
Analysis of Scalable Algorithms for Dynamic Load Balancing

and Mapping with Application to Photo�realistic Rendering

Thesis by

Alan Heirich

In Partial Ful�llment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena� California

����

�Submitted May ����	

ii

c� ����

Alan Heirich

All Rights Reserved

iii

Acknowledgements

The material in this thesis has previously appeared in four journals and four conference

proceedings
 the journals Parallel Computing� The Journal of Supercomputing� The Inter�

national Journal of Foundations of Computer Science� and The International Journal of

Advances in Engineering Software� and proceedings of the ���� International Conference

on Parallel Processing� Eurographics��� 	workshop on programming paradigms in graphics
�

the First Eurographics workshop on parallel rendering and visualization� and the �th Na�

tional Symposium on Large Scale Analysis and Design on High Performance Computers

and Workstations�

For support� in addition to the N�S�F� Center for Research in Parallel Computation� I

have to thank Paul Messina of Caltech
s Center for Advanced Computing Research� and

Don Greenberg of the Program of Computer Graphics at Cornell University�

For everything else I have to thank my chairman� Jim Arvo� and thesis committee Al

Barr� Mani Chandy� Carl Kesselman� Peter Schr�oder� and Steve Wiggins� each of whom has

made my experience of Caltech remarkable in a di�erent way� previous committees and�or

advisors Steve Taylor� Christof Koch� Dan Meiron� Yaser Abu�Mustafa� and Alain Martin�

others who have made Caltech unforgettable
 Herb Keller� Andrew Conley� Michael Holst�

Roy Williams� Cheryl Carey� Eric van de Velde� Peter Hofstee� Jan van de Snepscheut�

Joel Franklin� and Thomas Caughey� my parents� for showing me the value of advanced

education� Michele Titus� for putting up with me� and our children Laura� Nicole� and John�

for teaching the things that we forget as we get older�

iv

Abstract

This thesis presents and analyzes scalable algorithms for dynamic load balancing and map�

ping in distributed computer systems� The algorithms are distributed and concurrent� have

no central thread of control� and require no centralized communication� They are derived

using spectral properties of graphs
 graphs of physical network links among computers in

the load balancing problem� and graphs of logical communication channels among processes

in the mapping problem� A distinguishing characteristic of these algorithms is that they are

scalable
 the expected cost of execution does not increase with problem scale� This is proven

in a scalability theorem which shows that� for several simple disturbance models� the rate of

convergence to a solution is independent of scale� This property is extended through simu�

lated examples and informal argument to general and random disturbances� A worst case

disturbance is presented and shown to occur with vanishing probability as the problem scale

increases� To verify these conclusions the load balancing algorithm is deployed in support

of a photo�realistic rendering application on a parallel computer system based on Monte

Carlo path tracing� The performance and scaling of this application� and of the dynamic

load balancing algorithm� are measured on di�erent numbers of computers� The results

are consistent with the predictions of scalability� and the cost of load balancing is seen to

be non�increasing for increasing numbers of computers� The quality of load balancing is

evaluated and compared with the quality of solutions produced by competing approaches

for up to ����� computers� This comparison shows that the algorithm presented here is as

good as or better than the most popular competing approaches for this application� The

thesis then presents the dynamic mapping algorithm� with simulations of a model problem�

and suggests that the pair of algorithms presented here may be an ideal complement to

more expensive algorithms such as the well�known recursive spectral bisection�

v

Contents

Acknowledgements iii

Abstract iv

� Introduction �

��� Summary of original contributions �

� Dynamic Load Balancing �

��� Field equations �

��� Computer graphics �

��� The load balancing problem ��

��� Some approaches to load balancing ��

����� A naive approach ��

����� Recursive bisection ��

����� Di�usion ��

��� A load balancing algorithm ��

� Convergence and Scaling ��

��� Derivation of algorithm ��

��� Correctness of algorithm ��

��� Worst case analysis ��

��� A scalability theorem ��

����� Multiple and random disturbances ��

��� Time dependent behavior ��

� An Experimental Validation ��

��� A pinhole camera model ��

��� A computational procedure ��

����� A path tracing iteration ��

vi

����� Sampling strategies ��

��� A concurrent implementation ��

��� Analysis of expected initial conditions ��

��� Measurements of observed scaling ��

����� Measurement of algorithm ��

� Dynamic Mapping ��

��� The mapping problem ��

��� A dynamic mapping algorithm ��

��� Simulations of a model problem ��

��� Discussion ��

� A Load Balancing Trace ��

Bibliography 	

vii

List of Figures

��� Characteristics of the �� � �� Laplacian matrix of a regular mesh� Left� the

complete eigenvalue spectrum� Right� two representative eigenvectors� The

eigenvector with the larger variation is the Fiedler vector� � � � � � � � � � � ��

��� The
Achilles heel� of equations ��� and ���� This sinusoidal disturbance

is the eigenvector �Xi�j that corresponds to the most slowly converging eigen�

value �i�j of equation 	���
� The standard iterations cannot converge this

disturbance e�ectively� ��

��� The initial conditions and �rst �ve iterates of a point disturbance under equa�

tion ���� The center point shows oscillatory convergence� � � � � � � � � � � ��

��� Point disturbance under equation ��� shows monotone convergence� � � � � ��

��� Left� height of the point disturbance over �� iterates of equations ��� and

���� Equation ��� shows oscillation while algorithm ��� converges monoton�

ically� Right� eigenvalue �i�� for n � �� of iteration matrices A and AA

corresponding to the two equations� A has mixed eigenvalues while AA is

positive de�nite� ��

��� Convergence of a problem on a �� � �� grid of ���� unknowns� The height

of the initial disturbance is the same in this series as in �gure ��� a�rming

the conclusion of the Scalability Theorem� ��

��� Convergence of a Gaussian disturbance under equation ���� � � � � � � � � � ��

��� Convergence of a pair of Gaussian disturbances under equation ���� � � � � ��

viii

��� Left� computing Monte Carlo samples of direct illumination� The image plane

corresponds to the rear wall of a pinhole camera� A path extends from the

image plane out through the camera aperture to a visible surface at x� The

light intensity re�ected into the camera along this path is equal to the sum of

the light intensities at x contributed from all visible light sources� multiplied

by a re�ection coe�cient� Right� the re�ectance phenomena described by

equation 	���
� One out of the many paths by which light is transported to

contribute to the value of a pixel� Light from surface point x� is transported

to point x in direction ��� Point x� may be a light emitter or may simply

re�ect light from other points� or both� A fraction of the total light reaching

x at any instant is re�ected in the direction � which in this �gure leads into

the camera aperture� In the general case � could lead to another re�ector� ��

��� Clockwise from upper left� glass� conference� o�ce� soda� and bath images�

These were computed at NTSC resolution ���� � ���	 and in full color� � � ��

��� The result of applying a random assignment strategy to a uniformly dis�

tributed sample population with mean � � ��� and variance �� � ����� Left

�gure shows the probability Prn 	see equation ���
 of obtaining acceptable �

for 	left to right
 � of ����� ����� ����� ����� and ���� for increasing numbers

of computers 	horizontal axis
� The probability of obtaining � � ���� drops

below ��� somewhere between ��� and ��� computers� Right �gure shows the

predicted � resulting from a random assignment of this population to increas�

ing numbers of computers 	horizontal axis
� � � � � � � � � � � � � � � � � � ��

ix

��� Distribution histograms and predicted imbalances for 	top to bottom
 o�ce�

soda� and bath images� All three images have highly nonuniform distribu�

tions as illustrated by their histograms 	left column
� These histograms show

frequency of occurrence 	vertical axis
 versus �oating point operations 	hor�

izontal bins
� For each image the predicted imbalance � 	right column
 is

shown for three static load balancing strategies 	naive� scatter� and random

on increasing numbers of computers 	horizontal axis
� In all cases the naive

strategy produces the largest predicted � 	vertical axis
 and the random strat�

egy produces the smallest� The scatter decomposition is generally comparable

to the random strategy but su�ers from isolated peaks at multiples of ��� pix�

els� exactly one half the width of the image� In all cases the predicted � is

greater than ���� when the number of computers is ��� or higher� � � � � � ��

��� Clockwise from lower left� measured � versus n for the bath� for the cases

shown in table ���� including four load balancing scenarios� the same for the

o�ce� and soda images� and predictions of � resulting from a random initial

mapping based on counts of �oating point operations from �gure ���� For

every image the best results 	lowest line
 occur when algorithm � follows an

initial scatter method� The predicted � is o�ered for comparison to this best

case� and appears to correlate moderately well� particularly for the soda im�

age� This correlation suggests that the increase in measured � under algorithm

� may be due to the initial imbalance rather than to any failure of scaling�

Unfortunately there is not enough data to prove or disprove this� � � � � � � ��

��� Comparison of e�ective imbalance � with and without dynamic load balancing

by algorithm �� for the three images in table ���� Clockwise from upper left�

naive method only� naive method followed by algorithm �� scatter method

followed by algorithm �� scatter method alone� In several cases the initial

imbalance seems to correlate with the the e�ective imbalance under algorithm

�� ��

x

��� Average number of milliseconds per computer spent in algorithm � versus

number of computers� See table ���� The o�ce� soda� and bath images were

computed using identical parameters on ��� �� and �� computers� This data

was collected from the same runs as the data in table ��� but shows only the

cases that include algorithm �� For an explanation of how the measurements

were collected please see the �nal chapter� The left �gure shows the o�ce

and soda measurements� and the right �gure shows the bath measurements�

All times are in milliseconds� In every case the naive method led to more

time being spent in algorithm � than the scatter method did� The number of

computers showed no in�uence on these measurements� All of these results

are consistent with a hypothesis that algorithm � is insensitive to problem

scale for realistic problem instances� ��

��� Perfect equilibria are not possible for all cases� but an approximation to equi�

librium is still a good solution to the mapping problem� Left� the setting for

a model problem on a grid of �� computers� A rectangular region has been

partitioned so that each computer occupies a subregion and the interfaces be�

tween these subregions represent network links� Middle� an ideal solution for

an easy problem with a set of ���� processes that communicate in a regu�

lar grid� In this solution each process is equidistant from all processes with

which it communicates� Right� a solution for a realistic problem in which set

of processes perform a structured multigrid calculation� This process graph is

non�planar� and the solution shown here is the best that can be achieved even

though it is not in perfect equilibrium� ��

��� An example of a regular graph sorting itself out from a di�cult initial con�

dition� This required constraining the corner positions� Note the persistent

sinusoid� ��

��� The same problem� started from a nice initial condition� The �nal �gure still

has a persistent sinusoid� with points clustered toward the periphery� � � � � ��

��� Two incorrect solutions that can result from the initial condition of �gure ���� ��

xi

List of Tables

��� Probability �Prn	 of obtaining � � ���� by random assignment� See equation

	���
� � and �� represent the mean and variance of the number of �oating

point operations required to compute an NTSC resolution image using an

adaptive sampling strategy of from � to �� samples per pixel� In no case is

random assignment likely to be e�ective for more than ��� computers� This

conclusion is independent of the type of ray tracing algorithm used and the

distribution of the sample population wi� ��

��� Empirical results measuring e�ective imbalance � in rendering the o�ce� soda�

and bath images with di�erent load balancing strategies on varying numbers of

computers� See �gure ���� In every case the best results came from dynamic

load balancing by algorithm � preceded by the scatter method 	
balanced�

In most cases algorithm � by itself produced better results than scattering

even from poorly balanced initial conditions 	
unbalanced�
� In general the

problem becomes more di�cult with increasing numbers of computers� These

results have been reported in publications ���� ��� ���� � � � � � � � � � � � � ��

��� Results of an initial study on the SP�� In all of these runs the naive strategy

was used for the initial mapping followed by algorithm �� This study revealed

the existence of errors in the original distributed algorithm for termination

detection� These errors showed up the runs on ��� and ��� computers� where

they caused a slowdown rather than a speedup� These results have been re�

ported in publications ���� ���� ��

��� Rendering times on Intel cluster� These runs were computed with parameters

identical to table ��� and are directly comparable� In every respect the perfor�

mance was slightly better than on the SP�� These results have been reported

in publications ���� ���� ��

xii

��� Time measured within algorithm �� in milliseconds� and total elapsed time�

in seconds� for six cases� See �gure ���� Each of three images was started

from two initial mappings� One mapping had a reasonably well balanced

workload while another was poorly balanced� These measurements show that

the amount of work expended by algorithm � is a�ected by the amount of

initial imbalance but not by problem scale� � � � � � � � � � � � � � � � � � � ��

��� Parameters that determine the sampling rates used in algorithm � and values

used for typical runs� Some of the runs used values of PIXEL SAMPLES

as high as ���� For the o�ce� soda� and conference models the value of

PATH GENERATIONS was � so that only direct lighting was computed� � ��

�

Chapter � Introduction

This thesis presents scalable dynamic algorithms to solve the problems of load balancing

and mapping in distributed computer systems� The load balancing problem partitions a

large set of concurrent processes into equally balanced subsets for execution on a small set

of computers� The mapping problem partitions the same set of processes into connected sub�

graphs for the same purpose�� Both problems have the goal of optimizing the performance

of the processes on the computers
 in the case of load balancing� to equalize �and therefore

minimize	 the time required by each computer� in the case of mapping� to minimize the

amount of communication among computers�

These algorithms are constructed using an approach based on spectral properties of

graphs
 graphs of physical network links among computers in the load balancing problem�

and graphs of logical communication channels among processes in the mapping problem�

In both problems the approach starts by characterizing problem solutions as equilibrium

distributions of appropriately chosen scalar quantities� For the load balancing problem

this characterization is easily arrived at� since every solution is an equilibrium distribution

of workload among a set of computers� For the mapping problem the characterization is

somewhat less obvious� and the equilibrium sought is an equal distribution of communication

distance as measured along paths through a physical interconnection network�

After the problem has been formulated in this way an algorithm is constructed from

an iterative procedure to solve the Laplace equation on the vertices of the graph� The

procedure to solve the Laplace equation is analogous to a process in which an initial dis�

equilibrium condition di�uses �or relaxes	 to an equilibrium� The iterative procedure yields

a matrix of coe�cients known as the Laplacian matrix of the graph� Spectral properties of

this matrix can be used to analyze the convergence and scaling properties of the resulting

algorithms� The thesis uses these properties to prove a scalability theorem which says that

the resulting algorithms will reduce a discrete disturbance at a constant rate regardless of

the scale of the system in which the disturbance occurs� Constant convergence can be a

�The mapping and load balancing problems are similar to a number of other important problems� such as
the problems of partitioning circuits for VLSI placement and simulation� The approach that is demonstrated
here may be applicable to some of these other problems�

�

useful property for algorithms that execute on scalable computer systems� and a necessary

property for the largest systems�

The scalability theorem assumes a simpli�ed model in which individual imbalances arise�

one after another� with each imbalance con�ned to a single computer� In real applications

this simpli�ed model may not be realistic� Imbalances may arise on several computers

simultaneously� as a result of several unrelated events� or as a result of a single event that

involves several computers� When the number of such events is �xed the rate of convergence

of the algorithms is not signi�cantly a�ected by problem scale� just as in the case of a single

disturbance� Scale�independent convergence is also the expected behavior for any number

of events� when they occur at random times� on randomly selected computers� and with

random magnitude�

These claims of scalability are tested in an implementation of a distributed algorithm

for image synthesis� A dynamic load balancing algorithm is implemented according to the

approach presented here� and used to support a photo�realistic Monte Carlo path tracing

algorithm� The scaling of these two algorithms are measured� and the observed load balanc�

ing solutions are compared to solutions produced by competing load balancing algorithms�

The measurements show that the performance of the load balancing and Monte Carlo al�

gorithms are consistent with the scalability theorem� The comparison shows that the load

balancing algorithm is superior� in both cost and quality of solution� to a popular load

balancing algorithm for ray�tracing on parallel computer systems�

A subsequent chapter presents the dynamic mapping problem and derives an algorithm

to solve it� The mapping algorithm is applied to a simple model problem that illustrates

some of the issues that arise in a distributed application� A �nal chapter discusses issues

in developing the software for this study and shows a partial program trace for one of the

many data points that were collected� The purpose of presenting this information is to aid

in reproducibility� by showing the many ancillary issues that must be addressed in order to

implement the complete application� It also shows explicitly how the data was gathered�

Scalability is the principal feature that distinguishes these algorithms from competing

approaches� The algorithms are distributed and concurrent� have no central thread of con�

trol� and require no centralized communication� These properties are necessary for achieving

scalable performance on the largest distributed computer systems� Examples of such sys�

tems include �massively parallel� computer systems which have hundreds and in some cases

�

thousands of processors connected by high performance communication networks� Another

example is the Internet which has millions of computers connected by a relatively poor

network in which communication is slow and synchronization is impractical�

When scalability is not important the algorithms presented in this thesis have little

advantage over competing approaches� The load balancing and mapping problems can

always be solved by serial algorithms that compute a solution on a single computer and then

broadcast the result to the other computers� A serial approach may often be the simplest

to implement� and may be satisfactory for small parallel computer systems� However this

approach will not give scalable performance on large computer systems� and may not even be

feasible on a system such as the Internet� In these cases algorithms such as those presented

here may be the only ones that are practical�

��� Summary of original contributions

This thesis presents novel problem formulations� algorithms� literature surveys� algorithm

analysis� and empirical data� The key contributions are listed here�

� Problems � and � de�ne the dynamic load balancing problem in a form that is amenable

to analysis� These de�nitions make explicit the relationship between the problems of

load balancing and mapping in a form that has not appeared previously� This form

makes it possible to present a uni�ed discussion of these two problems� and to analyze

them both within a common formal framework�

� Section ����� ��di�usion�	 presents the most complete survey to date of a class of load
balancing algorithms that are based on the informal concept of di�usion� This survey

demonstrates that over the past several years a consensus has emerged about the

preferred local load balancing algorithms for distributed applications� The emergence

of this consensus has not been widely recognized�

� Algorithm � o�ers a distributed dynamic solution to the problems of load balancing�
or of load balancing and mapping� The derivation and correctness �sections ���� ���	

make explicit the relationship between this algorithm �and others discussed in section

�����	 and the Laplace equation� The explicitness of this relationship makes it pos�

sible to analyze these algorithms in terms of the spectral properties of the Laplacian

�

matrix of a graph� The Laplacian matrix has been used extensively to analyze prop�

erties of algorithms for the mapping problem� and in particular� the recursive spectral

bisection algorithm� It has not previously been available for analysis of load balancing

algorithms�

� A scalability theorem proves that� for a purely local disturbance� the rate of conver�

gence of algorithm � is constant on computer systems of arbitrarily large scale� This

property also holds for disturbances that are not purely local as is shown through dis�

cussion and simulation� A model of the worst�case disturbance is presented for which

algorithm � is ine�ective� This worst�case is shown to have a vanishing probability of

occurrence with increasing problem scale� In addition� it is shown that if the worst�

case characteristics are not present in a problem at small scale� then they will not be

present at large scales either� These two characteristics are in sharp contrast to prob�

lems that commonly arise in solving di�erential equations by iterative algorithms and

that give rise to research in multigrid methods ����� In such problems the worst�case

behavior has an increasing probability of occurrence with increasing problem scale�

and problems that converge rapidly at small scales may converge slowly or not at all

when the scale is increased�

� Algorithm � describes a path tracing iteration to sample the photo�realistic values

of image pixels in a Monte Carlo procedure� It is unconventional to compute these

values using an iteration� and this computation is typically formulated as a tail recur�

sion� The advantage of formulating the computation as an iteration rather than as a

recursion is that it becomes easy to redistribute work among computers as a result of

dynamic load balancing�

� Algorithm � shows one way to use algorithm � to provide dynamic load balancing for
a Monte Carlo image synthesis application based on algorithm �� The discussion in

section ��� ��a concurrent implementation�	 brings to light practical issues of imple�

mentation that may be relevant to load balancing in support of other applications�

� The analysis of randomization strategies in section ��� presents a model to calculate
the expected workload imbalance on any number of computers as a function of sta�

tistical properties of an image� This analysis shows that the di�culty of achieving a

�

balanced workload increases with problem scale� and that tiling strategies commonly

used for load balancing in image synthesis have a detrimental e�ect� It illustrates the

di�culty of achieving a balanced workload by static methods and shows the necessity

for dynamic load balancing in distributed image synthesis computations� This section

presents predicted and simulated data for load imbalance of representative images on

up to ����� computers� This data may be useful to future studies in scalable image

synthesis�

� An empirical comparison of the performance of four di�erent load balancing strategies
on systems of up to �� computers appears in table ���� These results reinforce the

need for dynamic load balancing for problems in image synthesis� They show that

algorithm � was consistently as good as or superior to one of the most popular load

balancing algorithms for ray�tracing on parallel computers�

� Algorithm � o�ers a scalable solution to the dynamic mapping problem based on

the computational kernel of equation ����	� This is one of the �rst algorithms ever

proposed for the dynamic mapping problem on general interconnection topologies�

The local nature of the algorithm ensures that it will produce better solutions than

random placement algorithms ���� The similarity of algorithms � and � serves to

both unify and highlight the di�erences between the problems of load balancing and

mapping�

�

Chapter � Dynamic Load Balancing

The load balancing problem is intrinsic to any distributed computation� In order to achieve

scalable speedup it is necessary to distribute the computational workload evenly so that no

individual computer becomes a bottleneck for the computation�

This chapter describes two classes of applications that make use of parallel computer

systems� and considers the nature of imbalances that occur in these applications� It de�nes

the load balancing problem in terms of processes and computers� with an objective to

minimize the time required to run the processes on the computers� It describes the principal

approaches that have been taken toward the load balancing and mapping problems� and

proposes a dynamic load balancing algorithm that is appropriate for these applications�

��� Field equations

A number of problems in mechanics and other �elds can be addressed by solving computer

models of systems of equations that represent discretized di�erential or integral equations�

For example� Computational Fluid Dynamics �CFD	 applications solve Navier�Stokes or Eu�

ler equations of �uid mechanics� discretized according to �nite�di�erence or �nite�element

methods ����� Solutions to these equations are most often described by �elds of velocity

vectors� pressure� and sometimes temperature� organized into grids of two or three spatial

dimensions� Automobile designers use CFD to simulate the cabin acoustics and ventilation

inside a passenger compartment under various operating conditions� Food industry man�

ufacturers use CFD calculations to minimize the friction and heat dissipation of factory

equipment� Aerospace designers use CFD to calculate lift and drag of airfoils and rockets

under operating conditions that are unattainable in wind tunnels�

In a similar way� problems in structural mechanics can be solved by using �nite element

methods to discretize equations of elasticity and heat transfer� and a variety of other equa�

tions for problems in electromagnetic scattering� radiative transfer� and other subjects �����

Most of these problems use spatial grids to represent the discretized equations� and typical

solution algorithms iteratively re�ne values on the grid until the values are consistent with

�

the governing equations�� In solving these types of discretized equations� which are some�

times known as �eld equations� it is usually necessary to tailor the structure of the spatial

grid in response to properties of the solution� For example� a CFD calculation will usually

need to re�ne a grid by adding points around a shock wave or discontinuity in order to

ful�ll the requirements for consistency between the solution and the governing equations�

A calculation that models the propagation of a fracture in a solid material will re�ne a grid

to capture the structure of the fracture�

In solving �eld equations on parallel computers the grid re�nement operations give rise

to load imbalance in the solution algorithms� Load imbalance arises because the solution

algorithms typically perform the same amount of work for each point in the grid and the

workload of each computer is proportional to the number of grid points managed by that

computer� When a grid is re�ned in a local region� the number of grid points managed by a

small set of computers is increased� and the workload for those computers is increased rel�

ative to the average workload� These re�nements are usually performed locally in response

to a local estimation of solution error� Larger re�nements can occur as a succession of local

re�nements� but are not usually implemented in a single step� One reason for this is that

solution algorithms can become unstable if the grid changes dramatically� and therefore it

is important to re�ne a grid gradually�

��� Computer graphics

Computer graphics is a rapidly developing subject that is readily amenable to parallel

implementation ����� This thesis will be concerned with image synthesis� the problem of

computing a two dimensional image from a three dimensional geometric model� Image

synthesis is fundamentally a transport problem in which light is transported from emitters

to re�ectors and ultimately re�ected into a virtual camera to create pixels on an image

plane� The intensity of light is termed radiance and has the property that it is una�ected

by distance as it travels along a straight line through space� Radiance is measured in units

of W�m�sr �watts per square�meter steradian	� Steradian is a measure of solid angle� with

a sphere subtending a total of �	 steradians� Radiance is a�ected by re�ection and trans�

�This describes typical solution algorithms that are used on parallel computers� A variety of other
algorithms that employ so�called direct solution methods are typically used on uniprocessors and shared
memory multiprocessors�

�

mission� and in particular by the molecular properties and surface geometry of re�ectors

and transmitters� The radiance of light at any frequency is assumed to be independent of

the radiance at other frequencies� and images are typically computed at several frequencies�

usually the �red�� �green� and �blue� channels of a computer monitor� The value of a

picture element or pixel in an image is a set of radiance values at speci�c frequencies� for a

given model viewed under given lighting conditions from a given viewing location� A closely

related quantity is irradiance which is the density of power arriving at a particular point

from all directions� Since this is a non�directional quantity the unit of measure of irradiance

is simply W�m��

The term photo�realism is used to refer to images that are su�ciently realistic that they

might be mistaken for photographs� This term has various de�nitions and in the ultimate

case requires accounting for all physical phenomena of light emission� re�ection� and trans�

mission� including subsurface scattering� �ourescence� polarization� and properties of lenses

and �lms� This level of realism is not presently attainable� because of the computational

cost and even a lack of practical algorithms for such tasks as computing realistic surface

re�ections� Every recognized algorithm for photo�realistic image synthesis computes solu�

tions to the global illumination problem in which the radiance transported into a camera

from a surface in the model depends on the radiance transported to that surface from all

other surfaces�

Algorithms based on local illumination compute the transport of radiance based on

properties of only a single surface� ignoring multiple re�ections and transmission� The

simplicity of these approaches makes it possible to implement them in VLSI� This is the

basis of real�time implementations of the graphics pipeline that are becoming pervasive in

personal computers and workstations ���� This approach only allows light to re�ect once

between the emitter and the camera� and it ignores the fact that objects can cast shadows

on each other� The images produced by this approach lack realism but they are fast�

Current algorithms perform a simple geometric transformation and lighting calculation for

each object vertex and then rasterize the objects into fragments� Some number of depth

comparisons are performed for each object fragment followed by a simple shading and

texturing calculation for object fragments that are visible to the image plane�

Global illumination approaches take into account the characteristics of light source emis�

sion� and surface re�ection and transmission� These approaches accurately model the ability

�

of objects to cast shadows on each other� Image synthesis algorithms for global illumina�

tion are usually implemented in software and do not achieve real�time performance� however

they produce images that are dramatically more realistic than the images product by local

illumination approaches�

Finite element and Monte Carlo methods� long staples of numerical analysis� have be�

come powerful tools for solving global illumination ���� ��� ���� Other image synthesis

algorithms that have been developed speci�cally for global illumination include ray tracing�

and radiosity methods� Ray tracing algorithms simulate individual photon paths through

space and thereby compute re�ections very accurately ����� They are often used to render

models with mirror�like surface properties in which realistic re�ection is important� Radios�

ity algorithms ignore the e�ects of individual paths in favor of computing the total transfer of

energy between objects with purely di�use� omni�directional surface re�ection ����� Radios�

ity computations are equivalent to �nite element discretizations of the integral equations

of light transport ����� These equations are usually known as the rendering or radiance

equations ���� but they can be formulated in a number of ways including formulations in

terms of radiance� spectral radiance and transport intensity� Images produced by radiosity

algorithms have a natural quality that is appealing to the eye� but because these algorithms

are based on pairwise interactions they scale as O �n�� and are therefore expensive� Hierar�
chical radiosity methods have been developed to reduce this O �n�� complexity to O �n	 by
representing the surface interactions at multiple levels of detail ���� ���� These algorithms

are e�ective in reducing the complexity of the computation but it is very di�cult to assess

the error that is introduced into the solution as a result of the geometric simpli�cations�

Monte Carlo methods are an alternative to �nite elements for explicitly estimating solu�

tions to the integral equations of light transport ���� ��� ��� ���� Like ray tracing methods

Monte Carlo methods calculate the contributions of light transported along individual paths

through space� and they are usually �but not necessarily	 implemented using ray tracing

inner kernels� Like radiosity methods Monte Carlo methods can model di�use surface re�

�ection� They have a major advantage in modeling sophisticated surface re�ection and light

source properties� Unfortunately their computational cost can be very high� since Monte

Carlo analysis has a quadratic cost
 in order to reduce the error in a solution by a factor of

n it is generally necessary to compute n� new samples�

Load balancing is generally harder for image synthesis algorithms than for �eld equations

��

because the computational workload is fundamentally data dependent and therefore can

only be evaluated by executing the algorithm� When a Monte Carlo method is implemented

using a ray tracing kernel the cost of computing the visibility for each sample depends on

the relative positions of all of the complete set of surfaces� The lengths and numbers of

paths that must be followed depend on which surfaces are visible from a given viewpoint�

These can change abruptly when the objects in the model are also in motion� In a sequence

of images with a moving viewpoint the workload distribution can change substantially from

one image to the next�

��� The load balancing problem

Consider a set of n computers running a larger set of concurrent processes between two

barrier synchronization events� Call ti the time required to run all of the processes that

execute on computer i� Given a mapping function M that assigns processes to computers

the time pj required to run process j then

ti �
X

j�M���i�

pj� ����	

Equation ����	 says that the time required by computer i is the sum of the times required

for all of the processes that are mapped onto that computer� When there is only one

computer �n � �	 the mapping is trivial�

T� �
X
j

pj� ����	

We can measure the e�ective utilization of a parallel computer system by comparing

the serial execution time T� to the time required when n
 ��

s � T��max
i

ti� ����	

Under ideal circumstances the speedup of a set of concurrent processes on n computers

is O �n	� that is� s � c�n for some constant c�� Then

max
i

ti � T��c�n� ����	

��

Maximal speedup occurs at minima of equation ����	 where� for all i�

ti � T��c�n

�
�

c�n

X
j

pj

� Tmin� ����	

At this maximum s � T��Tmin� The objective of the load balancing problem is therefore

to minimize maxi ti by �nding a mapping M that allows ti � Tmin for all computers i� In a

balanced solution all computers will have the same workload Tmin and in addition the total

amount of work will not change as a result of the load balancing algorithm�

Problem � 	Dynamic Load Balancing

Given �t indexed by i� a set of times pj� a mapping function M � and the relation ti �P
j�M���i� pj� Find a new mapping function �M to yield a new vector ��t so that k��tk� � k�tk�

and k��tk� is minimal�

Problem � describes the dynamic load balancing problem�� The condition on k��tk�
requires that every computer have the same workload Tmin� The requirement that k��tk� �
k�tk� requires that the total amount of work is the same before and after the algorithm is

run� The static version of this problem is to �nd a mapping function �M at the start of a

computation� The static problem is just a special case of the dynamic problem in which

M is trivial� It may be bene�cial to use di�erent algorithms for the static and dynamic

problems� since the initial placement is only computed once and can a�ord a more expensive

algorithm than subsequent remappings can�

Problem � at �rst appears to be straighforward� Given a set of processes with times

pj� and a set of computers� �nd a way to map the processes onto computers so that the

total time ti for each computer i is equal� Despite this straightforwardness problem � is

NP�complete as can be shown by transformation from the partition problem��

It is often necessary to solve the dynamic load balancing problem in the presence of

a constraint that limits the mobility of the items that are remapped� For example� in

�The usual vector norms are de�ned k�uk� �
P

i�j
jui�j j and k�uk� � maxi�j jui�j j �

�In the partition problem a set of integers is to be divided into two subsets of equal sum� This problem
is NP�complete ���	�

��

solving �eld equations it is necessary to maintain spatial locality among grid points� A

load balancing algorithm that remapped grid points to randomly chosen computers would

cause the �eld equation solvers to slow down severely because of the resulting increase in

communication� for example� The same considerations would apply to �nite�element image

synthesis algorithms� and any other image synthesis algorithms that use distributed data

structures� Image synthesis algorithms such as ray�tracers that exploit scene coherence

would bene�t from maintaining spatial locality because this would lead to better cache

reuse� and minimize the need for communication in computing intersection tests�

Problem � 	Locality�Constrained Dynamic Load Balancing

De�ne vectors �m and ��m so that mi � M�i	 and �mi � �M�i	� Solve problem � with the

constraint that k ��m� �mk� is minimal�

Problem � adds a constraint that remapped processes should move as little as possible�

In a �eld equation solver this constraint would imply that every grid point should remain as

close as possible to the grid points on which it depends� In a distributed radiosity calculation

this would imply that the radiosity mesh would be distributed among computers in a way

that preserves the relative ordering of the mesh elements�

This seemingly simple constraint makes solution of the load balancing problem consid�

erably more di�cult� The next section reviews common approaches to constructing load

balancing algorithms� some of which address this constraint and some of which do not�

Chapter � will address this constraint explicitly when it considers the mapping problem�

��� Some approaches to load balancing

����� A naive approach

It might appear that problem � can be solved by very simple algorithms� For example� in a

master�slave scenario a single master process could collect the workload status of every slave�

compute the average workload� and broadcast this average to all slaves� The slaves would

then negotiate among themselves until they all achieve the speci�ed average workload� or

come as close to this as is possible given the actual distribution of the pj �

The master�slave algorithm contains an inherently serial component� because the master

process must handle all of the messages from the slaves� and must compute this average

��

workload� The time required to broadcast the result increases with the number of slaves�

on any conceivable network technology� As a result this proposal is not scalable because

the cost of these operations increases linearly with the number of slave computers� The

linear scaling could be partially alleviated by distributing the computation in the form of a

tree� The resulting distributed algorithm would scale with a logarithmic cost� rather than

linearly�

The master�slave algorithm might be adequate for solving problem � when scaling is

not a requirement� However it cannot address the locality constraint of problem �� It

is no longer a matter of deciding merely how many processes should be assigned to each

computer� but in addition� where to place each process in order to minimize the cost of

communication� The problem of placing the processes is combinatorial� and is an instance

of the NP�complete quadratic assignment problem ���� This is the essence of the mapping

problem� which will be discussed in a later chapter of this thesis� Many existing proposals

for solving the load balancing problem can be distinguished by how explicitly they treat

this consideration�

The master�slave approach ignores the NP�completeness of problem � that results from

its relationship to the partition problem� It is possible that there may be no way to partition

a given set of processes into equally weighted subsets� Every practical approach to load

balancing also ignores this issue� either by simplifying the problem so that processes have

equal weight� or by accepting approximate solutions that are close to optimal�

����� Recursive bisection

One way to solve problem � is to recursively bisect graphs of processes and of computers�

At each step the results of the bisections are combined� so that each sub�graph of processes

is assigned to one of the two sub�graphs of computers� The resulting solution has a balanced

workload since the process graph is bisected into equally weighted sub�graphs at each step�

Recursive bisection is guaranteed to satisfy the locality constraint if it chooses a minimal

bisector of the process graph at each step�	 It has been used successfully in various applica�

tions and has become popular for solving �eld equations� In these problems the individual

grid points are mapped onto the computers� and each grid point is assumed to have weight

pj � ��

�A minimal bisector is one for which the sum of the cut edge weights is minimal�

��

The most e�cient of these approaches is recursive coordinate bisection in which the

spatial coordinates associated with grid points are used to �nd the bisector ����� In this

algorithm the bisector computation is inexpensive� but unfortunately the algorithm is not

applicable to the general problem in which spatial coordinates are not present� The general

problem can be treated by any number of graph partitioning algorithms� Advocates of

heuristic partitioners claim that they produce good solutions at low cost ���� ��� ���� A

competing approach� recursive spectral bisection� uses spectral properties of the graph to

compute minimal bisectors ��� ��� ���� Having a minimal bisector at each step does not

guarantee that the recursive process will yield a minimal partition of the graph� and it

is a matter of debate whether spectral bisection yields better results than the heuristic

approaches ����� One thing that is not in dispute is that spectral bisection is more expensive

than other methods ��� ����

Spectral bisection �nds a minimal bisector by computing the Fiedler vector of the graph�

and then uses the elements of the Fiedler vector to assign graph vertices to one subgraph or

the other� In order to �nd the Fiedler vector the Laplace equation r�u � � is discretized

on the graph using the method of �nite di�erences� with one unknown ui for each vertex

of the graph� The matrix of coe�cients that results from this discretization is called the

Laplacian matrix of the graph� The Fiedler vector is the eigenvector of this Laplacian matrix

corresponding to the smallest non�zero eigenvalue�

The role of the Fiedler vector in computing minimal graph bisectors is well estab�

lished ���� ���� Spectral bisection typically computes the Fielder vector by using Lanczos

iteration� but any other algorithm for computing eigensystems of symmetric matrices could

be used� such as a Householder�QR sequence ����� Figure ��� illustrates the complete spec�

trum of eigenvalues of a �� � �� Laplacian matrix corresponding to regular � � � grid of
processes� and two representative eigenvectors of that matrix� including the Fiedler vector�

����� Di�usion

Recursive bisection approaches all have characteristics that make them undesirable for dy�

namic load balancing� Recursive spectral bisection� in particular� is too expensive to use

routinely to remap an application ���� All of these methods might be described as �all or

nothing�
 they require that all of the computers participating in a computation stop and

synchronously compute a new mapping� This requirement is clearly impractical for envi�

��

Figure ���
 Characteristics of the �� � �� Laplacian matrix of a regular mesh� Left� the
complete eigenvalue spectrum� Right� two representative eigenvectors� The eigenvector with
the larger variation is the Fiedler vector�

ronments such as the Internet� and can be undesirable on other platforms� The requirement

also violates the goal of scalability since the cost of these algorithms is in proportion to the

number of computers�

Another class of algorithms can be loosely described as di�usion methods� and are

based on local transfers of work among nearby computers� These algorithms don
t have

the disadvantages of recursive bisection methods� They are generally inexpensive and may

be locally active without requiring the participation of all of the computers in a system�

Unfortunately these methods have a weakness that recursive bisection methods don
t have

because these are local methods� it is more di�cult to address the mapping problem�

The �rst formal proposal in this class was due to Cybenko ����� Cybenko
s proposal

considers the load balancing operation as a matrix�vector iteration in which computers are

represented by a vector of workloads� Necessary conditions are formulated for convergence

to equilibrium of the matrix�vector iteration� Unlike the algorithms presented in this thesis�

these conditions don
t assume nearest�neighbor communication among computers� and don
t

address the locality constraint� the mapping problem� or the issue of scalability�

Several other proposals were formulated within a short time of Cybenko
s ��� �� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ��� ���� Although these proposals were conceived independently the

authors with few exceptions use the term �di�usion� in the descriptions of their algorithms�

Few of these proposals are explicitly concerned with nearest neighbor communication �����

A few of them rely on the theory of the iterative solution of linear systems of equations in

order to prove convergence properties of their algorithms ���� ��� ���� Still others derive

��

their algorithms from models of di�erential equations ��� ��� ��� ����

This author proposed a load balancing algorithm based on the heat equation ut �

Kr�u ����� The algorithm used an implicit numerical integration scheme to ensure numer�

ical stability for very large time steps� Analysis of this algorithm showed that it required

only a small �xed number of steps to accomplish a matrix inversion that guaranteed nu�

merical stability� Analysis also showed that the rate of convergence to equilibrium for a

simple model problem� based on a point disturbance� was independent of the size of the

computer system� and therefore that the algorithm was scalable� Related algorithms were

derived from the Laplace equation and applied to both the load balancing and mapping

problems ����� This is one of the �rst proposed solutions to the dynamic mapping problem�

It is these algorithms that are presented in this thesis�

��� A load balancing algorithm

This section presents an algorithm to solve problems � and �� For the sake of analysis the

algorithm will be presented for a set of computers that communicate in a grid pattern� A

similar result could be obtained for any interconnection topology� In order to model this

grid �t will be re�indexed by i� j� The following algorithm executes on every computer �i� j	�

��

Algorithm � 	Dynamic Load Balancing

u
���
i�j � ti�j� �M �M � � � ���

�max � PREDICT ��	

for � � � to �max begin

du � �

for k � � to m begin

�i�� j�	 � NEIGHBOR�i� j� k	

duk �
�
m

�
u
���
i�j � u

���
i��j�

�
du � du duk

while �duk
 �	 begin

choose l so that pl � duk 	and k ��m� �mk� is minimal

�M �l	 � �i�� j�	

duk � duk � pl

end

end

end

�ti�j � u
��max�
i�j

In this algorithm the scalar quantitym is the number of immediate neighors of computer

�i� j	 and is � in the case of a regular grid in two dimensions� �Thism should not be confused

with the vectors �m and ��m�	 The value � � ��� was chosen arbitrarily� and could have been

expressed as � � h����h��� where h��� is the height of an initial disturbance and h���

is a desired height at termination� The function PREDICT ��	 returns a value for �max

according to equation �����	� PREDICT could also return the value � to allow for an

on�demand startup mechanism� which we will see demonstrated in chapter �� The function

NEIGHBOR�i� j� k	 just provides indices of neighboring points� which in this example

simply di�er by one in either i or j�

��

Chapter � Convergence and Scaling

This chapter discusses the derivation� correctness and scaling of algorithm �� It illustrates

the process by which the algorithm was derived as an iteration to solve the Laplace equation

r�u � � on the vertices of a graph� It shows that this derivation satis�es the requirements

of problems � and �� It shows a model for the worst case disturbance and the probability of

occurrence of this worst case� It discusses the nature of the distribution of load imbalances

that can occur in applications and presents a formal model of an individual disturbance�

It presents a scalability theorem for individual disturbances which says that algorithm �

reduces these disturbances at a rate that is independent of the size of the computer system�

It argues that these properties also apply to multiple and random disturbances� Finally

it shows simulations of the time�dependent evolution of single and multiple disturbances

which are in agreement with the scalability theory�

��� Derivation of algorithm �

The objectives of problem � are twofold
 to compute the value of an equilibriumworkload at

every one of a set of computers� and to transfer processes among computers until the actual

workloads equal this equilibrium� If the processes have unequal weights then it is usually

necessary to accept approximate solutions to this second goal� since it may be impossible

to achieve the exact equilibrium workload� Problem � adds a third objective in the form

of the locality constraint� so that processes are transferred in a way that is consistent with

the mapping problem�

The �rst objective can accomplished in a scalable way� Solutions of the Laplace equation

r�u � � are equilibria when boundary conditions are constant� The standard iterations

�Jacobi� Gauss�Seidel� SOR	 ���� are well�studied algorithms for solving certain classes of

systems of linear equations� Linear systems of the form A�u � �b can be solved by the

standard iterations if the matrix A is diagonally dominant� A matrix A is diagonally

dominant if in each ith row the value of the diagonal element Ai�i is greater than or equal

to the sum of the other elements in that row� These conditions are su�cient to ensure that

��

A is positive de�nite� which is su�cient to ensure the success of the standard iterations�

When the Laplace equation is discretized by the method of �nite di�erences� the resulting

linear system Au � � has a diagonally dominant matrix and can be solved by the standard

iterations��

The �nite di�erence approximation to r�u � � on a domain that is a two dimensional

regular grid� containing n points indexed by row i and column j� is a set of equations

ui�j �
�

�
�ui���j ui
��j ui�j�� ui�j
�	� ����	

Solutions of equation ����	 are equilibria and are attracting �xed points of the iteration

u
��
��
i�j �

�

�
�ui���j ui
��j ui�j�� ui�j
�	

���� ����	

Equation ����	 is a Jacobi iteration for the Laplace equation with constant boundary

conditions on a two�dimensional regular grid� The other standard iterations are procedu�

rally similar� Gauss�Siedel iteration always uses the newest values of the right�hand side

terms when they are available� and therefore converges faster than Jacobi� Successive over�

relaxation �SOR	 computes a weighted average of the right�hand side with the current value

of the left�hand side� If the weighting is chosen correctly SOR converges faster than either

Jacobi or Gauss�Seidel� The choice of an optimal SOR weighting for load balancing on

various interconnection topologies is the subject of ���� ��� ����

Equation ����	 is one of the most studied algorithms in numerical analysis� When it is

discretized in this way on a regular grid in two dimensions� the iteration has a well�known

basis with eigenvalues �i�j and eigenvectors �Xi�j ����� For example� in the Jacobi iteration

these take the form

�i�j �
�

�

�
cos 	

ip
n
 cos 	

jp
n

�
����	

�Xi�j	x�y � ki�j cos 	
ixp
n
cos 	

jyp
n
� ����	

In the case of Gauss�Seidel the eigenvalues are �i�j �
�
	

�
cos 	 ip

n
 cos 	 jp

n

��
����� The

�A �nite di
erence approximation to ��u��x� on a domain of equally spaced points � � � � xi��� xi� xi��� � � �
is de�ned as �ui � ui�� � ui���

�These conditions are su�cient but not necessary� For a detailed discussion of these issues see ��
	�

��

Gauss�Seidel iteration converges faster than Jacobi� but at a cost
 the unknowns must be

updated in a �xed order� This order requirement isn
t practical for algorithm � since it

executes independently on each computer� With independent execution the updates will

occur in random order� and the convergence rate will lie between the rates of the Jacobi

and Gauss�Seidel iterations�

From equation ����	 it is apparent that the iteration can have negative eigenvalues�

Negative eigenvalues can produce oscillatory convergence to a solution which may have

undesirable consequences �we will see an example of why this is undesirable in chapter �	�

This oscillation can be eliminated by iterating equation ����	 twice�

u
��
����
i�j �

�

�
�ui���j ui
��j ui�j�� ui�j
�	

���

u
��
��
i�j �

�

�
�ui���j ui
��j ui�j�� ui�j
�	

��
����� ����	

The resulting compound iteration has the same eigenvalues as Gauss�Seidel and converges

monotonically�

The eigenvalues of equation ����	 are for a Jacobi iteration derived from the Laplacian

matrix of a two�dimensional regular grid� When a graph is not a two�dimensional regular

grid the corresponding eigenvalues are still similar to equation ����	 in that they cover the

same interval� but with di�erent spacing� This result follows from theorem ��� of Mohar ����

Call �� the eigenvalues of the Laplacian matrix Q�G	 of a graph G� Construct a

new graph G� by adding an edge between any two vertices of G� Then if ��� are

the eigenvalues of Q�G�	�

� � �� � ��� � �� � ��� � � � � � �max � ��max

Since all of the eigenvalues occur in the interval from �� to � this implies that the

convergence properties for a regular grid are similar to the properties for any graph�

��

��� Correctness of algorithm �

Algorithm � provides a scalable correct solution to problems � and �� A perfectly scalable

algorithm is one that does not increase in cost as the number of computers on which it

executes increases� Algorithm � executes concurrently and independently on all computers�

so there is no serialization due to dependencies among computers� Individual instances

of the algorithm contain no components that would increase in cost on larger computer

systems� The inner loop depends on m� the number of immediately connected neighbors�

and not on n� the number of computers� Communication is with immediate neighbors and

has cost that is also dependent on m rather than n� The outer loop depends on �max which

is a computed quantity� The relationship between �max and n is complex and will be the

subject of most of the remainder of this chapter� This discussion will demonstrate that �max

is independent of n� As a result algorithm � is scalable in that the cost does not increase

with n�

The correctness of algorithm � follows from the method by which it was derived� In the

case m � � the result of the inner loop is to compute equation ����	� In the case of general

m the result is to compute the corresponding Jacobi iteration for the Laplace equation with

m neighbors� Solutions of the Laplace equation are equilibria which satisfy problem ��

Algorithm � stipulates that for each transferred process l it is necessary that pl � duk�

This stipulation ensures that the correct amount of work is transferred among computers�

Algorithm � also stipulates the locality constraint� that l should be chosen in order to

minimize k �m �mk�� A greedy strategy that minimizes this expression on each individual
transfer will minimize it over a set of transfers�

��� Worst case analysis

Any workload imbalance �v is a composition of eigenvectors

�v �
X
i�j

bi�j �Xi�j� ����	

Since the �Xi�j are orthonormal it follows that �Xi�j � �Xk�l �
i�k
j�l� Then

�v � �Xi�j � bi�j� ����	

��

Figure ���
 The
Achilles heel� of equations ��� and ���� This sinusoidal disturbance is the
eigenvector �Xi�j that corresponds to the most slowly converging eigenvalue �i�j of equation
	���
� The standard iterations cannot converge this disturbance e�ectively�

An imbalance that consists of �Xi�j is diminished by a factor �i�j after each iterate of

equation ����	� An arbitrary imbalance� described by equation ����	� has the value

X
i�j

�i�jbi�j �Xi�j ����	

after one iterate of equation ����	� If �u��� represents an initial �v and �u��� the value of �u���

after � iterates of equation ����	 then

�u��� �
X
i�j

��i�j	
� bi�j �Xi�j� ����	

The worst case disturbance is the �Xi�j for which �i�j is largest� which are the two cases

i j � ��

Figure ��� illustrates an imbalance composed of the eigenvector that corresponds to

the worst�case eigenvalue� Disturbances of this sort are very challenging to any algorithm

derived from the standard iterations� These disturbances have been discussed extensively in

the literature on numerical analysis� particularly with respect to solving discretized partial

di�erential equations� where they have given rise to multigrid methods ����� Multigrid

methods address the slow convergence of these components by computing approximate

solutions at several levels of resolution and then combining these approximate solutions

to obtain an accurate solution� These methods can be used successfully but they require

grids with regular structure� something that is not always available� Regular structure

cannot be assumed in problems � and �� In addition multigrid methods are not perfectly

scalable according to the de�nitions introduced above� The cost of each iterate increases

��

logarithmically with problem size� and the algorithm requires the synchronous participation

of all computers� rather than the independent execution required by algorithm ��

When the standard iterations are used to solve linear systems of equations the proba�

bility of occurrence of these slowly converging components increases as the problem scale

increases� For any �xed � between � and � the number of eigenvalues �i�j for which j�i�j j � �

increases as n increases� The cost of solving these problems is determined by the amount

of error that is present in an initial solution� and primarily by the error in these slowly con�

verging components� The expected amount of initial error is the same in every component�

Since the number of slowly converging components increases with n the expected cost of

the standard iterations also increases with n�

This phenomenon of cost that increases with problem scale is commonly seen in ap�

plications that solve discretized partial di�erential equations by iterative algorithms� A

problem may converge at an acceptable rate on a grid of a certain resolution� When the

grid resolution is increased the convergence may diminish until it is unacceptable� This is

because the number of slowly converging components has increased along with the number

of grid points� and so has the total error in these components� In addition� the worst�case

eigenvalues also change slowly as n increases� approaching the value ��� asymptotically�

This change reduces the decay rate of the slowly decaying components even further�

Algorithm � does not have the problem described above� The expected initial error is

not the same in every component� in contrast to the general case of solving linear systems of

equations� The initial error is the workload imbalance that is present in the problem� The

expected workload imbalance is not the same in every component of an initial condition of

problems � and �� If a given problem develops a particular pattern of workload imbalance

on a small number of computers� it will develop a related and similar pattern of imbalance

on a larger of computers� Therefore the probability of occurrence of a slowly converging

component does not increase with n� If this problem of slow convergence is not present

when algorithm � executes on a small number of computers� then it will not be present on

a large number of computers�

��

��� A scalability theorem

When workload imbalances are localized the scaling of algorithm � is excellent� The fol�

lowing theorem shows that in the best case� where the imbalance is con�ned to a single

computer� the convergence rate is independent of n� De�ne this best case by

�u��� �
X
i�j

ai�j �Xi�j �����	

where all elements of �u��� are � except for u
���
��� which is equal to ��

Lemma � �Xi�j	��� � ai�j for all i� j�

Proof� the de�nition of �u��� implies that �u��� � �Xi�j � �Xi�j	���� Equation 	���
 implies that

�u��� � �Xi�j � ai�j� The conclusion follows immediately�

Lemma � �Xi�j	��� � ki�j for all i� j�

Proof� follows immediately from equation 	���
 by subsituting x � y � � into equation 	���
�

Lemma � ai�j � ki�j�

Proof� from the conjunction of lemmas � and ��

Lemma � ai�j �
�
n� for all i� j�

Proof�

� � �Xi�j � �Xi�j

�
X
x�y

�
ki�j cos 	

ix

n
cos 	

jy

n

��

� k�i�jn
	� �����	

From equation 	����
 it follows that ki�j �
�
n�
� Therefore ai�j �

�
n�

by lemma � �

��

Theorem � 	Scalability Theorem

For any �xed �
 � the value of u
���
��� converges to u

���
��� � ��t as n increases�

Proof� equation 	���
 implies that the height of the point disturbance after � iterates is

u
���
��� �

X
i�j

�

n�
��i�j	

� � �����	

The term �
n�

dominates equation 	����
� This factor converges to zero as n increases�

In informal terms� the scalability theorem says that as the problem scale increases�

the number of steps � required to reduce the initial disturbance by an arbitrary factor �

converges to a constant value� This value is the smallest � such
P

i�j
�
n�
��i�j	

� �Xi�j � ��

����� Multiple and random disturbances

The scalability theorem describes an idealized problem in which workload imbalance is con�

�ned to a single computer� A purely local disturbance may be a realistic model for some

applications� but in general disturbances may arise at several computers simultaneously� A

result analogous to the scalability theorem could be proven for any speci�c spatial pattern

of multiple disturbances� The rate of convergence of algorithm � on this set of distur�

bances does not increase signi�cantly as the number of computers increases� again as a

result of equation ����	� A stronger statement can be made� that for any �xed number of

disturbances� independent of spatial pattern� the probability of occurrence of a worst�case

imbalance vanishes as n increases� This statement follows from the observation that the

number of points required to create a worst�case imbalance increases as n increases� If this

number of points is �xed while n increases then the magnitude of the slowly converging

components must steadily decrease�

Similar arguments can be made for disturbances with any number of points� if these

disturbances occur at random times and locations and with random intensity� When these

disturbances occur in su�ciently large numbers the expected imbalance at every computer

is the same� as implied by the central limit theorem ����� In this case there is no imbalance

since all computers have equal workloads�

A more interesting case occurs when disturbances are random but not in su�cient

number to have equal expected imbalance� A simulation was performed to explore this

��

case in the context of the heat equation algorithm ����� The simulation was of system of

��������� computers that was initially balanced� The simulation was run for ����� steps�

and a random disturbance was created on each of the �rst ��� steps� The position and

magnitude of each disturbance was chosen randomly� but the magnitude was very large� on

average ������ times the average workload� After ��� steps the worst case of imbalance at

any computer was only ������ times the average workload� less than the magnitude of the

average disturbance� After ��� steps the worst case was only �� times the average� This

demonstrated that the algorithm was removing imbalance faster than it was occurring�

This demonstration took place on a very large computer system with very large average

imbalances� This result would become even better if the number of computers were to to

increase further� or if the magnitudes were to decrease�

��� Time dependent behavior

Figure ��� shows the �rst few iterates of equations ��� on the point disturbance� Although

the convergence is rapid� the height of the initial point disturbance oscillates between zero

and a diminishing series of positive values as shown in �gure ����

Iteration of equation ��� creates oscillation in Jacobi form because the spectrum of the

Laplacian matrix contains negative eigenvalues� Equation ��� achieves monotone conver�

gence by performing two steps of equation ���� If A is the iteration matrix for equation

��� with eigenvalues �i�j then AA is the corresponding matrix for equation ��� with cor�

responding eigenvalues ��i�j� These eigenvalues are always positive� and so convergence is

monotonic� This is illustrated in �gures ��� and ����

The scalability theorem says that the rate of convergence for a point disturbance is

constant at large scales� Figure ��� shows that the same convergence occurs in a problem

that is sixteen times bigger than in �gure ����

Figure ��� and ��� shows more general disturbances characterized by Gaussian distribu�

tions� The Gaussian disturbances appear to take slightly longer to disperse than the point

disturbances� but this di�erence is very small� A pair of Gaussian disturbances spaced

closely together disperse in roughly the same amount of time as a single disturbance does�

showing that the interaction between the two is small� The taller Gaussian takes longer to

disperse� as would be expected from the preceding discussion�

��

Figure ���
 The initial conditions and �rst �ve iterates of a point disturbance under equation
���� The center point shows oscillatory convergence�

��

Figure ���
 Point disturbance under equation ��� shows monotone convergence�

Figure ���
 Left� height of the point disturbance over �� iterates of equations ��� and ����
Equation ��� shows oscillation while algorithm ��� converges monotonically� Right� eigen�
value �i�� for n � �� of iteration matrices A and AA corresponding to the two equations�
A has mixed eigenvalues while AA is positive de�nite�

��

Figure ���
 Convergence of a problem on a �� � �� grid of ���� unknowns� The height of
the initial disturbance is the same in this series as in �gure ��� a�rming the conclusion of
the Scalability Theorem�

��

Figure ���
 Convergence of a Gaussian disturbance under equation ����

��

Figure ���
 Convergence of a pair of Gaussian disturbances under equation ����

��

Chapter � An Experimental Validation

The value of algorithm � depends on the validity of two assumptions� The �rst assumption

is that a discrete workload imbalance� represented by a point disturbance� is erased quickly

by the algorithm� The second assumption is that a point disturbance is a valid model for real

phenomena� The �rst assumption can be shown mathematically but the second assumption

must be tested empirically� We can construct an experiment to test the hypothesis of the

second assumption� The experiment will use algorithm � in a scalable application� Since

the application is assumed to be scalable� then if the combined program fails to demonstrate

scalability we will attribute this failure to algorithm ��

Although both �eld equations and computer graphics o�er scalable applications it is im�

age synthesis that o�ers the greatest challenges for load balancing� Monte Carlo rendering

methods o�er an ideal combination of features for this experiment� They are �embarrass�

ingly� parallel and scale easily to large numbers of computers� It is di�cult or impossible

to predict load imbalance in advance� Furthermore balanced solutions are very unstable�

so that small changes in the data set �such as moving viewpoints or geometry	 can and

routinely do lead to large and abrupt changes in workload distribution�

��� A pinhole camera model

Figure ��� shows a model of a pinhole camera taking a photograph� The pinhole camera

has a sheet of �lm at the back called the image plane� A pixel is a rectangular region of the

image plane� The value of a pixel is a distribution of radiance values at a set of frequencies�

We will compute the radiance at three frequencies that correspond to the r� g� b channels of

a computer monitor� We will sample these radiance values at a set of discrete points within

a pixel� We will average these samples at each frequency to represent the radiance for the

pixel at that frequency�

Figure ��� also shows one path of light transport in the pinhole camera model� This

path shows that light can re�ect multiple times on the way to a destination� for example

re�ecting once at x� in direction ��� then again at x in direction �� At each surface point

��

Figure ���
 Left� computing Monte Carlo samples of direct illumination� The image plane
corresponds to the rear wall of a pinhole camera� A path extends from the image plane out
through the camera aperture to a visible surface at x� The light intensity re�ected into the
camera along this path is equal to the sum of the light intensities at x contributed from all
visible light sources� multiplied by a re�ection coe�cient� Right� the re�ectance phenomena
described by equation 	���
� One out of the many paths by which light is transported to
contribute to the value of a pixel� Light from surface point x� is transported to point x in
direction ��� Point x� may be a light emitter or may simply re�ect light from other points�
or both� A fraction of the total light reaching x at any instant is re�ected in the direction
� which in this �gure leads into the camera aperture� In the general case � could lead to
another re�ector�

��

there is a coe�cient of re�ection that determines how much of the light is re�ected in the

new direction� This coe�cient is sensitive to direction in the most general case and can be

modeled k�x� �� ��	 cos � as shown in the re�ectance equation ����	�

L �x� �	 �
Z
�
L �x�� ��� k �x� �� ��� cos �d��� ����	

The quantity L �x� �	 represents the radiance leaving x in the direction �� The radiance
after multiple surface re�ections� as illustrated in �gure ���� is described by expanding

equation ����	 recursively as shown in equation ����	� At the base of the recursion is a

light source with an emissive radiance e� We will simulate the pinhole camera by sampling

the value of equation ����	 for a single frequency at a single point within a pixel� We

will compute the value of a pixel at that frequency by averaging many such samples from

di�erent points within the area of the pixel�

L �x� �	 � k
�
x� �� ��

�
cos �

�Z
�
k
�
x�� ��� ���

�
cos �� �� � � e � � �	 d��

�
� ����	

��� A computational procedure

Equation ����	 can be computed by a branching procedure that follows a tree of individual

paths from the image plane to a multitude of surface points x� x�� x��� � � � and accumulates

their total contributions to L �x� �	� At each surface point x the procedure generates a new
set of outgoing paths to explore� Each path is de�ned by a direction ��� originating from
x� An e�cient Monte Carlo sampling strategy will concentrate these new directions in areas

where the re�ectance function k �x� �� ��	 is large� The branching procedure follows each

of these new paths independently� until a path either encounters a light source� in which

case the light source makes a contribution to the sample L �x� �	� or until the product of
re�ection coe�cients along the path becomes so small that the further contributions would

be unnoticeable�

This branching procedure can be implemented iteratively if the re�ection coe�cient

k �x� �� ��	 cos � can be computed at each step� From the pinhole camera of �gure ��� it

is apparent that at each re�ection point x the values of x and � are known� but �� �and

therefore �	 remains to be determined�

We want to be able to move a computation from one computer to another as a result of

��

dynamic load balancing� This is di�cult to do in a recursive implementation� because the

original invocation context is no longer present upon return from a recursive function� For

this reason we would like to rearrange terms of equation ����	 so that the computation can

be performed by a forward sweep along a set of paths of points �x� x�� x��� � � �	� As a result

the computation can be organized as an iteration rather than a recursion� An iteration

never needs to return� and therefore there is no need to recreate an invocation context�

����� A path tracing iteration

We assume that path descriptors �x� ��� I� x�	 are processed out of a queue of pending work�

The queue initially contains a descriptor �x�� �� �� x�	 for each desired sample where x� is

a point on the image plane� and the direction �� extends through the camera pinhole and
out the aperture as shown in �gure ���� The initial value I � ��� will be multiplied by each

re�ection coe�cient along a path in order to determine the amount of light re�ected along

the path and into the camera�

The algorithm will �nd the next visible point x� in direction ���� If this point is on the
surface of a light source then the light emission is added to the sample after weighting by I�

The sample is accumulated in p�x�	 which initially has the value �� If x
� is a re�ector then

the algorithm will generate a set of new entries �x�� ���� I �� x�	 in the queue� This process

continues for some number of steps or until the queue is empty�

The algorithm computes independent trees of paths for specular� di�use� and glossy

surface properties� and combines the results of these independent computations� These

surface properties could be extended with additional properties� or could be combined into

general models of re�ectance functions �����

��

Algorithm � 	Path Tracing Iteration

for 	some number of steps
 do begin

choose a descriptor �x� ��� I� x�	 from the queue

�nd point x� visible from x in direction ���

if 	x� is on a light source with radiance emission e
 then

p�x�	 � p�x�	 Ie�	

else if 	I is not too small
 then begin

for 	each separate surface property
 do begin

generate a new set of v direction unit vectors

for each new direction unit vector ��� do begin

compute r according to the surface property

enqueue descriptor �x�� ���� rI�v� x�	

end

end

end

end

The value of the re�ection coe�cient r is di�erent for di�erent surface properties� This

is explained in the next section�

����� Sampling strategies

We can improve the e�ciency of the rendering algorithm by using informed sampling strate�

gies known as variance reduction techniques� For the purposes of photo�realism it is im�

portant to ensure that these strategies do not introduce bias into the result� as is the case

with many common methods of antialiasing and path termination strategies ��� ���� One

reliable strategy is to explicitly sample the surfaces of the light sources� and we have done

so in this implementation� Another reliable strategy is to model di�erent surface properties

independently� in ways that are unbiased� and then to combine samples from the di�erent

properties ����� In this implementation we have separate models of the purely specular and

purely di�use surface properties� and of a �glossy� property that is similar to a directional

Phong shading model� Each of these separate properties leads to a separate calculation for

��

the re�ection coe�cient r�

Sampling the light sources is accomplished by an explicit calculation of the radiance

integrated over the solid angle subtended by the light source� If A is the area of a light

source i this calculation is

!i�x	 �

Z
A
L �x�� ��� cos � cos �kx� � xk��

dA� ����	

In equation ����	 the quantity !i�x	 represents the irradiance �density of incident power	

arriving at surface point x from light source i� The angle between the surface normal of the

light source and the angle of emission corresponding to �� is denoted by �� The quantity

dA is the di�erential surface area of the light source� To reduce variance we stratify the

light surface into rectangles of equal area dA and sample equation ����	 over the set of

rectangles�� The distance term kx� � xk�� re�ects the reduction in solid angle that occurs
with increasing distance� This computation is performed for each light source i and the

resulting !i�x	 are added into the calculation of the irradiance !�x	�

The purely specular property is modeled by a scalar coe�cient of re�ection� For this

model we sample a single path in the direction of mirror re�ection� In this case k is equal

to the scalar coe�cient�

The glossy property is modeled by a distribution of rays clustered in a lobe around the

mirror re�ection direction� Samples are generated on the surface of this lobe� and the value

of k is taken from another scalar coe�cient�

The di�use property is modeled by yet another scalar coe�cient� Surfaces that are

purely di�use re�ect equal radiance in all directions� The value of L �x� �	 in each direction
is ��	 times the value of the irradiance !�x	� Since we sample the di�use model over the

entire incoming hemisphere there is an opportunity to use an e�cient sampling strategy to

concentrate samples in the areas where they will provide the most information� We will use

a cosine distribution which concentrates samples around the surface normal� To be precise�

we will estimate the irradiance

�The total number of samples per light source in our implementation is the product of two parameters�
the number of samples per pixel �PIXEL SAMPLES� and the number of samples per light source per pixel
sample �DIRECT SAMPLES�� Realistic soft shadows have been obtained when this product is �� or higher�

��

!�x	 �

Z
�
L �x�� ��� k �x� �� ��� cos �d�� ����	

by a set of samples of the integrand over the unit hemisphere� To generate samples with

the correct distribution� we compute samples on the surface of a unit disk and project

them upwards to the hemisphere� This method of generating samples clusters the samples

around the unit normal vector and multiplies each incoming radiance by a factor of �� cos ��

This removes the factor of cos � from equation ����	 and so r is just the scalar parameter

associated with the surface�

These properties can be seen in the images in �gure ���� In the o�ce image the interior

is re�ected in the specular window surface� and the other surfaces contain both di�use and

specular components� The stained glass image shows a re�ection of the butter�y on a glossy

surface�

��� A concurrent implementation

Algorithm � is scalable� in that it can be implemented concurrently on a set of computers

and achieve� at least in theory� perfect speedup� This speedup occurs when individual

iterates have equal access to the model data so that they can be computed concurrently�

Since most of the geometric models used in the experiments require about a megabyte of

storage it is reasonable to reproduce them on every computer� One model with over �������

polygons was rendered in order to test the implementation� Even this model �t easily in

the memory available on each computer�

In order to test the hypothesis that algorithm � is scalable it will be necessary to use

it in a distributed implementation of algorithm �� If both algorithms are scalable then

the combined program should also be scalable� Algorithm � is scalable� since it executes

concurrently as a set of independent processes� and contains no procedural dependencies on

the number of computers on which it runs� If the combined program does not scale then

we can infer that algorithm �� or some artifact of the implementation� is not scalable�

A program that combines algorithms � and � was implemented using a prioritized

message�driven scheme ����� The program consisted of a set of logical processes connected

through a set of communication channels� A large number of rendering processes were

connected in a mesh arrangement that matched the grid of equation ���� A user interface

��

Figure ���
 Clockwise from upper left� glass� conference� o�ce� soda� and bath images�
These were computed at NTSC resolution ����� ���	 and in full color�

��

process and a model�input process were connected to a master process that controlled the

grid of rendering processes� Each rendering process had a direct connection to the user

interface process that was used to send pixel updates� This was more e�cient than trying

to relay the pixel updates through the master process�

A message queue was created for each logical process� Processes interacted by sending

messages to each other� The messages would reside in the queue until the process was ready

to handle them� Each process consisted of a set of message handlers that were associated

with speci�c message types� and expected to receive only messages of recognized types�

Sending a message to a process that lacked a handler for that message type would result in

a run�time error� Message types were prioritized so that higher priority messages would be

handled before lower priority messages� Within a priority level� and within a message type�

messages were processed in non�deterministic order�

Algorithms � and � were combined into algorithm �� This algorithm describes the

message handler that was responsible for the rendering computation� It is one out of one

hundred and eighteen message handlers that were constructed for the implementation� Most

of these other handlers performed mundane tasks� such as updating the value of a pixel

sample� de�ning portions of the geometric model� or constructing a binary space partition

�BSP	 tree for use in visibility calculations �����

Algorithm � 	Path Tracing Iteration with Dynamic Load Balancing

while 	workload is nonzero
 do begin

do algorithm �

if 	workload is below a threshold
 then begin

while 	local load imbalance exists
 do begin

send a
rebalance� message to immediate neighbors

do algorithm �

end

end

end

send a
request release� message to the master process

Before executing algorithm � we assume the geometric model has been loaded and all

necessary data structures have been constructed� In order to start the algorithm the master

��

process sends a �render� message to every rendering process� The �render� message han�

dler loads an initial set of path descriptors into the message queue and then exits� These

path descriptors are then processed as messages by the general message handling mecha�

nism� resulting in algorithm �� At regular intervals this mechanism checks for di�erences

in workload with all immediate neighbors� where workload is counted as the number of

unprocessed path descriptors in the message queue� If local imbalance exists algorithm � is

initiated� which continues until the local imbalance is removed� Neighbors are drawn into

a rebalancing operation when they receive a �rebalance� message� This type of message

has high priority� higher than path descriptor messages� and so a �rebalance� message will

interrupt a process that is within algorithm � and cause it to execute algorithm ��� If the

workload drops to zero the rendering process sends a message to the master process request�

ing permission to terminate� The master process maintains a count of rendering processes

that have zero workload� When this number rises to equal the total number of rendering

processes the master process broadcasts a �render �nished� message�

Algorithm � will only initiate algorithm � when the workload falls below a threshold�

In this application there is a �nite amount of work to be processed� and the goal of load

balancing is to minimize the amount of time computers waste in an idle state� In this

application it proved useful to avoid rebalancing until there was a signi�cant danger that

a computer could run out of work� Avoiding unnecessary rebalancing reduced the amount

of work that was expended in algorithm � and sped up the overall computation� In other

applications there could be other reasons to invoke load balancing� for example limitations

on queue size� in which cases this strategy of reluctant rebalancing could be harmful�

As a result of these policies algorithm � is initiated by a type of spreading activation� so

that a set of computers will participate in rebalancing if they detect imbalance with their

immediate neighbors� but will continue to do useful work if there is no such imbalance� Any

computer that detects a local imbalance can pull its neighbors into a rebalancing operation

�The pseudocode of algorithm � hides some ugly details of implementation� A few di
erent strategies
for initiating and propagating the rebalancing operation were implemented in order to understand what
impact� if any� they would have on performance� For example� if a processor is already involved in a
rebalancing operation it was sometimes convenient to ignore new rebalance requests� We also experimented
with explicitly propagating rebalance requests to neighbors where imbalance exists� rather than allowing
the neighbors to discover this imbalance on their own� Neither of these issues showed a signi�cant impact
on application scaling� In contrast it turned out to be important to use a coarse grained interleaving of
algorithms � and � because it was very easy to waste resources in checking needlessly for load imbalances�
The main reason for this was the overhead associated with monitoring the workload of neighbors�

��

but these neighbors will not propagate this activity unless they also detect imbalances with

other neighbors of theirs� Once a computer enters a rebalancing operation it continues as

long as it detects a local imbalance� This proved to be usually only one or two steps�

Some other practical considerations became apparent only after experimenting with

an initial implementation� For example� it turned out to be preferable to transfer path

descriptors that were near the root of the tree of paths� rather than near the leaves� A path

descriptor that is near the root of a tree will have many descendents� Transferring such a

descriptor to a computer assigns a large amount of work to that computer� in contrast to

transferring a descriptor that is closer to the leaves of a tree� Since computers only initiate

load balancing if their workload falls below a threshold this transfer strategy increased the

average amount of time between rebalancing operations�

Since path descriptors are messages� and are processed out of the general message queues�

workloads could be redistributed by one rendering process sending a series of �path descrip�

tor� messages to another rendering process� while removing those messages from it
s own

message queue� We originally implemented work transfers in this way but this proved to be

too costly since it required a large number of messages� and the overhead associated with

sending each message was non�trivial� Since the application was running in some cases with

a TCP�IP transport over ethernet it wasn
t practical to reduce the message overhead to

the point where this strategy was feasible� Instead a �bundle of descriptors� message type

was created so that an arbitrarily large number of path descriptors could be transferred in

a single message�

��� Analysis of expected initial conditions

In order to test algorithm � it
s necessary to start from a balanced condition� This is not

as simple as it may �rst appear� This section examines three strategies for achieving initial

balance and �nds problems with all of them� The best of these strategies� �scattering�� will

be used to initialize the experiment�

In ray tracing it is useful to begin a computation with an initially balanced workload�

A number of strategies have been explored for achieving this initial balance ��� �� ��� ���

��� ��� ��� ��� ���� Among the more successful strategies has been the use of a random

initial mapping ����� The expected behavior of this approach can be predicted from the

��

central limit theorem� This theorem states that when a su�ciently large number of samples

wi are drawn from a sample population the sums of any sets of p samples will take on a

normal distribution� If the sample population is uniform then it is possible to quantify the

probability that the sum of any individual set of p samples is below a given bound y �����

In the general case we have

P

	 pX
i��

wi � y

�

�p
�	

Z �y�p����pp

��

�
e�u

���du
�
�
�

�

�

�
Erf

�
y � p�

�
p
�p

�
� ����	

In this expression � and �� are the mean and variance of the sample population� When

this is applied to the problem of ray tracing for NTSC resolution images we take p equal

to m�n where m is �������� the total number of pixels in a ��� � ��� image� and n is the
number of computers�

We can use this expression to determine the probability that a random mapping will

achieve a load balanced within a factor �� We will call � the workload imbalance that results

from a mapping� de�ned as � � ti�Tmin �see equation ���	� For example� if � is ��� then ti

is ��" greater than Tmin and therefore the workload is imbalanced by ��"� We de�ne y to

be �� �	Tmin to obtain a formula for a new quantity Pr

Pr � P

	 pX
i��

wi � �� �	 Tmin

�
�

�

�

�
Erf

�
��m

n�
p
�p

�
� ����	

The probability that all n computers will be balanced to within a factor of � is the

product of n instances of Pr� that is� Prn� This quantity can be computed for various

numbers of computers� The result of such a computation is shown in �gure ���� This �gure

shows that the probability of achieving � � ���� by a random strategy declines rapidly with
increasing numbers of computers� This decline should not be surprising since the number of

pixels is �xed at NTSC resolution� As more computers are applied to the rendering problem

fewer pixels are assigned to each computer and the law of large numbers breaks down� This

problem of achieving equal workload distribution is made more di�cult by tiling strategies�

which are a common way to partition work among computers� These strategies partition

an image into rectangles and compute one rectangle on each computer� The result of these

strategies is to reduce the value of p by the size of the tiles� which reduces Pr�

The accuracy of equation ����	 can be a�ected by skew in the sample population��

�The nature of the skew is important� So�called �right skew�� in which the distribution has a long tail

��

0

0.2

0.4

0.6

0.8

1

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

uniform probabilities

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

uniform imbalance

Figure ���
 The result of applying a random assignment strategy to a uniformly distributed
sample population with mean � � ��� and variance �� � ����� Left �gure shows the
probability Prn 	see equation ���
 of obtaining acceptable � for 	left to right
 � of �����
����� ����� ����� and ���� for increasing numbers of computers 	horizontal axis
� The
probability of obtaining � � ���� drops below ��� somewhere between ��� and ��� computers�
Right �gure shows the predicted � resulting from a random assignment of this population to
increasing numbers of computers 	horizontal axis
�

Complex images generally do not have uniformly distributed wi as is evident from �gure

���� As a result the predictions of ����	 may err on the side of optimism� For example�

compare the simulated results of �gure ��� with the predictions of table ���� As ray tracing

algorithms become increasingly sophisticated they generally increase the skew in the sample

population� decreasing the chances of success for random load balancing strategies� The

absolute magnitudes of � and �� are irrelevant since � is de�ned as a percentage of � rather

than an absolute value� For all of the above reasons we conclude that these predictions

apply to a wide range of images and ray tracing algorithms�

Many static load balancing strategies partition the image plane among a set of computers

and then render the di�erent portions of the image concurrently ���� ��� ��� ��� ��� ����

Naive strategies that partition contiguous segments of the image fare poorly ����� These

strategies su�er from the e�ects of locality in the image which can lead to wide variations in

workload for di�erent computers� A more e�ective strategy assigns pixels pseudo�randomly

to computers in an attempt to obtain a balanced workload� The most straightforward

version of this strategy assigns pixels in an alternating sequence so that M�i	 � �i mod n	�

This strategy is sometimes called the �scatter� method �����

The e�ectiveness of various static load balancing strategies can be predicted using data

to the right of the mean� leads to poor performance because it is hard to balance large statistical outliers�
In contrast �left skew� does not present these problems� The cases we have examined all exhibit right skew
and this seems to be typical of ray traced images and probably most other types of images as well�

��

Number of computers n
Model � �� �� �� �� ��� ���

O�ce ���� � ��� ����� ���� ���� ���� ���� ���� ����
Soda ���� � ��� ����� ���� ���� ���� ���� ���� ����
Bath ���� � ��� ����� ���� ���� ���� ���� ���� ����

Table ���
 Probability �Prn	 of obtaining � � ���� by random assignment� See equation
	���
� � and �� represent the mean and variance of the number of �oating point operations
required to compute an NTSC resolution image using an adaptive sampling strategy of from
� to �� samples per pixel� In no case is random assignment likely to be e�ective for more
than ��� computers� This conclusion is independent of the type of ray tracing algorithm
used and the distribution of the sample population wi�

obtained from program traces generated in the course of rendering complex images� A trace

captured empirical values of wi �required �oating point operations	 for each pixel� The three

images were then rendered using an adaptive sampling strategy that generated from one to

twenty �ve primary rays through each pixel� After rendering� the wi were collected from the

program traces and were used to predict workload distributions for a naive scanline�order

partitioning and the scatter method on varying numbers of computers� These predictions

are shown in �gure ����

These results suggest that the naive strategy fares poorly in general� and that even a

random strategy will fail to obtain � � ���� when the number of computers is ��� or more�
They also reveal that the scatter method� while often assumed to be equivalent to a random

assignment� is in fact subject to pathologies related to spatial regularity in the image� as

illustrated by the peaks that occur at multiples of ��� pixels�

��� Measurements of observed scaling

The accuracy of these predictions was tested empirically by measuring the elapsed times

to render the three images on various numbers and types of computers using the naive and

scatter strategies� The resulting measurements are shown in table ��� and plotted in �gure

���� The measurements are generally in close agreement with the predictions but there are

a few surprises� For example� the scatter decomposition worked well for the bath image on

�� computers but performed poorly on �� computers� The converse was true for the image

��

0

5000

10000

15000

20000

25000

30000

35000

40000

0 1e+06 2e+06 3e+06 4e+06 5e+06

office histogram

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

office imbalance

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 1e+06 2e+06 3e+06 4e+06 5e+06

soda histogram

0

0.5

1

1.5

2

2.5

3

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

soda imbalance

0

10000

20000

30000

40000

50000

60000

0 1e+06 2e+06 3e+06 4e+06 5e+06

bath histogram

0

0.5

1

1.5

2

2.5

3

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

bath imbalance

Figure ���
 Distribution histograms and predicted imbalances for 	top to bottom
 o�ce�
soda� and bath images� All three images have highly nonuniform distributions as illustrated
by their histograms 	left column
� These histograms show frequency of occurrence 	vertical
axis
 versus �oating point operations 	horizontal bins
� For each image the predicted im�
balance � 	right column
 is shown for three static load balancing strategies 	naive� scatter�
and random
 on increasing numbers of computers 	horizontal axis
� In all cases the naive
strategy produces the largest predicted � 	vertical axis
 and the random strategy produces
the smallest� The scatter decomposition is generally comparable to the random strategy but
su�ers from isolated peaks at multiples of ��� pixels� exactly one half the width of the image�
In all cases the predicted � is greater than ���� when the number of computers is ��� or
higher�

��

Figure ���
 Clockwise from lower left� measured � versus n for the bath� for the cases
shown in table ���� including four load balancing scenarios� the same for the o�ce� and
soda images� and predictions of � resulting from a random initial mapping based on counts
of �oating point operations from �gure ���� For every image the best results 	lowest line

occur when algorithm � follows an initial scatter method� The predicted � is o�ered for
comparison to this best case� and appears to correlate moderately well� particularly for the
soda image� This correlation suggests that the increase in measured � under algorithm �
may be due to the initial imbalance rather than to any failure of scaling� Unfortunately
there is not enough data to prove or disprove this�

��

Figure ���
 Comparison of e�ective imbalance � with and without dynamic load balancing
by algorithm �� for the three images in table ���� Clockwise from upper left� naive method
only� naive method followed by algorithm �� scatter method followed by algorithm �� scatter
method alone� In several cases the initial imbalance seems to correlate with the the e�ective
imbalance under algorithm ��

��

naive scatter unbalanced balanced
Model n T � T � T � T � Tmin

O�ce �� �
��
�� ���� �
��
�� ���� ��
�� ���� ��
�� ���� ��
��
�� �
��
�� ���� �
��
�� ���� ��
�� ���� ��
�� ���� ��
��
�� ��
�� ���� ��
�� ���� ��
�� ���� ��
�� ���� ��
��
�� ��
�� ���� ��
�� ���� ��
�� ���� ��
�� ���� ��
��

Soda �� �
��
�� ���� �
��
�� ���� �
��
�� ���� �
��
�� ���� �
��
��
�� �
��
�� ���� �
��
�� ���� �
��
�� ���� �
��
�� ���� �
��
��
�� �
��
�� ���� ��
�� ���� ��
�� ���� ��
�� ���� ��
��
�� ��
�� ���� ��
�� ���� ��
�� ���� ��
�� ���� ��
��

Bath �� �
��
�� ���� �
��
�� ���� �
��
�� ���� �
��
�� ���� �
��
��
�� �
��
�� ���� �
��
�� ���� �
��
�� ���� �
��
�� ���� �
��
��
�� �
��
�� ���� �
��
�� ���� �
��
�� ���� ��
�� ���� ��
��
�� ��
�� ���� ��
�� ���� ��
�� ���� ��
�� ���� ��
��

Table ���
 Empirical results measuring e�ective imbalance � in rendering the o�ce� soda�
and bath images with di�erent load balancing strategies on varying numbers of computers�
See �gure ���� In every case the best results came from dynamic load balancing by algorithm
� preceded by the scatter method 	
balanced�
 In most cases algorithm � by itself produced
better results than scattering even from poorly balanced initial conditions 	
unbalanced�
�
In general the problem becomes more di�cult with increasing numbers of computers� These
results have been reported in publications ���� ��� ����

of the soda shop interior� In all cases the naive decomposition produced unacceptably high

values of �� as high as ���� for the bath image on �� computers� Figure ��� suggests that

all of these methods will break down as n increases� and that these static load balancing

strategies are inadequate except at small scales�

Other results that support these conclusions appear in tables ��� and ���� These results

are from an initial study that tested algorithm � starting from the naive initial mapping�

These results are comparable to the �unbalanced� results of table ���� This initial study

used a fully distributed algorithm to detect termination� These measurements showed that

the termination algorithm had a �aw that caused it to waste a considerable amount of time

at large n� This �aw resulted in a large Amdahl fraction	 and prevented further speedup

beyond ��� computers� In fact the o�ce and conference images slowed down between ���

and ��� computers� which is clearly a pathology� The source of this error was never fully

discovered� In order to circumvent this error a master�slave termination mechanism was

implemented as described in algorithm ��

�The Amdahl fraction is the portion of a computation that cannot be sped up through parallelism� It is
the ultimate limiter of scaling for any concurrent algorithm ��	�

��

This study was repeated on a cluster of inexpensive Intel workstations connected by a

fast ethernet switch� as reported in table ���� All of the rendering times were slightly better

than on the SP�� Although both systems o�ered the same peak �oating point performance

of ��� MFlops this result is somewhat surprising because current Intel processors give

notoriously poor �oating point performance for codes such as this that mix �oating point

and integer operations�

The purpose of these measurements was twofold� One purpose was to compare the

e�ectiveness of algorithm � against competing approaches� In this respect the algorithm

has performed remarkably well� in that by itself it produces results at least as good as the

scatter method� one of the most popular load balancing methods for ray tracing�

It
s instructive to examine �gure ��� which provides direct comparison of runs with

and without algorithm �� There appears to be some correlation between the measured �

resulting from a purely static load balancing strategy� and the measured � when the static

strategy is followed by algorithm �� Such a correlation would suggest that� if the initial

conditions for each run had been perfectly balanced� then algorithm � would have produced

a constant value of � in every case� Unfortunately this study does not have enough data

to show such a correlation de�nitively and this can only be speculated� There are some

cases that would appear to argue against this speculation� such as the scattered cases for

the o�ce and soda images which both show increasing � but with very di�erent slopes�

A second purpose for these measurements is to test the hypothesis of scalability� These

data for � have done this indirectly� from the implication that a failure of scalability in

algorithm � must necessarily manifest itself in a failure of scalability of the application�

Since the application showed good scaling we might conclude that algorithm � also showed

good scaling� Unfortunately it
s not safe to draw this conclusion� because it is possible that

algorithm � could scale poorly� but represent such a small part of the overall computation

that the e�ect of this does not appear in the measurement of �� It
s necessary to examine

an explicit measurement of the time spent in algorithm ��

����� Measurement of algorithm �

Figure ��� and table ��� show data that measure the amount of time spent explicitly

within algorithm � during the overall execution of the application� Due to the way that data

��

O�ce Glass Conference
n T � T � T �

� ��
�� � ��
�� � ���
�� �
� �
�� ����� �
�� ����� ��
�� �����
�� �
�� ����� �
�� ����� ��
�� �����
�� �
�� ����� �
�� ����� �
�� �����
�� �
�� ����� �
�� ����� �
�� �����
��� �
�� ����� �
�� �����
��� �
�� ����� �
�� �����

Table ���
 Results of an initial study on the SP�� In all of these runs the naive strategy was
used for the initial mapping followed by algorithm �� This study revealed the existence of
errors in the original distributed algorithm for termination detection� These errors showed
up the runs on ��� and ��� computers� where they caused a slowdown rather than a speedup�
These results have been reported in publications ���� ����

O�ce Glass Conference
n T � T � T �

� ��
�� � ��
�� � ���
�� �
� �
�� ����� �
�� ����� ��
�� �����
�� �
�� ����� �
�� ����� ��
�� �����

Table ���
 Rendering times on Intel cluster� These runs were computed with parameters
identical to table ��� and are directly comparable� In every respect the performance was
slightly better than on the SP�� These results have been reported in publications ���� ����

O�ce Soda Bath

balanced unbalanced balanced unbalanced balanced unbalanced

n ms�lb sec ms�lb sec ms�lb sec ms�lb sec ms�lb sec ms�lb sec

�� �� ���	 �� ���
 �� ���� 	�� ���� ���

��
 ��
�� ����

�	 �� �
�� �� �
�	 �� 	�	
 	
� 	��� 	��� ��
� �
��� ����

��
� �

 �� ���
� �	�� 	�� ���
 ���� �
�
 �
��
 ����

Table ���
 Time measured within algorithm �� in milliseconds� and total elapsed time� in
seconds� for six cases� See �gure ���� Each of three images was started from two initial
mappings� One mapping had a reasonably well balanced workload while another was poorly
balanced� These measurements show that the amount of work expended by algorithm � is
a�ected by the amount of initial imbalance but not by problem scale�

��

Figure ���
 Average number of milliseconds per computer spent in algorithm � versus number
of computers� See table ���� The o�ce� soda� and bath images were computed using identical
parameters on ��� �� and �� computers� This data was collected from the same runs as
the data in table ��� but shows only the cases that include algorithm �� For an explanation
of how the measurements were collected please see the �nal chapter� The left �gure shows
the o�ce and soda measurements� and the right �gure shows the bath measurements� All
times are in milliseconds� In every case the naive method led to more time being spent in
algorithm � than the scatter method did� The number of computers showed no in�uence on
these measurements� All of these results are consistent with a hypothesis that algorithm �
is insensitive to problem scale for realistic problem instances�

��

was collected it was only possible to accurately measure the time that algorithm � spent

transferring work to neighbors� and not the time spent in receiving work from neighbors�

There are compelling reasons to believe that these times are very close to equal� and therefore

these measurements are approximately half the total time spent in the algorithm� This data

is adequate for the purpose of this analysis� since the scalability of either of these portions

of the algorithm should be the same� These results clearly show that the time spent in

algorithm � is not correlated with n� In most cases the times are roughly constant� In no

case are they consistently increasing� This allows to draw our �nal conclusion� that in this

experiment the cost of algorithm � at each computer did not increase as the number of

computers increased�

The bath image showed two to three orders of magnitude more time spent in algorithm

� than the soda or o�ce images� Although this image required more load balancing� the

overall computation time was not dramatically higher than for the other images� as table

��� shows� The bath image contains several inter�re�ecting surfaces� Computers that were

responsible for pixels in the mirror or window would be sources of frequent imbalance since

they would develop very deep trees of paths� This would account for the increased time

spent in algorithm ��

These results are consistent with the hypothesis of scalability� In combination with

the other results presented here� the evidence is consistent with the following hypotheses

that the cost of algorithm � for any individual disturbance is independent of problem scale�

that the cost of repeated invocations of algorithm � within this complex application was

also independent of scale� and that algorithm � is as good or better than the most popular

known algorithm for a speci�c complex application� and in particular� is better than random

assignment� These are all positive results� so this experiment can be considered a success�

��

Chapter � Dynamic Mapping

This chapter presents a solution to the dynamic mapping problem� This completes the

goal of solving the combined problems of load balancing and mapping� In contrast to

recursive spectral bisection which is too expensive to use routinely for dynamic problems

the algorithms presented in this thesis are ideally suited for dynamic problems� In fact the

mapping construction will be seen to have issues that pose challenges in the static case� but

that are easily resolved in the dynamic case� This is convenient because� while there are

many known algorithms for static mapping� very little has been written about the dynamic

problem� One of the only such proposals uses random placement ���� Such an approach

clearly violates the locality constraint of problem � and therefore can
t provide an optimal

solution�

��� The mapping problem

The setting for the mapping problem is the same as for load balancing� A set of n computers

runs a set of concurrent processes between two barriers� The processes communicate through

logical channels and the computers are connected by a communication network� The goal

of the mapping problem is to map the processes onto computers in a way that minimizes

the utilization of the communication network� Most approaches to this problem assume

the communication network is built so that the cost of communication between two points

is proportional to the distance between them� This notion of �distance� is related to the

structure of the communication network� and might be measured by the number of network

links and switches that must be traversed from one point to the other� We will assume that

this quantity can be measured for any pair of computers� We
ll leave the details of this

measurement for implementation�

Under this assumption a common approach is to partition a graph of processes into

subgraphs in a way that minimizes the size of the interfaces between subgraphs� If each

subgraph is mapped onto a di�erent computer then only the interface connections have to

use bandwidth from the communication network� The cost of communication is then the

��

sum of the costs of these interfaces� If subgraphs that were adjacent in the original graph

are mapped onto computers that are adjacent in the network then the partition and the

mapping will be optimal� This is the approach taken by recursive bisection algorithms�

To de�ne the mapping problem assume that we have a set of P processes� a set of n

computers� and a mapping functionM from processes to computers� Let
s construct a P�n
assignment matrix A with the property that Ai�j � � if M�i	 � j and is zero otherwise�

We
ll use a nonnegative P�P communication matrix C where Ci�j is the bandwidth required

between processes i and j� And also a symmetric positive n� n distance matrix D where

Di�j represents the distance from computer i to computer j�

Problem � 	Dynamic Mapping

Given a set of computers and a set of processes� both indexed by integers� a mapping M

from processes to computers� and matrices A�M	� C and D as described above�

Find a new mapping �M to minimize Obj � kCA� �M	DA� �M 	��C��k��

This de�nition is similar to the original formulation of this problem by Kung # Stevenson

����� In informal terms the dynamic mapping problem seeks a remapping that minimizes

the product of communication bandwidth and routing distance over all pairs of processes�

��� A dynamic mapping algorithm

After a distributed application has been mapped onto a computer system� remapping will

be necessary if changes occur in the pattern of communication among processes �represented

by C	 or in the topology or capacity of the interconnection network �represented by D	�

In this section we
ll apply the construction method presented in the second chapter to

de�ne an algorithm for dynamic remapping� The intuition behind this construction is

an observation that solutions to the mapping problem resemble equilibrium distributions

of communication cost� This cost is the product of two quantities
 the bandwidth Cj�j�

required between processes j and j�� and the routing distance DM�j��M�j�� between the

computers that processes j and j� are mapped to�

Solutions that are perfect equilibria are not guaranteed to exist� and if they exist� they

may not be unique� For example� suppose that the computer network is a mesh� which can

be embedded in the plane� but that the graph of processes is non�planar� To make this

��

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure ���
 Perfect equilibria are not possible for all cases� but an approximation to equilib�
rium is still a good solution to the mapping problem� Left� the setting for a model problem
on a grid of �� computers� A rectangular region has been partitioned so that each computer
occupies a subregion and the interfaces between these subregions represent network links�
Middle� an ideal solution for an easy problem with a set of ���� processes that communicate
in a regular grid� In this solution each process is equidistant from all processes with which it
communicates� Right� a solution for a realistic problem in which set of processes perform a
structured multigrid calculation� This process graph is non�planar� and the solution shown
here is the best that can be achieved even though it is not in perfect equilibrium�

example simple� suppose Ci�j is always either zero or one� Then there is no way to embed

the process graph into the network with equal communication cost between every pair of

processes� An example of this appears in �gure ����

The possible non�existence of solutions is not a problem� The important point is that

there is an ideal characterization of a solution� namely a perfect equilibrium� which may

or may not be a feasible solution for a given problem instance� Any algorithm that makes

monotonic progress toward this ideal solution is capable of generating a series of increasingly

good approximate solutions� and it is this series that we want to compute� An algorithm

that can guarantee monotone convergence toward an equilibrium� such as algorithm ����

might therefore be a good candidate solution to the mapping problem�

We
ll discuss some problems with this approach� and explain why it is more suitable

for the dynamic mapping problem than for the static problem� But �rst let
s de�ne an

algorithm� This algorithm is executed for every process j and is computed by computer

M�j	� The mapping function M de�nes locations in a real numbered space as shown in

�gure ����

��

Algorithm � 	Dynamic Mapping

�M �M

for 	some number of steps
 do begin

sumx � sumy � sumw � �

for j� � � to P do begin

�x� y	 �M�j�	

sumx � sumx x

sumy � sumy y

sumw � sumw Cj�j�

end

�M�j	 �
�
sumx

sumw
�
sumy

sumw

�
if 	step is odd
 then remap process j to �M �j	

end

It should be apparent that this is a variation of algorithm ��� that shows monotone

convergence to an equilbrium� On every step each process j computes a new location� and

on every other step� j remaps itself to that new location� This new location is equidistant

from the most recent positions of all processes with j communicates� Clearly when all

processes are equidistant the algorithm is at a �xed point� Under all circumstances the

algorithm converges the solution toward an equilibrium until it becomes trapped in a local

optimum and can make no further progress� Because the algorithm only remaps on alternate

steps it avoids the potential for oscillation that is illustrated in �gure ���� As a result it

shows monotone convergence to equilibrium� and therefore monotone improvement in the

approximate solution�

��� Simulations of a model problem

Figures ��� and ��� illustrate algorithm � operating on the model problem with a regular

grid of processes� In both cases the algorithm converges to an approximation of the ideal

solution� Both of these approximations have a �aw� in the form of a persistent sinusoid

such as the one illustrated in �gure ����

We
ll talk about this� but �rst let
s look at a more serious problem illustrated in �gure

��

���� This �gure shows two solutions that can result from the initial conditions of �gure ����

The only di�erence between these solutions� which are clearly incorrect� and the solutions

of �gures ��� and ��� which are approximately correct� are in the way the corners are

constrained� In �gures ��� and ��� the corners of the process graph have been constrained

in an order preserving way� and so resulting solutions must approximate the perfect solution

shown in �gure ���� In contrast the two solutions shown in �gure ��� have their corners

constrained so that correct solutions are impossible�

Figure ��� illustrates what can happen if the algorithm becomes trapped in a pathological

local optimum� The solution to this is to avoid these pathological regions� In the case of the

dynamic mapping problem this is easy to do� if we assume that the application is initially

well�mapped� In order to avoid converging to a pathological solution it is only necessary to

ensure that some of the processes are �xed in place so that the processes that move do so

in a way that avoids pathologies� This will always be possible in a remapping operation�

because in the worst case a periphery can be identi�ed for any sub�graph� and this periphery

can be �xed while all of the other processes reposition themselves� In practice it is probably

best to initiate the algorithm with a type of spreading activation� and to remap small local

regions when they become disrupted�

The problem of removing persistent sinusoidal error from the converged solution is more

di�cult� It is unreasonable to expect algorithm � to remove them by itself� as is illustrated

in �gure ���� But when algorithm � is combined with algorithm �� or any of several other

local load balancing algorithms� the two interact in a way that can alleviate this problem�

The cases in �gures ��� and ��� would be resolved by algorithm � implemented in a way

that observes the locality constraint of problem ��

��� Discussion

Algorithm � is similar to a well�known algorithm for embedding a graph in the plane �����

This variant extends the plane to arbitrary dimensions so that a computer network of any

topology could be an embedding target� It also relaxes the de�nition in a way that allows

a notion of continuous convergence to an approximate solution� so that instances can be

handled for which an optimal solution does not exist� such as embedding a non�planar graph

in the plane�

��

Figure ���
 An example of a regular graph sorting itself out from a di�cult initial condition�
This required constraining the corner positions� Note the persistent sinusoid�

Figure ���
 The same problem� started from a nice initial condition� The �nal �gure still
has a persistent sinusoid� with points clustered toward the periphery�

Figure ���
 Two incorrect solutions that can result from the initial condition of �gure ����

��

The purpose of this discussion has been to show that the approach to deriving algorithms

that is presented in this thesis is not restricted to a single problem �load balancing	 but

instead may be applicable to other problems that resemble load balancing and mapping�

There are number of problems which are known to be similar to these
 circuit partitioning

and layout� network capacity planning� and sparse matrix reordering� to name just a few ���

����

This thesis began by mentioning recursive spectral bisection �RSB	 and discussing prop�

erties of the Laplacian matrix of a graph� This construction method has been used for the

same two problems that are solved by RSB� namely mapping and load balancing� Some

comments about RSB are in order to place these algorithms in perspective� RSB is very

expensive since it requires solving an eigenvalue problem many times� once for each bi�

sector� This is normally done by Lanczos iteration ���� which can be implemented in a

distributed way� But Lanczos iteration scales poorly� with characteristics similar to the

standard iterations�� RSB is strictly more powerful than the algorithms presented here�

because it can solve the mapping problem without requiring any constraints� in contrast to

algorithm � which requires constraints in order to ensure correctness�

These considerations suggest that RSB may be well complemented by algorithms � and

�� RSB is frequently advocated to compute an initial mapping M for problems in technical

computing� where M solves the load balancing and mapping problems as they are de�ned

in this thesis� But RSB is recognized as being too expensive for repeated use in dynamic

instances of these same problems� The algorithms introduced here are good solutions for

the dynamic problems� because they have low cost and are scalable� Algorithm � seems to

be useful for the dynamic mapping problem when a valid initial mapping M has already

been computed� because it can take its constraints from this initial M �

�Lanczos iteration is closely related to the conjugate gradient algorithm for solving linear systems of
equations� This algorithm shares many of the convergence properties of the standard iterations�

��

Chapter � A Load Balancing Trace

About two dozen images were computed under a variety of conditions and operating pa�

rameters� Most of these were of models from the Materials and Geometry Format Data

Base which is published on the world wide web by the Lawrence Berkeley Laboratories�

The largest model �the battleship	 had over ������� polygons and several hundred light

sources� The smallest model �the o�ce	 had ����� objects including three light sources�

Most of these images were computed in the course of developing the implementation and

experimenting with policy details of algorithm �� Detailed statistics were collected for six

images most of which were computed at very high sampling rates�

The cost of algorithm � was controlled by a set of parameters that are described

in table ���� These parameters describe the number of initial descriptors for each pixel

�PIXEL SAMPLES	� the maximum number of points �x� x�� x��� � � �	 that will be followed

along a single path �PATH GENERATIONS	 and the degree of branching at each re�ection

point� The di�use characteristic usually decayed below the threshold of perceptibility after

a path had encountered two or three re�ections� so a typical tree with a di�use branching

factor of ��� would comprise ��� ��� or �� ���� ��� path descriptors for the di�use charac�

teristic�

Problems were run on a variety of platforms but most studies were done on the IBM

SP series of machines and on a cluster of Intel workstations connected by a dedicated fast

ethernet switch� In general the performance was slightly better on the Intel platform� and

PIXEL SAMPLES Image plane samples per pixel ��

DIRECT SAMPLES Shadow rays toward each light �

LAMBERTIAN SAMPLES Re�ected rays at a di�use surface ���

PHONG SAMPLES Re�ected rays at a glossy surface ��

PATH GENERATIONS Maximum depth of a path tree ��

Table ���
 Parameters that determine the sampling rates used in algorithm � and values
used for typical runs� Some of the runs used values of PIXEL SAMPLES as high as ����
For the o�ce� soda� and conference models the value of PATH GENERATIONS was � so
that only direct lighting was computed�

��

the compile time under gcc with all optimizations enabled was roughly �ve times faster

than with the Aix compiler on the SP�� The SP systems were located at Caltech� the

Argonne National Laboratory� the Cornell Theory Center� and the Maui High Performance

Computing Center� The Intel cluster was located at Caltech and constructed by sta� at the

Center for Advanced Computing Research� The performance on the SP� was evaluated by

pro�ling and by using the AIX monitor program on individual nodes while the application

was running� Monitor showed that system call overhead was consistently below �" demon�

strating that the application was dominated by computation and not by communication�

The �oating point performance was evaluated on the Intel cluster and was found to be

consistently below ��" of peak� This result is unsurprising because the code mixed inte�

ger and �oating point operations indiscriminately and did not optimize for �oating point

utilization� Floating performance on current Intel processors is notoriously bad when it

is mixed with integer operations due to inter�dependencies between the �oating point and

integer cpu pipelines� It is certain that careful implementation could improve the e�ciency

of this code� but this is unlikely to have any impact on the conclusions of this study�

The following pages show a representative trace from a run on �� rendering computers

which has been edited for brevity� This trace includes a detailed description of the load

balancing behavior� This run took place on the IBM SP� system at the Maui High Per�

formance Computing Center� The job starts by launching a �daemon� process on every

computer� A console process computes an initial mapping of application processes onto

computers and communicates that mapping to the daemons� The daemons start all of the

application processes and establish communication channels among them� There are ��

rendering processes named $obj
 and three additional processes named $ui
� $mas
 and $inp
�

Each rendering processes is on a dedicated computer while the other three processes are on

an additional computer that was not involved in rendering� All of the runs were mapped

in this way� The user interface process $ui
 parses a script that loads a geometric model�

constructs a BSP tree� de�nes a camera� establishes parameters� and then causes the $obj

processes to compute an image by executing algorithm ��

At the end of the trace each $obj
 reports three cumulative statistics� The �rst statistic

is the elapsed time the process spent in algorithm �� It is reported in this way

�object � elapsed �� min �� sec

The second statistic is the total time the process spent in load balancing that involved

��

exporting work to neighboring processes� This statistic is proportional to the total time

spent in algorithm � but is lower because it reports only one side of each two sided transac�

tion� It seems reasonable to expect that the total time spent in algorithm � is approximately

twice this �gure since the operations of exporting and importing work are very similar� This

statistic is reported in this way

�object � spent �� ms transferring work to others

The third statistic is the sum of the elapsed times spent in algorithm � with concurrent

execution of algorithm �� This statistic is neither the time spent in algorithm � nor the

total time spent in algorithm � nor the total time spent in algorithm �� Instead it represents

the sum of two quantities
 the total time the process spent in load balancing that involved

importing work from neighboring processes� and the total time spent in algorithm � while

waiting for neighboring processes to respond to requests to participate in load balancing

operations� This �rst quantity is approximately equal to the second statistic� the time spent

exporting work� This second quantity is considerably larger than the �rst quantity and in

the cases measured here is roughly proportional to the �rst statistic� the total elapsed time

in algorithm �� It is reported in this way

�object � spent ���	�� ms in load balancing
self�

��

��
�� Start of AdaptSeriesSoda���proc�script
��
Tue Feb � �������� HST ����
fr	n���mhpcc�edu

u
heirich
private
RayTracing
Run
��
�� Making node list�
�� Making ghost map�
��
Tue Feb � �������� HST ����
make ghost map for mhpcc jid SODA��
��
�� Making config�
��
Tue Feb � �������� HST ����
here is the config file�
ghost�map�SODA��
Config
Hosts
host����graph
Config
Guests
guest�grid����graph
Config
child�type�mhpcc
��
�� Starting daemons�
��
Tue Feb � �������� HST ����
��
�� All daemons are started�
��
Tue Feb � �������� HST ����
��
�� Creating console input�
��
��
�� Here is the console input�
��
run file �Cmd
AdaptSeriesSoda�cmd�

quit

��
�� Start console program
��
Tue Feb � �������� HST ����
Connecting to initial daemons defined in
�ghost�map�SODA����
Connecting host graph defined in
�Config
Hosts
host����graph��
Host graph connected ok�
Starting �	 application processes�
Issued �	 invocations�
All application processes have started�
Connecting guest graph �Config
Guests
guest�grid����graph�
Issued �	� connection requests�
All connection requests honored�
�synchronized child �obj� pid ����� host fr	n���mhpcc�edu
�synchronized child �obj� pid ����� host fr�n���mhpcc�edu
�synchronized child �obj� pid ���	� host fr��n���mhpcc�edu
�synchronized child �obj� pid ��	�� host fr��n���mhpcc�edu
�synchronized child �obj� pid ����� host fr��n���mhpcc�edu
�synchronized child �obj� pid ����� host fr�n�	�mhpcc�edu
�synchronized child �obj� pid ��	�� host fr��n���mhpcc�edu
�synchronized child �obj� pid ����� host fr��n�	�mhpcc�edu
�synchronized child �inp� pid ����� host fr	n���mhpcc�edu
�synchronized child �obj� pid ��	�� host fr��n���mhpcc�edu
�synchronized child �obj� pid ����� host fr��n���mhpcc�edu
�synchronized child �obj� pid ����� host fr��n���mhpcc�edu
�synchronized child �obj� pid ����� host fr��n���mhpcc�edu
�synchronized child �obj� pid ����� host fr��n���mhpcc�edu
�synchronized child �obj� pid ����� host fr��n���mhpcc�edu
�synchronized child �obj� pid ����� host fr��n���mhpcc�edu
�synchronized child �obj� pid ���� host fr	n���mhpcc�edu
�synchronized child �obj� pid ����� host fr	n���mhpcc�edu
�synchronized child �obj� pid ����� host fr	n���mhpcc�edu
�synchronized child �obj� pid ����� host fr	n���mhpcc�edu
�synchronized child �obj� pid ��		� host fr	n���mhpcc�edu
�synchronized child �obj� pid ����� host fr	n���mhpcc�edu
�synchronized child �obj� pid ����� host fr	n���mhpcc�edu
�synchronized child �obj� pid ����� host fr��n���mhpcc�edu
�synchronized child �obj� pid ����� host fr��n���mhpcc�edu
�synchronized child �obj� pid ����� host fr��n���mhpcc�edu
�synchronized child �obj� pid ����� host fr��n�	�mhpcc�edu
�synchronized child �obj� pid ����� host fr��n���mhpcc�edu
�synchronized child �obj� pid ����� host fr�n���mhpcc�edu
�synchronized child �obj� pid ����� host fr��n���mhpcc�edu
�synchronized child �obj� pid ��	�� host fr��n���mhpcc�edu
�synchronized child �obj� pid ����� host fr	n�	�mhpcc�edu
�synchronized child �obj� pid ����� host fr	n�	�mhpcc�edu
�synchronized child �ui� pid ����� host fr	n���mhpcc�edu
�synchronized child �mas� pid ����� host fr	n���mhpcc�edu
�Completed initial synchronization�
�Pausing for user input ���
�CHILDasynchronous
RUN FILE �Cmd
AdaptSeriesSoda�cmd�

real SCALE

real XRES� YRES

SCALE��

XRES������SCALE�

YRES������SCALE�

synchronize

�requesting global synchronization
�global synchronization achieved
time

�time��		������
compile mgf �Models
soda�mgf�

synchronize

�requesting global synchronization
�Read MGF �Models
soda�mgf�

�loading MGF file �Models
soda�mgf�
�loaded ����	 objects from �Models
soda�mgf�
���� spheres
����	� polygons
�	 lights
�global synchronization achieved
time

�time��		������
BSP�MAX�LIST�LENGTH���

make bsp

synchronize

�requesting global synchronization
�built Bsp tree of ��	�� nodes
�global synchronization achieved
time

�time��		������
define camera �� ���	�� ��	�� ������ ����	���������	��
���	�����������
������������	���� ��� �� ��� �� �� ���	� XRES� YRES� ��

�lens has resolution ��� by ���
load schedule � �soda�schedule�

synchronize

�requesting global synchronization
�Distributing schedule for image � to �� objects
�global synchronization achieved
RENDERING�MODE��

PATH�GENERATIONS���

CHECKPOINT�INTERVAL������

SCATTER��

BALANCE�WORKLOAD��

printlist �diffusion and scattering�

diffusion and scattering
synchronize

�requesting global synchronization
�global synchronization achieved
time

�time��		������
render image �

� in finishRender� renderHold�� renderActive��
synchronize

�requesting global synchronization
�there are �� active objects
�object �� getting work after �� min �	 sec
�object �� balances with � peers to new workload �����
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ��	��
�object �	 getting work after �� min �� sec
�object �	 balances with � peers to new workload �����
�object �� getting work after �� min � sec
�object �� balances with � peers to new workload �����
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload �����
�object 	 getting work after �� min �� sec
�object 	 balances with � peers to new workload ����	
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ����
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload �����
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ����
�object �� getting work after �� min 	 sec
�object �� balances with � peers to new workload ����
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ����
�object �� getting work after �� min �	 sec
�object �� balances with � peers to new workload �		�
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ����
�object �� getting work after �� min 	� sec
�object �� balances with � peers to new workload ��	�
�object � getting work after �	 min � sec
�object � balances with � peers to new workload ��	�
�object � getting work after �	 min � sec
�object � balances with � peers to new workload �����
�object � getting work after �	 min �� sec
�object � balances with � peers to new workload ����
�object �� getting work after �	 min �� sec
�object �� balances with � peers to new workload ��	�
�object �� getting work after �	 min �� sec
�object �� balances with � peers to new workload �		�
�object �� getting work after �	 min �� sec
�object �� balances with � peers to new workload ����
�object �	 getting work after �	 min 	� sec
�object �	 balances with � peers to new workload ����
�object �� getting work after �	 min 	� sec
�object �� balances with � peers to new workload ����
�object �� getting work after �	 min 	� sec
�object �� balances with � peers to new workload ����
�object �� getting work after �� min � sec
�object �� balances with � peers to new workload 	��	
�object �� getting work after �� min � sec
�object �� balances with � peers to new workload ����
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ����
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ����
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ����
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ����
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ����
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���

��

�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload �	�
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ����
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���	
�object �� getting work after �� min �	 sec
�object �� balances with � peers to new workload ����
�object �	 getting work after �� min �� sec
�object �	 balances with � peers to new workload ����
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload �	��
�object �� getting work after �� min 	� sec
�object �� balances with � peers to new workload ����
�object �� getting work after �� min 	� sec
�object �� balances with � peers to new workload ���
�object � getting work after �� min � sec
�object � balances with � peers to new workload ���
�object �� getting work after �� min 	 sec
�object �� getting work after �� min 	 sec
�object �� balances with � peers to new workload ���
�object �� balances with � peers to new workload ����
�object �� getting work after �� min � sec
�object �� balances with � peers to new workload 	��
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload �	�
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �� getting work after �� min �	 sec
�master hears �out of work� from pid ������ activeObjs now
��
�object �� getting work after �� min �	 sec
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ����
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ��	�
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ���
�master hears �out of work� from pid ������ activeObjs now
��
�object �� balances with � peers to new workload ����
�object �� balances with � peers to new workload ���
�master hears �got work� from pid ������ activeObjs now ��
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�master hears �got work� from pid ������ activeObjs now ��
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ��
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload 	��
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object � getting work after �� min �� sec
�object �	 getting work after �� min �� sec
�object �	 balances with � peers to new workload ���
�object � balances with � peers to new workload ��
�object �� getting work after �� min �� sec
�object �� getting work after �� min �� sec
�object � getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�master hears �out of work� from pid ������ activeObjs now
��
�object � balances with � peers to new workload ���
�object �� balances with � peers to new workload ��	
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ��
�object �� getting work after �� min �� sec
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ���
�object �� balances with � peers to new workload ��
�object �� getting work after �� min �� sec
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload �	�
�object � getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object � balances with � peers to new workload ��	
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ��	
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ��	
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload 	
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ��
�master hears �out of work� from pid ������ activeObjs now
��
�object �� getting work after �� min �� sec
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ���
�object �� balances with � peers to new workload ���
�object �� balances with � peers to new workload �

�object �� getting work after �� min �� sec
�object � getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�master hears �out of work� from pid ������ activeObjs now
��
�object �� getting work after �� min �� sec
�master hears �out of work� from pid ������ activeObjs now
��
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object � getting work after �� min �� sec
�object � balances with � peers to new workload �	�
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �� balances with � peers to new workload ���
�master hears �got work� from pid ������ activeObjs now ��
�object � balances with � peers to new workload 	�
�object �� getting work after �� min �� sec
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ��
�object �� balances with � peers to new workload ��
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload �
�object �� getting work after �� min �	 sec
�object �� getting work after �� min �	 sec
�object �� balances with � peers to new workload ���
�object �� getting work after �� min �	 sec
�object � getting work after �� min �	 sec
�object �� balances with � peers to new workload ���
�object � balances with � peers to new workload ���
�object � getting work after �� min �	 sec
�object � balances with � peers to new workload ��
�object �� getting work after �� min �	 sec
�object �� getting work after �� min �	 sec
�object � getting work after �� min �	 sec
�object �� balances with � peers to new workload ���
�master hears �out of work� from pid ������ activeObjs now
��
�object � getting work after �� min �	 sec
�object �� getting work after �� min �	 sec
�master hears �out of work� from pid ������ activeObjs now
��
�object �� getting work after �� min �	 sec
�object �� balances with � peers to new workload ��
�object �� balances with � peers to new workload ���
�object �� getting work after �� min �	 sec
�object �� balances with � peers to new workload ��
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object � balances with � peers to new workload �	
�object � getting work after �� min �� sec
�master hears �got work� from pid ������ activeObjs now ��
�object � balances with � peers to new workload ��
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ��
�master hears �out of work� from pid ������ activeObjs now
��
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ��
�object �� balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload 	��
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�master hears �out of work� from pid ������ activeObjs now
��
�object �� balances with � peers to new workload ���
�master hears �got work� from pid ������ activeObjs now ��
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload �	�
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �	 getting work after �� min �� sec
�object �	 balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�master hears �out of work� from pid ������ activeObjs now
��
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ��	
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�master hears �got work� from pid ������ activeObjs now ��
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ����
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object � getting work after �� min �� sec
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ��
�object �	 getting work after �� min �� sec
�master hears �out of work� from pid ������ activeObjs now
��
�object �� getting work after �� min �� sec
�master hears �out of work� from pid ������ activeObjs now
�	

��

�object �� getting work after �� min �� sec
�object � balances with � peers to new workload �
�object � getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object � balances with � peers to new workload ��
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ��
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ��
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ����
�object �� balances with � peers to new workload ��
�master hears �got work� from pid ������ activeObjs now ��
�object � balances with � peers to new workload ��
�object �� getting work after �� min �� sec
�master hears �out of work� from pid ������ activeObjs now
�	
�object �� getting work after �� min �� sec
�object �� getting work after �� min �� sec
�object 	 getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object 	 balances with � peers to new workload 	��
�object � getting work after �� min �� sec
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�master hears �out of work� from pid ������ activeObjs now
��
�object �� getting work after �� min �� sec
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�master hears �out of work� from pid ������ activeObjs now
��
�master hears �got work� from pid ������ activeObjs now ��
�object �� balances with � peers to new workload ��
�object �� balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ��
�object �� balances with � peers to new workload ���
�master hears �got work� from pid ������ activeObjs now �	
�object � balances with � peers to new workload ��
�object �� getting work after �� min �� sec
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �� getting work after �� min �	 sec
�object �� getting work after �� min �	 sec
�object �� balances with � peers to new workload ���
�object �� balances with � peers to new workload ��	
�object �� balances with � peers to new workload ��
�object �� getting work after �� min �	 sec
�object �� balances with � peers to new workload ��	
�object �� getting work after �� min �	 sec
�object �� balances with � peers to new workload �	
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ��
�object �� getting work after �� min �� sec
�object �� getting work after �� min �� sec
�object � getting work after �� min �� sec
�object �� balances with � peers to new workload �
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload �
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �� balances with � peers to new workload 	��
�object �� getting work after �� min �� sec
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload �	�
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ��
�object �� balances with � peers to new workload ��
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ��
�object �� getting work after �� min �� sec
�master hears �out of work� from pid ������ activeObjs now
��
�object �� getting work after �� min �� sec
�master hears �out of work� from pid ������ activeObjs now
��
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload 	�
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ��
�object �� balances with � peers to new workload ���
�object �	 balances with � peers to new workload ��
�object �� balances with � peers to new workload ��
�object �� getting work after �� min �� sec
�object � getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object �� getting work after �� min �� sec
�object � balances with � peers to new workload ��
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �	 getting work after �� min �� sec
�object �� balances with � peers to new workload ��
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload 	��
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���

�object �� getting work after �� min �� sec
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �� balances with � peers to new workload �
�object �� getting work after �� min �� sec
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ��
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload 	�
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ��	
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload 	�
�object �� getting work after �� min �� sec
�object 	 getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object 	 balances with � peers to new workload ���
�object � getting work after �� min �� sec
�object �� getting work after �� min �� sec
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�master hears �out of work� from pid ������ activeObjs now
��
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ��
�object �� balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object �� getting work after �� min �� sec
�master hears �out of work� from pid ������ activeObjs now
��
�master hears �out of work� from pid ������ activeObjs now
��
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �� balances with � peers to new workload ��	
�object �� balances with � peers to new workload �	�
�object �� balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ��
�object �� getting work after �� min �� sec
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �� balances with � peers to new workload �	�
�object �� getting work after �� min �� sec
�object �� getting work after �� min �� sec
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�master hears �out of work� from pid ������ activeObjs now
��
�object �� getting work after �� min �� sec
�master hears �out of work� from pid ������ activeObjs now
��
�object �� balances with � peers to new workload ��	
�object �� balances with � peers to new workload ��
�object �� getting work after �� min �� sec
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ��
�object �� balances with � peers to new workload ��
�object �� getting work after �� min �� sec
�object �� getting work after �� min �� sec
�object � balances with � peers to new workload ��
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ��
�object � getting work after �� min �� sec
�object �� balances with � peers to new workload ��
�object � balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object �� getting work after �� min �� sec
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ��
�object � getting work after �� min �� sec
�object �� balances with � peers to new workload �	�
�object �� balances with � peers to new workload �	�
�object �� balances with � peers to new workload �	
�object �� getting work after �� min �� sec
�master hears �out of work� from pid ������ activeObjs now
��
�object �� getting work after �� min �� sec
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object �� getting work after �� min �	 sec
�object �� balances with � peers to new workload ��
�object �� getting work after �� min �	 sec
�object �� getting work after �� min �	 sec
�object �� balances with � peers to new workload ��
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ��
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �� balances with � peers to new workload ��	
�object �� balances with � peers to new workload �	
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ��
�object �� getting work after �� min �� sec

��

�object �� getting work after �� min �� sec
�object � balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload �
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object � getting work after �� min �� sec
�object �� getting work after �� min �� sec
�object � balances with � peers to new workload ���
�object 	 getting work after �� min �� sec
�object 	 balances with � peers to new workload ����
�object �� balances with � peers to new workload ��
�object � getting work after �� min 	� sec
�object � balances with � peers to new workload ��
�object � getting work after �� min 	� sec
�object �� getting work after �� min 	� sec
�object 	 getting work after �� min 	� sec
�object 	 balances with � peers to new workload ���
�object �� balances with � peers to new workload ���
�object �� getting work after �� min 	� sec
�object � getting work after �� min 	� sec
�object 	 getting work after �� min 	� sec
�object 	 balances with � peers to new workload ���
�object � balances with � peers to new workload ����
�object �� getting work after �� min 	� sec
�master hears �out of work� from pid ������ activeObjs now
��
�object �� getting work after �� min 	� sec
�master hears �out of work� from pid ������ activeObjs now
�	
�object �� getting work after �� min 	� sec
�object 	 getting work after �� min 	� sec
�object 	 balances with � peers to new workload ���
�object �� balances with � peers to new workload �			
�object � getting work after �� min 	� sec
�object � balances with � peers to new workload 	��
�object �� balances with � peers to new workload ��
�object � balances with � peers to new workload ��
�object �� getting work after �� min 		 sec
�object �� balances with � peers to new workload ��
�object � getting work after �� min 		 sec
�object 	 getting work after �� min 	� sec
�object 	 balances with � peers to new workload ���
�object �� getting work after �� min 	� sec
�object �� balances with � peers to new workload ��
�object �� getting work after �� min 	� sec
�object 	 getting work after �� min 	� sec
�object 	 balances with � peers to new workload ���
�object 	 getting work after �� min 	� sec
�object 	 balances with � peers to new workload ���
�object 	 getting work after �� min � sec
�object 	 balances with � peers to new workload �
�object 	 getting work after �� min � sec
�master hears �out of work� from pid ��	��� activeObjs now
��
�object 	 balances with � peers to new workload ���
�object 	 getting work after �� min � sec
�object 	 balances with � peers to new workload ���
�object 	 getting work after �� min � sec
�object 	 balances with � peers to new workload ���
�object 	 getting work after �� min � sec
�object 	 balances with � peers to new workload ���
�object 	 getting work after �� min � sec
�object 	 balances with � peers to new workload ���
�object 	 getting work after �� min � sec
�object 	 balances with � peers to new workload ��	
�object � balances with � peers to new workload �	�
�object � getting work after �� min � sec
�object � balances with � peers to new workload ��
�object �� getting work after �� min � sec
�object �� balances with � peers to new workload ����
�object �� getting work after �� min � sec
�object �� balances with � peers to new workload ���	
�object �� balances with � peers to new workload ��
�object �� getting work after �� min � sec
�object �� balances with � peers to new workload ���
�object � getting work after �� min � sec
�object � balances with � peers to new workload ��	�
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ����
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ��	�
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ���
�object � getting work after �� min �� sec
�object � balances with � peers to new workload �	�
�object � getting work after �� min �� sec
�object � balances with � peers to new workload 	�
�object � getting work after �� min �� sec
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ��
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ����
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object 	 getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object 	 balances with � peers to new workload ���	
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �� getting work after �� min �	 sec
�object �� balances with � peers to new workload ��
�object �� getting work after �� min �	 sec
�object �� balances with � peers to new workload ���
�object � getting work after �� min �	 sec

�object � balances with � peers to new workload ��	
�object �� getting work after �� min �	 sec
�object �� balances with � peers to new workload ��
�object �� getting work after �� min �	 sec
�object �� balances with � peers to new workload ��
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ��	
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ��
�object � balances with � peers to new workload �
�object � getting work after �� min �� sec
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ����
�object �� getting work after �� min �� sec
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ��	
�object �� balances with � peers to new workload ��
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object � balances with � peers to new workload ���
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ����
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ��
�object �� getting work after �� min �� sec
�object 	 getting work after �� min �� sec
�object 	 balances with � peers to new workload ���
�object �� balances with � peers to new workload �	
�object �� getting work after �� min �� sec
�object � getting work after �� min �� sec
�object �� balances with � peers to new workload 	�
�object � balances with � peers to new workload ���
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ���
�object � balances with � peers to new workload ���
�object � getting work after �� min �� sec
�object �� getting work after �� min �� sec
�object � balances with � peers to new workload ��	
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ����
�object �� balances with � peers to new workload ���
�master hears �got work� from pid ������ activeObjs now �	
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ��
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object � getting work after �� min �	 sec
�object � getting work after �� min �	 sec
�object �� getting work after �� min �	 sec
�object �� balances with � peers to new workload ��
�master hears �got work� from pid ������ activeObjs now ��
�object � balances with � peers to new workload ���
�object �� balances with � peers to new workload ���
�object �� balances with � peers to new workload �	
�object �� balances with � peers to new workload 	�
�object �� getting work after �� min �	 sec
�object �� getting work after �� min �	 sec
�object �� getting work after �� min �	 sec
�object �� balances with � peers to new workload ��
�object �� getting work after �� min �	 sec
�object �� getting work after �� min �	 sec
�object �� balances with � peers to new workload ����
�object �� getting work after �� min �	 sec
�master hears �out of work� from pid ������ activeObjs now
�	
�object �� balances with � peers to new workload ��
�object �� balances with � peers to new workload ��
�object �� getting work after �� min �	 sec
�object �� getting work after �� min �	 sec
�object �� balances with � peers to new workload ��
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ��
�object �� getting work after �� min �� sec
�master hears �out of work� from pid ��		�� activeObjs now
��
�object �� balances with � peers to new workload ���
�object �	 getting work after �� min �� sec
�master hears �out of work� from pid ����� activeObjs now
��
�object �� getting work after �� min �� sec
�object 	 getting work after �� min �� sec
�object 	 balances with � peers to new workload ���
�object 	 getting work after �� min �� sec
�object 	 balances with � peers to new workload �	�
�object � balances with � peers to new workload 	��
�object 	 getting work after �� min �� sec
�object 	 balances with � peers to new workload ���
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ��
�object 	 getting work after �� min �� sec
�object 	 balances with � peers to new workload ���
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ��
�object � getting work after �� min �� sec
�master hears �out of work� from pid ������ activeObjs now
��
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ���
�object 	 getting work after �� min �� sec
�object � getting work after �� min �� sec
�master hears �out of work� from pid ������ activeObjs now

��

��
�object 	 balances with � peers to new workload ���
�object � getting work after �� min �� sec
�master hears �out of work� from pid ������ activeObjs now
��
�object � balances with � peers to new workload ���
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ���
�object � getting work after �� min �� sec
�object 	 getting work after �� min �� sec
�object � balances with � peers to new workload ��
�object 	 balances with � peers to new workload ��
�object 	 getting work after �� min �� sec
�object 	 balances with � peers to new workload ��
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ��
�object � getting work after �� min �� sec
�object 	 getting work after �� min �� sec
�object 	 balances with � peers to new workload �
�object � getting work after �� min �� sec
�object 	 getting work after �� min �� sec
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ���
�object � getting work after �� min �� sec
�object � balances with � peers to new workload 	��
�object � getting work after �� min �	 sec
�object � balances with � peers to new workload ��
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ��
�object �� getting work after �� min �� sec
�object � getting work after �� min �� sec
�master hears �out of work� from pid ������ activeObjs now
�
�object � balances with � peers to new workload �	�
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload 	��
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ���
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ��	
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ���
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload �
�object �� getting work after �� min �� sec
�master hears �out of work� from pid ������ activeObjs now
�
�object �� getting work after �� min �� sec
�master hears �out of work� from pid ������ activeObjs now
�
�object �� balances with � peers to new workload ���
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object � getting work after �� min �� sec
�master hears �out of work� from pid ���	�� activeObjs now
�
�object �� balances with � peers to new workload ���
�object � balances with � peers to new workload ���
�object �� balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload �	
�object �� getting work after �� min �� sec
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ��
�object �� balances with � peers to new workload ���
�object � getting work after �� min �� sec
�object �� getting work after �� min �� sec
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ��
�object �� balances with � peers to new workload ��
�object �� getting work after �� min �� sec
�object � balances with � peers to new workload ��	
�object �� getting work after �� min �� sec
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ��	
�object �� balances with � peers to new workload 	�
�object �� balances with � peers to new workload ��
�object �� getting work after �� min �� sec
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ��
�object �� balances with � peers to new workload ��
�object � getting work after �� min �� sec
�object �� getting work after �� min �� sec
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload ��
�object � balances with � peers to new workload ��
�object �� getting work after �� min �� sec
�object �� balances with � peers to new workload 	�
�object � getting work after �� min �� sec
�object �� getting work after �� min �� sec
�object � balances with � peers to new workload ���
�object � getting work after �� min �� sec
�object �� balances with � peers to new workload 	�
�object � balances with � peers to new workload ���
�object �� balances with � peers to new workload 	�
�object �� getting work after �� min �� sec
�object � getting work after �� min �� sec

�object � balances with � peers to new workload ���
�object �� getting work after �� min �� sec
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ��
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ��
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ��
�object � getting work after �� min �� sec
�object � balances with � peers to new workload 		
�object � getting work after �� min �	 sec
�object �� balances with � peers to new workload ��
�object �� getting work after �� min �	 sec
�object � balances with � peers to new workload ���
�object � getting work after �� min �� sec
�object �� getting work after �� min �� sec
�master hears �out of work� from pid ��	��� activeObjs now
	
�object �� balances with � peers to new workload ���
�object 	 balances with � peers to new workload �	�
�object � balances with � peers to new workload ��	
�object �� getting work after �� min �� sec
�object 	 getting work after �� min �� sec
�object � getting work after �� min �� sec
�object �� getting work after �� min 	� sec
�object �� balances with � peers to new workload ���
�object �� getting work after �� min 	� sec
�object �� balances with � peers to new workload ���
�object �� getting work after �� min 	� sec
�object �� balances with � peers to new workload 	��
�object �� getting work after �� min 	� sec
�object �� balances with � peers to new workload ���
�object �� getting work after �� min 	� sec
�object �� balances with � peers to new workload �	
�object �� getting work after �� min 	� sec
�object �� balances with � peers to new workload ���
�object �� getting work after �� min 	� sec
�master hears �out of work� from pid ������ activeObjs now
�
�object �� balances with � peers to new workload ���
�object �� getting work after �� min 		 sec
�object �� balances with � peers to new workload ��	
�object �� getting work after �� min 		 sec
�object �� balances with � peers to new workload �		
�object �� getting work after �� min 	� sec
�object �� balances with � peers to new workload 	
�object �� getting work after �� min 	� sec
�object �� balances with � peers to new workload ���
�object �� getting work after �� min 	� sec
�object �� balances with � peers to new workload 	��
�object �� getting work after �� min 	� sec
�object �� balances with � peers to new workload �	�
�object �� getting work after �� min 	� sec
�object �� balances with � peers to new workload ��	
�object �� getting work after �� min 	� sec
�object �� balances with � peers to new workload ���
�object �� getting work after �� min � sec
�object �� balances with � peers to new workload ��
�object �� getting work after �� min � sec
�object �� balances with � peers to new workload ��
�object �� getting work after �� min � sec
�object �� balances with � peers to new workload �
�object �� getting work after �� min � sec
�object �� balances with � peers to new workload ��
�object �� getting work after �� min 	 sec
�object � getting work after �� min 	 sec
�master hears �out of work� from pid ��	��� activeObjs now
�
�object � getting work after �� min �� sec
�object � balances with � peers to new workload 	���
�object �� balances with � peers to new workload ��	
�object � balances with � peers to new workload ���
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ���
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ��
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ��
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ���
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ���
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ���
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ��	
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ���
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ���
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ���
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ���
�object � getting work after �� min �� sec
�object � balances with � peers to new workload �
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ��
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ��
�object � getting work after �� min �	 sec
�object � balances with � peers to new workload ��
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ��
�object � getting work after �� min �� sec
�object �� getting work after �� min �� sec

��

�object �� balances with � peers to new workload ��
�object �� getting work after �� min �	 sec
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ����
�object � getting work after �� min �� sec
�object � balances with � peers to new workload ��	�
�object �� balances with � peers to new workload 	�
�object �� getting work after �� min �� sec
�object � balances with � peers to new workload ��
�object � getting work after �� min �� sec
�object � balances with � peers to new workload 	�
�object �� balances with � peers to new workload ��
�object �� getting work after �� min �� sec
�object � getting work after �� min �� sec
�object �� balances with � peers to new workload 	�
�object �� getting work after �� min �� sec
�object � balances with � peers to new workload ��
�object � getting work after �� min �� sec
�object �� balances with � peers to new workload ��
�object � balances with � peers to new workload ��
�object � getting work after �� min �	 sec
�object �� getting work after �� min �	 sec
�object � balances with � peers to new workload �
�object � getting work after �� min �� sec
�object �� balances with � peers to new workload ��
�object � balances with � peers to new workload ��
�object �� getting work after �� min �� sec
�object � getting work after �� min �� sec
�object � getting work after �� min 	� sec
�object � balances with � peers to new workload ��	
�object � getting work after �� min 	� sec
�object � balances with � peers to new workload �	
�object � getting work after �� min 	� sec
�object � balances with � peers to new workload ���
�object � getting work after �� min 	� sec
�object � balances with � peers to new workload ��
�object � getting work after �� min 	� sec
�master hears �out of work� from pid ������ activeObjs now
�
�object � balances with � peers to new workload ���
�object � getting work after �� min 	� sec
�object � balances with � peers to new workload 	��
�object � getting work after �� min 	� sec
�object � balances with � peers to new workload ���
�object � getting work after �� min 	� sec
�object � balances with � peers to new workload ���
�object � getting work after �� min � sec
�object � balances with � peers to new workload ���
�object � getting work after �� min � sec
�object � balances with � peers to new workload ��	
�object � getting work after �� min � sec
�object � balances with � peers to new workload ���
�object � getting work after �� min � sec
�object � balances with � peers to new workload ��
�object � getting work after �� min � sec
�object � balances with � peers to new workload ��
�object � getting work after �� min � sec
�object � balances with � peers to new workload ��
�object � getting work after �� min � sec
�object � balances with � peers to new workload ���
�object � getting work after �� min � sec
�object � balances with � peers to new workload �	
�object � getting work after �� min � sec
�object � balances with � peers to new workload �	
�object � getting work after �� min �� sec
�object � getting work after �� min �� sec
�master hears �out of work� from pid ��	��� activeObjs now
�
�object � getting work after �� min �	 sec
�master hears �out of work� from pid ������ activeObjs now
�
�object � elapsed �� min �	 sec
�object � elapsed �� min �	 sec
�object � elapsed �� min �	 sec
�object � elapsed �� min �	 sec
�object � elapsed �� min �	 sec
�object 	 elapsed �� min �	 sec
�object � elapsed �� min �	 sec
�master notified UI that render is complete� renderActive��
�object � elapsed �� min �	 sec
�object � elapsed �� min �	 sec
�object �� elapsed �� min �	 sec
�object �� elapsed �� min �	 sec
�object �� elapsed �� min �	 sec
�object �	 elapsed �� min �	 sec
�object �� elapsed �� min �	 sec
�object �� elapsed �� min �	 sec
�object � spent ������ ms in load balancing �self�
�object � spent ������ ms in load balancing �self�
�object �� elapsed �� min �	 sec
�object �	 spent ������ ms in load balancing �self�
�object �� spent �	���� ms in load balancing �self�
�object �� elapsed �� min �	 sec
�object �� spent ������ ms in load balancing �self�
�object �� elapsed �� min �	 sec
�object �� elapsed �� min �	 sec
�object �� elapsed �� min �	 sec
�object �� elapsed �� min �	 sec
�object �� elapsed �� min �	 sec
�object � spent �� ms transferring work to others
�object � spent ������ ms in load balancing �self�
�object � spent ���� ms in load balancing �self�
�object � spent �� ms in load balancing �self�
�object � spent �� ms transferring work to others
�object 	 spent �����	 ms in load balancing �self�
�object � spent ����� ms in load balancing �self�

�object � spent �	���� ms in load balancing �self�
�object � spent �	���� ms in load balancing �self�
�object �	 spent �� ms transferring work to others
�object �� spent �� ms transferring work to others
�object �� spent ������ ms in load balancing �self�
�object �� spent � ms transferring work to others
�object �� elapsed �� min �	 sec
�object � spent ��� ms transferring work to others
�object � spent 	� ms transferring work to others
�object � spent 	� ms transferring work to others
�object 	 spent �� ms transferring work to others
�object � elapsed �� min �	 sec
�object � spent ��� ms transferring work to others
�object � spent �� ms transferring work to others
�object � spent � ms transferring work to others
�object �� elapsed �� min �	 sec
�object �� spent ����� ms in load balancing �self�
�object �� spent ������ ms in load balancing �self�
�object �� spent ������ ms in load balancing �self�
�object �� spent ������ ms in load balancing �self�
�object �� elapsed �� min �	 sec
�object �� spent �� ms transferring work to others
�object �� spent ������ ms in load balancing �self�
�object �� spent �	���� ms in load balancing �self�
�object �� spent ��	�	� ms in load balancing �self�
�object �� elapsed �� min �	 sec
�object �� elapsed �� min �	 sec
�object �	 elapsed �� min �	 sec
�object �� elapsed �� min �	 sec
�object �� spent ����	� ms in load balancing �self�
�object �� elapsed �� min �	 sec
�object �� elapsed �� min �	 sec
�object �� spent ������ ms in load balancing �self�
�object �� spent �		�� ms in load balancing �self�
�object � spent ����� ms in load balancing �self�
�object �� spent �		��� ms in load balancing �self�
�object �� spent �� ms transferring work to others
�object �� spent �	 ms transferring work to others
�object �� spent �� ms transferring work to others
�object �� spent �� ms transferring work to others
�object �� spent ������ ms in load balancing �self�
�object �� spent �� ms transferring work to others
�object �� spent �� ms transferring work to others
�object �� spent 	 ms transferring work to others
�object �� spent ������ ms in load balancing �self�
�object �� spent ������ ms in load balancing �self�
�object �	 spent ������ ms in load balancing �self�
�object �� spent �	���� ms in load balancing �self�
�object �� spent � ms transferring work to others
�object �� spent ������ ms in load balancing �self�
�object �� spent �	���	 ms in load balancing �self�
�object �� spent �� ms transferring work to others
�object �� spent �� ms transferring work to others
�object � spent �� ms transferring work to others
�object �� spent �� ms transferring work to others
�object �� spent �� ms transferring work to others
�object �� spent � ms transferring work to others
�object �� spent 	� ms transferring work to others
�object �	 spent �� ms transferring work to others
�object �� spent �	 ms transferring work to others
�object �� spent �� ms transferring work to others
�object �� spent �� ms transferring work to others
�global synchronization achieved
time

�time��		������
save image � ppm �soda�ppm�

quit

�ui process pid ����� requests termination
Requesting shutdown of all processes�
�console�c�
Tue Feb � ������	� HST ����
��
�� Job finished�
��

��

Bibliography

��� Akeley� K� �Reality engine	 graphics� Proceedings of SIGGRAPH �����	 pp� ��������

��� Amdahl� G� Validity of the single processor approach to achieving large scale computing

capabilities� Proceedings AFIPS Conference� vol� �� �����	 pp� ��������

��� Arvo� J� # Kirk� D� Particle transport and image synthesis� Computer Graphics� vol� ��

�����	 pp� ������

��� Badouel� D� # Priol� T� An e�cient parallel ray�tracing scheme for highly parallel archi�

tectures� Proceedings of the Fifth Eurographics Workshop on Graphics Hardware �����	�

��� Barnard� S�T� # Simon� H� A parallel implementation of multi�level recursive spectral

bisection for application to adaptive unstructured meshes� In Proceedings of the �th

SIAM Conference on Parallel Processing for Scienti�c Computing �����	 pp� ��������

��� Barrett� M�L� A load balancing experiment for parallel ray�tracing� Proceedings of Aus�

graph �����	 pp� ��������

��� Boillat� J�E� Load balancing and Poisson equation in a graph� Concurrency� Practice

and Experience� vol� � �����	 ��������

��� Boillat� J�E�� Brug%e� F� # Kropf� P�G� A dynamic load balancing algorithm for molecular

dynamics simulations on multiprocessor systems� Journal of Computational Physics� vol�

�� �����	 pp� �����

��� Bokhari� S� Assignment Problems in Parallel and Distributed Computing �Kluwer�

Boston� ����	�

���� Brug%e� F� # Fornili� S�L� A distributed dynamic load balancer and it
s implementa�

tion on multi�transputer systems for molecular dynamics simulation� Computer Physics

Communications� vol� �� �����	 pp� ������

��

���� Caspary� E� # Scherson� I�D� A self�balanced parallel ray�tracing algorithm� Proceedings

of the International Conference on Parallel Processing for Computer Vision and Display

�����	�

���� Conley� A�J� Using a transfer function to describe the load balancing problem� Technical

report ANL������� Argonne National Laboratory �����	�

���� Cybenko� G� Dynamic load balancing for distributed memory multiprocessors� The

Journal of Parallel and Distributed Computing� vol� � �����	 pp� ��������

���� Delany� H�C� Ray tracing on the Connection Machine� Proceedings of SIGGRAPH

�����	 pp� ��������

���� Fletcher� C�A�J� Computational Techniques for Fluid Dynamics �Springer� New York�

����	�

���� Green� S�A� # Paddon� D�J� Exploiting coherence for multiprocessor ray�tracing� IEEE

Computer Graphics and Applications� vol� � �����	 pp� ������

���� Golub� G� H� # Van Loan� C� F� Matrix Computations �Johns Hopkins University

Press� Baltimore� ����	�

���� Hall� K� An r�dimensional quadratic placement algorithm� Management Science� vol�

��� no� � �����	 pp� ��������

���� Hanrahan� P�� Salzman� D� # Aupperle� L� A rapid hierarchical radiosity algorithm�

Proceedings of SIGGRAPH �����	 pp� ��������

���� Heckbert� P� Radiosity in �atland� Proceedings of Eurographics���� vol� �� �����	 pp�

��������

���� Heirich� A� # Arvo� J� A competitive analysis of load balancing strategies for parallel

ray tracing� The Journal of Supercomputing� vol� ��� no� � # � �����	 pp� ������

���� Heirich� A� # Arvo� J� Parallel Radiometric Image Synthesis� The International Journal

of Advances in Engineering Software �to appear� ����	�

Previously appeared in Proceedings of the Fourth National Symposium on Large Scale

Analysis and Design on High�Performance Computers and Workstations�Williamsburg�

VA �October ����	�

��

���� Heirich� A� A scalable di�usion algorithm for dynamic mapping and load balancing on

networks of arbitrary topology� The International Journal of Foundations of Computer

Science� vol� �� no� � �����	 pp� ��������

���� Heirich� A� # Arvo� J� Scalable Monte Carlo image synthesis� Parallel Computing� vol�

��� no� � �����	 pp� ��������

���� Heirich� A� # Arvo� J� Parallel rendering with an Actor model� Proceedings of Euro�

graphics ���� Workshop on Programming Paradigms for Graphics� Budapest� Hungary

�September ����	�

���� Heirich� A� # Arvo� J� Scalable photo�realistic rendering of complex scenes� Proceedings

of the First Eurographics Workshop on Parallel Graphics and Visualization� Bristol�

England �September ����	�

���� Heirich� A� # Taylor� S� A parabolic load balancing method� Proceedings of the ��th

International Conference on Parallel Processing� vol� III �����	 pp� ��������

���� Hong� J�� Tan� X� # Chen� M� From local to global
 an analysis of nearest�neighbor bal�

ancing on hypercube� Proceedings of the ACM Sigmetrics Conference on Measurement

and Modeling of Computer Systems �����	 pp� ������

���� Horn� R� A� # Johnson� C� R�Matrix Analysis �Cambridge University Press� New York�

����	�

���� Horton� G� A multi�level di�usion method for dynamic load balancing� Parallel Com�

puting� vol� �� �����	 pp� ��������

���� Hosseini� S� et al� Analysis of graph coloring based distributed load balancing algorithm�

Journal of Parallel and Distributed Computing� vol� �� �����	 pp� ��������

���� Hughes� T�J�R� The Finite Element Method �Prentice�Hall� Englewood Cli�s� ����	�

���� Kajiya� J�T� The rendering equation� Computer Graphics� vol� �� �����	 pp� ��������

���� Karp� R� Reducibility in combinatorial problems� In Complexity of Computer Compu�

tations� Miller # Thatcher �eds�	 �Plenum� New York� ����	 pp� �������

��

���� Karypis� G� # Kumar� V� Multilevel graph partitioning schemes� Proceedings of the

��th International Conference on Parallel Processing� vol� III �����	 pp� ��������

���� Karypis� G� # Kumar� V� A parallel algorithm for multilevel graph partitioning and

sparse matrix reordering� Journal of Parallel and Distributed Computing� vol� �� �����	

pp� ������

���� Kirk� D� # Arvo� J� Unbiased sampling techniques for image synthesis� Proceedings of

SIGGRAPH �����	 pp� ��������

���� Kobayashi� H�� Nakamura� T� # Shigei� Y� Parallel processing of an object space for

image synthesis using ray�tracing� The Visual Computer� vol� � �����	 pp� ������

���� Kung� H�T� # Stevenson� D� A software technique for reducing the routing time on a

parallel computer with a �xed interconnection network� In High Speed Computer and

Algorithm Organization� Kuck� Lawrie # Sameh �eds�	 �Academic Press� New York�

����	 pp� ��������

���� Lafortune� E�P�F�� Foo� S��C�� Torrance� K�E� # Greenberg� D� Non�linear approxima�

tion of re�ectance functions� Proceedings of SIGGRAPH �����	 pp� ��������

���� Lin� F�C�H� # Keller� R�M� The gradient model load balancing method� IEEE Trans�

actions on Software Engineering� vol� SE��� �����	 pp� ������

���� Lindgren� B� W� Statistical Theory �MacMillan� New York� ����	�

���� McCormick� S� Multigrid Methods �SIAM� Philadelphia� ����	�

���� Mohar� B� The Laplacian Spectrum of Graphs� In Graph Theory� Combinatorics and

Applications� Alavi et al �eds�	 �Wiley� New York� ����	 pp� ��������

���� Muniz� F�J� # Zaluska� E�J� Parallel load balancing
 an extension to the gradient

model� Parallel Computing� vol� �� �����	 pp� ��������

���� Naylor� B� # Thibault� W� Application of �BSP	 trees to ray�tracing and �CGS	 eval�

uation� Technical report GIT�ICS ������ Georgia Institute of Technology� School of

Information and Computer Science �����	�

��

���� Ni� L�M�� Xu� C� # Gendreau� T�B� A distributed drafting algorithm for load balancing�

IEEE Transactions on Software Engineering� vol� SE��� �����	�

���� Notkin� I� # Gotsman� C� Parallel progressive ray�tracing� Computer Graphics Forum�

vol� �� �����	 pp� ������

���� Ortega� J�M� Introduction to Parallel and Vector Solution of Linear Systems �Plenum�

New York� ����	�

���� Pothen� A�� Simon� H� # Liou� K� Partitioning Sparse Matrices with Eigenvectors of

Graphs� SIAM Journal of Matrix Analysis� vol� �� �����	 pp� ��������

���� Priol� T� # Bouatouch� K� Static load balancing for �a	 parallel ray�tracing on a

�MIMD	 hypercube� The Visual Computer� vol� � �����	 pp� ��������

���� Rosenberg� A� Issues in the study of graph embedding� In Graph Theoretic Concepts

in Computer Science� Noltemeier �ed�	 �Springer� New York� ����	 pp� ��������

���� Salmon� J� # Goldsmith� J� A hypercube ray�tracer� Proceedings of the Third Confer�

ence on Hypercube Concurrent Computers and Applications �����	 pp� ����������

���� Schloegel� K�� Karypis� G�� Kumar� V�� Biswas� R� # Oliker� L� A performance study of

di�usive versus remapped load balancing schemes� Technical report ������� Army High

Performance Computing Center� University of Minnesota �����	�

���� Sillion� F�X� # Puech� C� Radiosity and Global Illumination �Morgan Kaufmann� San

Francisco� ����	�

���� Shirley� P�� Wang� C�Y� # Zimmerman� K� Monte Carlo techniques for direct lighting

calculations� ACM Transactions on Graphics� vol� �� �����	 pp� �����

���� Simon� H� Partitioning unstructured problems for parallel processing� Computer Sys�

tems in Engineering� vol� �� no� ��� �����	 pp� ��������

���� Smits� B�� Arvo� J� # Greenberg� D� A clustering algorithm for radiosity in complex

environments� Proceedings of SIGGRAPH �����	 pp� ��������

���� Sterling� T�� Becker� D�� et al� Beowulf
 a parallel workstations for scienti�c compu�

tation� Proceedings of the ��th International Conference on Parallel Processing� vol� I

�����	 pp� ������

��

���� Tutte� W� T� How to draw a graph� Proceedings of the London Mathematical Society�

vol� �� �����	 pp� ��������

���� Veach� E� # Guibas� L� Optimally combining sampling techniques for Monte Carlo

rendering� Proceedings of SIGGRAPH �����	 pp� ��������

���� Ward� G�J�� Rubenstein� F�M� # Clear� R� A ray tracing solution for di�use inter�

re�ection� Proceedings of SIGGRAPH �����	 pp� ������

���� Whitted� T� An improved illumination model for shaded display� Communications of

the ACM� vol� �� �����	 pp� ��������

���� Williams� R� Performance of dynamic load balancing algorithms for unstructured mesh

calculations� Concurrency� Practice and Experience� vol� � �����	 pp� ��������

���� Xu� C� # Lau� F�C�M� Analysis of the generalized dimension exchange method for

dynamic load balancing� Journal of Parallel and Distributed Computing� vol� �� �����	

pp� ��������

���� Xu� C� # Lau� F�C�M� The generalized dimension exchange method for load balancing

in k�ary n�cubes and variants� Journal of Parallel and Distributed Computing� vol� ��

�����	 pp� ������

���� Xu� C� # Lau� F�C�M� Load Balancing in Parallel Computers� Theory and Practice

�Kluwer� Boston� ����	�

���� Yoon� H�J�� Fun� S� # Cho� J�W� An image parallel ray�tracing using static load balanc�

ing and data prefetching� Proceedings of the First Eurographics Workshop on Parallel

Graphics and Visualization� Bristol� England �September ����	 pp� ������

���� Young� D� M� Iterative Solution of Large Linear Systems �Academic Press� New York�

����	�

