of compositional properties to motivate our
exploration, and define terms precisely later. Compositional properties are those
classes of properties that allow us to deduce system properties from component
properties using simple rules. For example, mass is a compositional property
because the mass of a system can be deduced in a simple way from the masses
of components: the system mass is the sum of component masses. By contrast,
heat emitted does not appear to be a compositional property because the heat
emitted by a system depends in very complex ways on the shapes, masses,
insulation properties and locations of the components.

Engineers have to compute properties of composed systems given properties
of components, whether the properties are compositional or not. After all, many
engineers have to compute both mass and heat emitted by composed systems.
The challenge is to develop theories and methods that help engineers determine
all system properties they need.

In this paper, we restrict ourselves to properties that are predicates on sys-
tems. A compositional property is a property whose truth can be established
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Figure 1: A compositional design

using simple rules from properties of components. The questions that we are
exploring are the following:

e What are interesting compositional properties and what are the corre-
sponding proof rules?

e How can we deduce any system property from conjunctions of these com-
positional properties?

The simplest rules are those that establish that a property X holds for a
system given that (i) property X holds for at least one component, or (ii) prop-
erty X holds for all components. Therefore, in this paper, we focus attention
on two kinds of compositional properties: existential properties and universal
properties. A property is an existential property exactly when for all systems,
a system has the property if there exists a component of the system that has
the property. A property is a universal property exactly when for all systems,
a system has the property if all components of the system have the property.
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Many interesting properties are neither universal nor existential. Unfortu-
nately, we don’t have rules for deducing arbitrary system properties directly
from component properties. So, we deduce system properties in two steps:

1. First, we specify components as conjunctions of universal and existential
properties so that we can readily derive universal and existential system
properties from component properties,

2. and then we derive the system properties we need from these universal
and existential system properties.

1.3 An Illustrative Digression

A critical issue in compositional design is the degree of detail in component spec-
ifications. Component specifications must be strong enough to allow system
specifications to be proved from component specifications. Over-specification
makes composition more difficult because designers may have to first prove
more abstract and useful specifications from the detailed ones. The next few
paragraphs give the reader some intuition of this tradeoff between too much de-
tail and too little detail in component specification by considering the difference
between two kinds of properties: invariants and always. This issue has been
discussed earlier in [14, 13].

In the context of systems (and components) defined by their infinite com-
putations (reactive systems), a state predicate is an invariant property of a
program exactly when

e the predicate holds in the initial state of all computations of the program,
and

e all transitions from states in which the predicate holds are to states in
which the predicate continues to hold.

A state predicate is an always property of a program exactly when it holds
in all states of all computations of the program.

Invariants tell us about transitions from all states, whether reachable or
unreachable. By contrast, always properties tell us about transitions only from
reachable states.

All invariant properties are always properties. An always property need not
be an invariant property because the system may have a transition from an
unreachable state for which the property holds to a state in which the property
does not hold.

An invariant property is universal. If all components of a system enjoy an
invariant property then the composed system (composed using the concurrent
composition operator of UNITY for instance) also enjoys that invariant property.
By contrast, an always property is not necessarily universal.

Properties relevant to a system in isolation (i.e., a system that is not com-
posed with other systems) are different from properties relevant to components
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that we expect to compose with other components. When we study the be-
havior of a system in isolation its always properties are relevant, but it is not
helpful to know whether an always property is also an invariant property. This
is because transitions from unreachable states are irrelevant in a study of isolat-
ed systems. A designer of a system may expect that a specification in terms of
always properties is superior to a specification in terms of invariant properties
because always properties offer the appropriate degree of abstraction whereas
invariant properties are concerned with unnecessary detail about unreachable
states.

We cannot, however, deduce system properties from always properties of
components. The concurrent composition of systems, all of which have the
always property that a bank account is nonnegative, may yield a system in
which the bank account does indeed become negative. This is because a state
that is unreachable when a system executes in isolation may be reachable when
that system is composed with other systems. Thus, always properties are too
weak to be helpful in composition even though they have the right degree of
abstraction for systems in isolation.

We can, of course, specify a component by its program text. We can d-
educe all system properties from the implementations (program texts) of its
components. This approach is not the most productive way of compositional
design because it does not re-use proofs (the T-proofs of fig. 1). Each time we
design a system, we carry out proofs starting from implementations instead of
starting from something more useful and abstract. Therefore, we need composi-
tional properties that are stronger than always properties and weaker than the
program text. Invariants satisfy this requirement.

Invariant properties are helpful in composition because they are universal
properties. The concurrent composition of programs, all of which have the
invariant property that a bank account is nonnegative, yields a program in which
the bank account is guaranteed to remain nonnegative. Invariant properties
have the right degree of abstraction for components though they appear to be
unnecessarily strong for reasoning about systems in isolation. We can weaken
invariants to obtain desired always properties.

In our research, we are searching for simple rules that allow us to prove
system properties from component properties, for certain restricted kinds of
properties. We don’t expect to find simple rules for deducing arbitrary kinds of
system properties from arbitrary kinds of component properties. The challenge
is to find appropriate kinds of compositional properties, and then deduce desired
properties by weakening conjunctions of compositional properties.

1.4 Predicate Transformers for Composition

Consider the following problem. A designer of a component F' would like to
demonstrate that any system that has F' as a component enjoys a property X.
If property X is an existential property, and if F' has property X, then any
system that has F' as a component will enjoy property X. What if X is not
existential?
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If we could define a predicate transformer £ where £.X is existential and
at least as strong as X, and if we could demonstrate that component F' has
property £.X, then any system that includes component F would also have
existential property £.X, and therefore would also enjoy the weaker property
X. Therefore, component designers can ensure that all systems that contains
their components have a property X by proving that their components have a
stronger existential property £.X.

What requirements should we place on predicate transformer £ other than
that £.X must be stronger than X7

The obvious answer is that £.X should be as weak as possible. Ideally, it
should be the weakest existential property stronger than X. Of course we must
prove that such a property exists.

Now consider the analogous case for universal properties. We would like to
prove that a system has a property X if all its components have property X even
though X is not a universal property. So, we attempt to introduce a predicate
transformer ¢/ with the requirement that /.X is universal and stronger than X.
If we can then prove that all components of a system have property /.X then
we may conclude that the system enjoys this property and hence also enjoys the
weaker property X.

Can we require that U/.X be the weakest universal property stronger than
X? We can show that we cannot do so because there does not exist, in general, a
weakest universal property stronger than X. The idea of a predicate transformer
U where Y. X is universal and is stronger than X will indeed help in engineering
systems by composing components, but we must define I/ in some way other
than being the weakest.

1.5 Overview

Components here are abstract entities. They are not necessarily programs and
they may not have “states” or “computations.” We consider composition op-
erators that have certain algebraic properties such as associativity and explore
theorems that are derived from these properties.

In this paper, we address the following problem: can we find component
properties strong enough to be composed, but weak enough to preserve abstrac-
tion? More specifically, we focus on two forms of composition, ezistential and
universal.

In the next section we introduce components, their properties and the com-
position law. We also introduce a simple model of components that is used as an
example throughout the paper, as well as our notation and vocabulary. Section
3 presents definitions of ezistential and universal properties. In this section we
introduce a special form of existential properties called guarantees. The main
results of the paper are presented in section 4 where a property transformer &
for existential composition is defined. Theorems with regard to this property
transformer are presented, and the reasons why a property transformer for u-
niversal composition is not defined in the same way are explored. An example,
that uses the simple model previously defined, concludes that section. In section
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5, the work is compared with other proposed approaches and some remaining
questions are formulated. Finally, conclusions are drawn in section 6.

2 Terminology and Notations

2.1 Predicates, Components and Properties

Function application is denoted with a dot. The application of function A to
parameter z is denoted by A.z. Predicates are boolean valued functions. We
denote predicates with the capital letters X, Y, Z, ... Components are denoted
with the capital letters F', G, H, ... Properties are predicates on components:
X - F' is the boolean: property X holds in component F'.

2.2 Everywhere Operator

As in Dijkstra and Scholten [10], we use square brackets to denote that a pred-
icate is “everywhere true.” These brackets are called the everywhere operator.
For any property X, [X] is the boolean: X holds for all systems.

2.3 Composition

We restrict attention to a single composition operator o. We postulate the
existence of a binary relation / between components, and we restrict attention
to composition of components that satisfy this relation. We denote by A+/B the
fact that components A and B can be composed, and then their composition is
denoted by AoB.

We assume the existence of a UNIT component such that, for any A:

UNIT\/JAN A\/JUNIT A (UNIToA = Ao UNIT = A) (1)
Furthermore, we assume that o is associative and that, for any A, B and C"
A\/B A (AoB)/C = B+/C A A\/(Bo(C) (2)

Note that we do not assume here any other property of the operator o, such as
symmetry or idempotence.

2.4 Bags of Colored Balls

To illustrate the results presented in this paper, we use a model for components
defined as follows:

e components are bags of colored balls;

e bags can always be composed (F1/G for all F' and G) and composition is
the union of contents of the component bags in the composed bag;

e the UNIT element is the empty bag.
Note that properties of the form “all balls in the bag are red” hold in UNIT.
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3 Existential and Universal Composition

We start our exploration of compositional properties by studying properties that
obey certain rules of universal and existential quantification.

3.1 Existential Properties

A property X is existential (denoted by the boolean ezist.X) exactly when
erist X = (VF,G:F/G:X -FVX-G= X FoG) (3)

A system enjoys an existential property if it has a component that enjoys that

property.

3.2 Universal Properties

A property X is universal (denoted by the boolean univ.X) exactly when:
univ.X = (VF,G:F\/G:X -FAX -G = X-FoG) (4)

A system enjoys a universal property if all its components enjoy that property.
Note that any existential property is also universal:

exist. X = uniwv.X

3.3 “guarantees” Properties

In this section, we show that there is a systematic way to build existential
properties from any property.

We introduce a function guarantees, from properties x properties to prop-
erties:

X guarantees Y - F
A

= (5)
(VH,K : H/F NHoF\/K : X - HoFoK =Y - HoFoK)

Properties of the form X guarantees Y are called guarantees properties.
An important result about guarantees properties is that, for any X and Y,
X guarantees Y is existential:

Proposition 1 exist.(X guarantees V)

Proof: See corollary of proposition 12 page 16. g
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3.4 Basic Rules

In this section, we give basic rules relating existential properties, universal prop-
erties and guarantees [3]. Let E and E' be existential properties and U and U’
be universal properties. Then:

exist-(EANE") exist-(EV E")
univ -(U AU") univ (U V E)

Note that the disjunction of universal properties is not universal in general,
and that strengthening or weakening existential or universal properties does
not preserve their existential or universal characteristics.

Furthermore:

E-UNIT = [E = true]
[X = Y] = [X guarantees Y]
[(X guarantees Y) = (X = V)]
[(X guarantees Y) A (Y guarantees Z) = (X guarantees Z)]
[(X guarantees Y) A (X' guarantees Y') = (X A X' guarantees Y AY")]
[(X guarantees Y) A (X' guarantees Y') = (X V X' guarantees Y VY"')]

3.5 Example
In the bag of colored balls model:

exist - (bag contains at least 3 balls)

exist - (bag contains at least 2 red balls and at least 1 blue ball)

exist - (bag contains at least 1 red ball) guarantees (bag contains at least 2 colors)
univ - (all balls in bag are black)

univ - (all balls in bag are red, or bag contains at least 1 blue ball)

The following properties are neither existential, nor universal:

(all balls in the bag are red, or all balls in the bag are blue)
(if the bag contains at least 1 red ball, then the bag contains at least 2 colors)

4 The Property Transformer £
4.1 €& and &’

In this section, we show that, for any property X, there exists a weakest exis-
tential property stronger than X, denoted by £.X. Note that X holds in any
system containing a component for which £.X holds. This is because £.X holds
for the system since £.X is existential, and there exists a component for which
£.X holds, and since £.X is stronger than X we conclude that X holds for the

system.
We provide two equivalent formulations for &:
EX 2 (Y :[Y = X]|AexistY :Y) (6)
&' X-F £ (YH,K : H/F NHoF\/K : X - HoFoK) (7)
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Instead of proving directly that [£ = £'], we prove that £.X is the weakest
existential property stronger than X, and that £'.X also is the weakest existen-
tial property stronger than X. From the uniqueness of such a weakest property,
we conclude that [€ = £'].

Note that by construction £.X is weaker than any existential property
stronger than X, but we have to prove that £.X is existential. On the oth-
er hand £’.X is defined to be existential, but we have to prove than it is the
weakest existential property stronger than X.

4.2 £.X is the Weakest Existential Property Stronger than X

We consider the equation (in predicates):
Y:[Y = X]Aexist.Y (8)

It is well known [10] that such an equation has a weakest solution exactly
when the disjunction of all solutions is itself a solution, and then this disjunction
is the weakest solution.

From definition (6), £.X is the disjunction of all the solutions of equation
(8). Therefore, £.X is the weakest existential property stronger than X if and
only if £.X is a solution of equation (8). The proof obligation is:

[€.X = X] A exist.(£.X)
Proposition 2 [£.X = X]

Proof:

X
= {Definition of £ (6)}
Y : [Y = X]AexistY 1Y)
= {[Y = X]Aexist.Y = [V = X] and JY is monotonic}
Fy: Y= X]:Y)
= {[[Y = X]AY = X] and 3Y is monotonic}
3y X)
= {No free Y in X}
X O

Proposition 3 exist.(£.X)
Proof: We consider two components F' and G such that F/G and we prove
that £X - F = £.X - FoG. By a similar argument, £.X - G = £.X - FoG,

and therefore we deduce that £.X - FVEX -G = £.X - Fo(, i.e., that £.X is
existential.
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EX-FANFG
= {Definition of £ (6)}
(Y : [Y = X]|AexistY :Y) - FAF\G
= {Predicate calculus}
(Y : [Y = X]|AexistY : Y - FANF\/G)
= {Duplicate and expand ezist.Y (3)}
FY : [Y = X] A exist.Y :
(VF'.,G' : F'\/G'": Y -F'VY -G' =Y - F'oG'Y AY - F A F\/G)
= {Choose F' = F and G' = G}
(Y : Y = X]Aezist.Y : (Fy/G= (Y-FVY-G = Y -FoG))\Y -FAF\/G)
= {Modus ponens}
FY : [V = X]Aezist.Y : Y - FoG)
= {Predicate calculus}
(Y : [V = X]|AexistY :Y) - FoG
= {Definition of £ (6)}
E.X - Fold g

Proposition 4 For any property X, there exists a weakest existential property
stronger than X and it is £.X.

Proof: From propositions 2 and 3 and the characterization of extreme solutions
of equations in predicates. (|

4.3 £'.X is the Weakest Existential Property Stronger than X

In this section, we prove that £.X also is the weakest existential property
stronger than X. We prove first that £'.X is solution of equation (8), and then
that any other solution is stronger than £'.X.

Proposition 5 £'X = X]
Proof:

EX-F
= {Definition of & (7)}
(VH,K : Hy/F N HoF\/K : X - HoFoK)
= {Choose H = K = UNIT}
(UNIT\/F AN UNIToF\/UNIT = X - UNIToFoUNIT)
= {Axiom on UNIT (1)}
X-F O

Proposition 6 exist.(£'.X)

Proof:
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exist.(£'.X)
= {Definition of existential properties}

(VF,G:F\/G: &' X -FVE.X-G=E.X-FoG)
= {Predicate calculus}

(VF,G:F\/G:&' X -F=¢&.X-FoG)

AN (VF,G:FG:£.X -G=E&.X-FoQG)
In order to prove this two proof obligations, we choose two components F' and
G such that F'\/G, and we prove first that

E'X F=¢E&.X FoG
and then that
X -G=E&.X FoG
(The two proofs are different, because / and o may not be symmetric.)

E'X-F N FG
= {Definition of & (7)}

(VH,K : H/F A HoF\/K : X - HoFoK) A F\/G
= {For K' s.t. Gy/K', substitute K with GoK'}

(VH,K': GyK' N H\JF A HoF\JGoK' : X - HoFoGoK') A F\/G
= {Axiom on +/ (2) with A= HoF, B=G, C =K'}

(VH,K' : H\/F AN HoF\/G AN HoFoG+\/K': X - HoFoGoK') A F\/G
= {Axiom on / (2) with A=H, B=F, C =G}

(VH,K': F\/G ANH\/FoG A HoFoG\/K': X - HoFoGoK'y A F\/G
= {Modus ponens}

(VH,K' : H\/(FoG) AN Ho(FoG)\/K': X - Ho(FoG)oK')
= {Definition of & (7)}

E'.X - FoG

&X-G N FG
= {Definition of &' (7)}

(VH,K : Hy/G A HoG/K : X - HoGoK) A F\/G
= {For H' s.t. H'\/F, substitute H with H'oF'}

(VH',K : H'\/F ANH'oF\/G AN H'oFoG\/K : X - H'oFoGoK) A F'\/G
= {Axiom on / (2) with A= H', B=F, C =G}

(VH',K : F\/G ANH'\/FoG N H'oFoG\/K : X - H'oFoGoK) A F\/G
= {Modus ponens}

(VH',K : H'\/(FoG) A H'o(FoG)\/K : X - H'o(FoG)oK)
= {Definition of & (7)}

E'.X - FoG g
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This completes the proof that £’.X is solution of equation (8). We now prove
that any other solution of (8) is stronger than £'.X.

Proposition 7 exist. X = [£'.X = X]
Proof:
[£'.X = X]

= {From proposition 6}
[£'.X = X] A exist.(E'.X)
= {Leibniz}
exist. X

Assume ezist. X, prove that X - FF = ¢&'.X - F, for any F'.

X-F
= {Introduce and expand ezist. X}
X -FANHG:HYG:X-HVX G= X-HoG)
= {Choose G = F'}
X -FA(NWH:HJF:X-HVX -F= X-HoF)
= {Modus ponens}
(VH : H\/F : X - HoF)
= {Introduce and expand ezist.X }
(VH:H\/F:X -HoFAN(NGK:Gy/K:X-GVX-K = X GoK))
= {Choose G = HoF'}
(VH : H\/F : X -HoFAN(VK : HoF\/K : X -HoFV X -K = X - HoFoK))
= {Move VK outside}
(VH,K : H/F : X -HoF A(HoF K = (X -HoFVX K = X -HoFoK)))
= {Boolean calculus}
(VH,K : Hy/F N HoF\/K : X - HoFoK)
= {Definition of & (7)}
EX-F

Since [£'.X = X] (prop. 5), this completes the proof of X - F = &' X - F. 0O

Proposition 8 (£’ is universally conjunctive) For any set S:
[E(VX:XeS:X) = (VX:X€S:&.X)]

Proof:

EWNVX:XeS:X)F
= {Definition of & (7)}
(VH,K : HY/F NHoF\/K : (VX : X € S: X)- HoFoK)
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= {Predicate calculus}
(VH,K : Hy/F NHoF\/K : (VX : X € S: X - HoFoK))
= {Interchange of universal quantifiers}
(VX:XeS:(VH,K:H\FANHoF\/K : X - HoFoK))
= {Definition of & (7)}
(VX:X €e€S:&.X F)
= {Predicate calculus}
VX:XeSsS: X)) F O

Proposition 9 (£ is monotonic)
X=Y]=[E'X=£EY]
Proof:

[X = Y]
= {Predicate calculus}
[X =X AY]
= {Leibniz}
€' X =& (X AY)]
= {&' is conjunctive from prop. 8}
[€'.X =& X ANEY]
= {Predicate calculus}
€' X =Y O

Proposition 10 For any property X, there exists a weakest existential property
stronger than X and it is £'.X.

Proof: From propositions 5 and 6, we know that £'.X is solution of equation
(8). It remains to show that any solution Z of (8) is stronger than £'.X:

[Z = X]| A exist.Z

= {[£'.Z = Z] from prop. 7}
Z = X|N[E'.Z =Z)

= {£&' is monotonic from prop. 9}
€'.Z=E8X|N[E.Z =2

= {Leibniz}

Z = &£'.X] O
Proposition 11 € = &'
Proof: From the uniqueness of a weakest element, when it exists. O
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4.4 Relationship with “guarantees”

Proposition 12 [X guarantees Y = £'.(X =Y)]
Proof:

X guarantees Y - F
= {Definition of guarantees (def. 5)}
(VH,K : Hy/F AN HoF\/K : X - HoFoK =Y - HoFoK)
= {Predicate calculus}
(VH,K : H\/F A HoF\JK : (X = Y) - HoFoK)
= {Definition of &'}
E(X=Y)F O

Corollary: exist.(X guarantees Y')

4.5 A Property Transformer U?

The reason why, for any property X, there exists a weakest existential property
stronger than X, which allowed us to define the property transformer &, is
that any disjunction of existential properties in existential. This is not true for
universal properties. Indeed, we can demonstrate a property X such that there
is no unique weakest universal property stronger than X. This fact prevents us
from defining a property transformer I/ in the same manner as we defined &.

Proposition 13 (No U transformer) There exists nontrivial models in which
some properties do not have a unique weakest universal property stronger than
them.

Proof: To prove this claim, we use the model of bags of colored balls and we
consider the property P defined by:

Py = (all balls white)
P, = (all balls black)
P £P VP

Clearly, Py and P, are universal and, if black and white balls exist at all, P
is not. Let W, if it exists, be the weakest universal property stronger than P.
Then:

Py = W] because Py is universal and stronger than P,
P, = W] because P, is universal and stronger than P,
P = W] from the two above,

W = P] Dby definition of W,

W =P] from the two above.

But W is universal (by definition) and P is not, which leads us to a contradiction.
Therefore, no such W exists. O
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4.6 Example

Let’s consider the following question: In the world of bags of colored balls, what
is the property: (at least 1 red ball) guarantees (at least 2 colors)? Obvioulsy,
the answer is: £.((at least 1 red ball) = (at least 2 colors)), but can we find a
simpler, equivalent, formulation?

In this part, we prove the following equivalence:

[€.((at least 1 red ball) = (at least 2 colors)) = (at least 1 non red ball)]* (9)
We introduce two specific properties, UNIT= (“being the unit”) and its
negation UNIT. (“not being the unit”):

UNIT- - F
UNITy - F

(F = UNIT)
(F # UNIT)

A
A

Then, equivalence (9) follows from the following proposition:
Proposition 14  —exist. UNIT: V [X = UNIT.])V [E.(UNIT-V X) = £.X]

Proof:
Assume ezist. UNIT: and —~[X = UNIT.], and prove [£.(UNIT= V X) = £.X].
First case: F' # UNIT

E(UNIT-V X)-F
= {[€ = &'] from prop. 11, definition of &' (7)}
(VH,K : H\/F A HoF\/K : (UNIT_ V X) - HoFoK)
= {From hypotheses F' # UNIT and exist. UNIT, =~(UNIT= - HoFoK}
(VH,K : Hy/F N HoF\/K : X - HoFoK)
= {Definition of & (7), [ = £'] from prop. 11}
EX-F

Second case: F' = UNIT

E(UNIT_-V X) - UNIT

= {exist.(£.Y) from prop. 3, basic rules of existential properties, page 10}
[E.(UNIT-V X) = true]

= {[€.true = true] and [E.Y = Y] from prop. 2}
[UNIT-V X = true]

= {Predicate calculus (UNIT is the only component where X may not hold)}
[X = true] V [ X = UNIT]

= {Hypothesis =[X = UNIT.]|}
[X = true]

I This example also shows that £ is not disjunctive, i.e., £.X V £.Y is, in general, strictly
stronger that £.(X VY).
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= {[€.true = true] and [E.Y = Y] from prop. 2}
[£.X = true]

= {exist.(£.Y) from prop. 3, basic rules of existential properties, page 10}
£.X - UNIT 0

We can now apply proposition 14 to prove formula (9):

E.((at least 1 red ball) = (at least 2 colors))
= {Predicate calculus}
E.(UNIT- V (at least 1 non red ball))

_ [erist. UNITx in bags model, assume there exist red balls, hence
—[(at least 1 non red ball) = UNIT.], apply prop. 14

E.(at least 1 non red ball)
= {exist.(at least 1 non red ball)}
(at least 1 non red ball)

5 Related Work

5.1 Existential/Universal versus Assumption-Commitment

Traditional “assumption-commitment” (or “rely-guarantee” approach to com-
position of concurrent systems [1, 2, 12, 16, 9, 7, 8, 11] relies on an explicit
specification of a component’s possible environments. It is defined in terms of
“open system computations”, in which some steps are labeled “environment
steps”. In some sense, components are “prepared” to be composed, by leaving
room for interaction with the outside world. Interaction with the environment
is present from the start. If nothing is specified about the environment, few
component properties can be proved. Properties like always are meaningless in
this context,

The approach presented here is dual to assumption-commitment. In contrast
to much of the work in assumption-commitment, we deal with properties of
components, not components coupled to specific environments. There are no
“environment steps” in our theory. Indeed, we want to deal with systems in
which steps and computations do not exist, as we saw from the example of
bags of colored balls. So, we do not use automata-based models or process
models. Nor do we assume specific forms of computations such as open-system
computations.

In our theory, we deal with component properties and composition in the
abstract. We postulate simple rules (such as associativity and the existence
of a unit element) for the composition operator, and then base a theory on
these rules. We explore proofs of all kinds of properties (predicates on com-
ponents) including properties such as color and mass. Here too, we postulate
rules enjoyed by such properties and then prove theorems from these rules. We
study composition and properties in the abstract, and not in terms of specific
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languages or logics such as TLA [1, 2|, linear temporal logic [12, 11], UNITY
[16, 9, 7, 8] CSP, or process algebras.

A potential weakness of our approach is that by exploiting only theorems
that we can prove from a limited set of rules (associativity, existential and
universal properties) we obtain less useful results than by working with a specific
programming language and its associated logic (say CSP or UNITY). Despite
this weakness, we believe that explorations such as these can help to identify
the relationships between central results about compositional design and the
postulates about composition and component properties.

5.2 The Benefits of “guarantees”

Existential and universal properties, as well as the guarantees operator were first
introduced in [3] using slightly different definitions. The guarantees operator
has several advantages compared to corresponding operators in the assumption-
commitment theory.

Firstly, because guarantees properties do not reference an “environment”,
but only deal with component and (global) system properties, guarantees avoids
a well-known circularity problem (due to the fact that components are environ-
ments of each other) in traditional approaches. The price we pay is that we
cannot assume a property X on the environment to prove the same proper-
ty X on the system, and such assumptions have proved useful in assumption-
commitment specifications. To describe such behavior, we do not use guarantees
and we rely on universal properties as in [5].

Secondly, because X guarantees Y is existential, regardless of the properties
X and Y, guarantees can be used with progress properties in its left-hand side.
Indeed, system proofs can be simplified considerably by using guarantees prop-
erties with progress properties on the left-hand side [6]. For instance, a useful
property of a distributed resource manager is: All clients eventually return the
resources they are given guarantees the server eventually satisfies all requests
from clients. By contrast, much of the literature on assumption-commitment
specifications deal only with assumptions that are safety properties [1, 2].

An advantage of having progress properties on the left-hand side of guaran-
teesis that component designers can prove complex properties that can be used
directly in proving composed systems; thus, the effort in developing proofs of a
component is amortized over many system proofs

5.3 & and &' versus “guarantees”

A simple, but important theorem, is that the property X guarantees Y is merely
the application of predicate transformer £ to the property X = Y. It says
that guarantees is the weakest property stronger than implication. Indeed, this
theorem is why guarantees enjoys so many of the theorems that implication
does.

Also, this theorem shows why guarantees is so useful in compositional de-
sign. There are many cases in which a designer of a component needs to prove
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that all systems containing that component have the property X implies Y for
some X and Y. Usually, such a property is not existential, and therefore the
designer develops a component with the weakest existential property stronger
than the desired property. In other words, the designer develops a component
that satisfies the property X guarantees Y .

Two equivalent formulations of £ are given in this report. The first is in
terms of an extreme solution to an equation in predicates. This form is useful
to deduce theorems about existential properties and guarantees. The second
form uses an explicit quantification over components. This form has been useful
in deducing proof rules for guarantees properties in the context of concurrent
programs. (These rules are not given here.)

5.4 Predicate Transformers and Universal Properties

In section 4.5, we proved that, for some properties, there does not exist a weakest
universal strengthening. Consequently, it is impossible to define a predicate
transformer U that would be to universal composition what the transformer £
is to existential composition.

Universal properties are useful where guarantees properties cannot be used.
However, elementary properties like always are not universal. Therefore, we
are interested in studying universal properties that are stronger than specific
properties such as always that have been shown to be useful in domains such
as concurrent programming. Invariant is one possible strengthening of always,
but invariant properties are too strong. Intermediate universal properties, be-
tween invariant and always, can be defined [8, 16], but we need to experiment
with using these properties on proving systems to determine if they have the
appropriate level of abstraction. The existence of a weakest universal property
stronger than always is still an open question.

6 Conclusions

Component technology allows designers to develop systems by composing sub-
systems. Compositional design is simpler than designing systems from scratch if
designers have access to large libraries of components, appropriate components
in the library can be discovered easily, and there are simple rules for deducing
system properties from component properties. This paper reports on an ongoing
exploration of rules for deducing system properties from component properties.
In this paper we discussed universal and existential properties, and a predicate
transformer &.

We have explored properties of composition that can be deduced from alge-
braic properties of the composition operator: associativity and the existence of
a unit component. Though the exploration reported in this study is abstract
and is independent of specific types of systems, we are particularly concerned
with applying the results to parallel and sequential composition of programs.
Since Hoare triples and weakest preconditions handle sequential composition
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very well, the practical results of our explorations are particularly important
for concurrent composition. The concurrent composition operator, as defined
in UNITY, is symmetric (commutative) and idempotent in addition to being
associative. This allows us to prove additional theorems about £ for this special
case and, for instance, to deduce proof rules for guarantees that are specific
to the UNITY model. We have applied these rules and the theorems discussed
here to the compositional design of several message-passing programs [6] and
shared-memory programs [5].

Requiring components to be specified in terms of conjunctions of existential
and universal properties may seem too restrictive. We have found, however,
that this requirement is at the appropriate level of specificity for compositional
design. Designers must specify their components to help those who assemble
them to reason about composed systems. There may well be property types,
in addition to universal and existential, that have simple rules for composition.
We have found, however, that universal and existential are adequate for compo-
sitional design in many cases. Existential properties are a surprisingly rich class
of properties, especially since many properties can be expressed as guarantees
properties.

In many message-passing examples, components can be specified in terms of
guarantees properties where the left-hand side of the guarantees is true. Such
properties are existential properties in the sense that these properties hold for
a component regardless of the system in which the component is embedded.
For example, we specify a first-in first-out single input, single output, message
channel by the characteristic that the sequence of messages output “follows”
[4, 15, 6] the sequence of messages input, in the sense that an existential invariant
of the system is that the output sequence is a prefix of the input sequence, and
existential progress property is that any prefix of the input sequence is eventually
a prefix of the output sequence.

We have shown that there are some properties X for which there does not
exist a weakest universal property stronger than X. For specific properties of
interest in specific domains, however, there may exist weakest universal prop-
erties stronger than them. For example, there may exist a weakest universal
property stronger than any always property. We wish to explore such strength-
ening properties because always properties are important for state-transition
systems.

The goal of our exploration is to understand the theorems that we can prove
from simple postulates about composition and properties. This paper reports
on an early step in that exploration.
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