
The Programming Language

Declarative Ada Reference Manual

John Thornley

Computer Science Department

California Institute of Technology

Pasadena� California ������ USA

john�t�cs	caltech	edu

April �
� ����

Contents

� Introduction �

��� Language Outline �

��� Parallelism �

����� The Single�Assignment Restriction � � � � � � � � � � � �

����� Parallel Processes �

����� Process Initiation and Termination � � � � � � � � � � � �

����� Executable and Suspended Processes � � � � � � � � � � �

����� Fairness �

����� Communication and Synchronization � � � � � � � � � � �

��� Syntax Notation �

��� Execution Errors �

� Lexical Elements �

��� Character Set � 	

��� Lexical Elements and Separators � � � � � � � � � � � � � � � � 	

��� Delimiters �

��� Identi�ers �

��� Numeric Literals �

��� Character Literals �

��	 String Literals �

��
 Comments ��

��� Reserved Words ��

� Identi�ers� Scope� and Visibility ��

��� Named Entities ��

��� Declarative Regions ��

��� Scope and Visibility ��

� Constant Declarations ��

� Type Declarations ��

��� Prede�ned Scalar Types ��

����� Integer Type ��

����� Float Type ��

����� Boolean Type ��

��� Prede�ned String Type ��

��� Array Types ��

i

��� Record Types ��

��� Access Types ��

� Variable Declarations ��

� Subprogram Declarations ��

� Names ��

��� Evaluation ��

��� Simple Names ��

��� Indexed Components ��

��� Selected Components ��

� Expressions ��

	�� Operators ��

	���� Logical Operators and Short
circuit Control Forms � � ��

	���� Relational Operators ��

	���� Binary Adding Operators � � � � � � � � � � � � � � � � ��

	���� Unary Adding Operators � � � � � � � � � � � � � � � � ��

	���� Multiplying Operators � � � � � � � � � � � � � � � � � � ��

	���� Highest Precedence Operators � � � � � � � � � � � � � � ��

	�� Allocators ��

	�� Function Calls ��

	�� Type Conversions ��

	�� Quali�ed Aggregates ��

�� Statements ��

�
�� Compositions of Statements �	

�
�� Assignment Statements �

�
�� Block Statements �

�
�� If Statements ��

�
�� Loop Statements ��

�
�� Null Statements ��

�
�� Procedure Call Statements ��

�
�� Return Statements ��

�� Program Structure 	�

�� Input and Output 	�

ii

�� Prede�ned Environment ��

�� Acknowledgment ��

iii

� Introduction

Declarative Ada is a parallel declarative programming language based on a

subset of the programming language Ada ����

This manual de�nes the syntax of Declarative Ada in extended BNF and

describes the semantics in English� Wherever possible� the same notation

and terminology is used as in the Ada Reference Manual ���� Unless other�

wise stated� constructs in Declarative Ada have the same meaning as they

do in Ada� Therefore� the Ada Reference Manual provides a more detailed

description of most Declarative Ada constructs�

This manual is not intended to be a tutorial	 a discussion of parallel pro�

gramming with Declarative Ada is contained in �
�� a collection of Declara�

tive Ada example programs are described in ���� and an excellent introduc�

tion to Ada is given by �
��

��� Language Outline

Declarative Ada is based on a su�ciently powerful subset of Ada to demon�

strate that declarative parallel programs can be written with a modi�ed

version of Ada� Many of the features that make Ada a useful language for

large scale software engineering are omitted from Declarative Ada to keep

the language small�

Program Structure and Declarations

Programs consist of a sequence of constant� type� and subprogram �proce�

dure and function� declarations� One subprogram is executed as the main

program� Parameters of procedures can be of in� out� and in out mode�

Parameters of functions must be of in mode� Subprograms can contain local

variable declarations� There are no global variable declarations� local con�

stant or type declarations� or nested subprogram declarations� There are no

packages� tasks� exception handling� or generic units�

Statements

Statements can be of the following kinds	 assignment� block� if�then�else�

for�loop� null� procedure�call� and function return� The Ada sequence of

�

statements is replaced by the composition of statements� which can be spec�

i�ed as parallel or sequential� Similarly� the iterations of loop statements

can be speci�ed as parallel or sequential� There are no case� while�loop�

exit� or goto statements� and no statements that relate to tasks or exception

handling�

Data Types

Integer� �oating�point� Boolean� and string types are prede�ned� Array�

record� and access types can be de�ned� There are no character� enumera�

tion� range� �xed�point� unconstrained array� or variant record types� There

are no subtypes or derived types�

Operators

Logical� relational� and arithmetic operators from Ada can be used� There

are strict logical operators� where both operands are always evaluated� and

short�circuit forms� where the right operand is only evaluated if necessary�

Components can be indexed from arrays and selected from records� and ar�

ray and record values can be constructed from aggregates of components�

Designated objects can be allocated using the new operator� with dealloca�

tion being the responsibility of the implementation�

��� Parallelism

����� The Single�Assignment Restriction

All variables are single�assignment variables� subject to the following restric�

tions�

� Variables are initialized to a special unde�ned value�

� Evaluation of an unde�ned variable as an expression suspends until

the variable is assigned a value�

� A variable can be assigned a value at most once�

The single�assignment restriction changes Declarative Ada from a sequential

imperative subset of Ada to a parallel declarative programming language�

�

����� Parallel Processes

A program is implicitly executed as a group of processes� communicating

and synchronizing though shared single�assignment variables� A process is

any of the following units of computation�

� The execution of a statement�

� The execution of a composition of statements�

� The evaluation of a variable name�

� The evaluation of an expression�

Processes are executed in parallel in the sense that the result of executing

a program is equivalent to the result of a fair interleaving of the atomic

actions of the individual processes� A program can be considered to be

executed on an arbitrarily large number of processors� with each process

executed on a separate processor� The result of executing a program is

independent of whether processes are actually executed� truly concurrently

on separate processors� interleaved on a single processor� in some acceptable

sequential order on a single processor� or a combination of the above� �The

only execution requirement is that the fairness rule given in Section ����	 is

satis
ed��

Note� The evaluation of a name on the left�hand side of an assignment

statement� or as an out or in out mode actual parameter is the evaluation

of the name as a variable name� The evaluation of a name on the right�hand

side of an assignment statement� or as an in mode actual parameter is the

evaluation of the name as an expression�

����� Process Initiation and Termination

Any non�trivial process implicitly initiates other parallel processes� through

the execution of enclosed statements and compositions of statements� and

the evaluation of enclosed variable names and expressions� A process termi�

nates after it has no further actions to perform and all of its subprocesses

have terminated� This single mechanism explains parallel execution at all

�

levels of granularity� In this manner� parallelism is implicit in the execution

of the following language constructs�

�� Statements� The executions of enclosed compositions of statements

and the evaluations of enclosed variable names and expressions are

parallel processes� For example� unless the loop is speci�ed as se�

quential� the iterations of a loop statement are executed in parallel�

�� Compositions of Statements� Unless the composition is speci�ed

as sequential� the executions of the enclosed statements are parallel

processes� For example� procedure calls enclosed in a parallel com�

position of statements can be thought of as conventional coarse�grain

parallel processes�

	� Variable Names and Expressions� The evaluations of enclosed

pre�xes and subexpressions are parallel processes� For example� the

actual parameters of a function call are evaluated in parallel with each

other and the execution of the function body� The actual parameters

can themselves be function calls� giving parallelism from functional

composition�

����� Executable and Suspended Processes

Between its initiation and termination� every process is either executable or

suspended� A process becomes suspended when either�

�� The process is the evaluation of a name as an expression� and the value

of the name is unde�ned� In this case� the process becomes executable

after the name is assigned a value by another parallel process�

�� To perform any further actions� the process requires values that have

not yet been evaluated by its subprocesses� In this case� the process

becomes executable after its subprocesses have evaluated the required

values�

	� The process has no further actions to perform� but some of its subpro�

cesses have not yet terminated� In this case� the process terminates

after all of its subprocesses have terminated�

An executable process remains executable until it is executed� It is impos�

sible for an executing process to change another process from executable to

suspended or terminated�

����� Fairness

An implementation of the language can schedule processes in any manner

such that the following fairness rule is satis�ed�

From any point in time in a program�s execution� every exe�

cutable process will eventually have some progress made on its

execution�

The fairness rule is required to prevent in�nite processes from �locking out�

other processes� This is a weak form of fairness�there is no requirement to

share processing time in any sense �evenly� amongst processes� In a �nite

program execution with no feedback in data 	ow
 a sequential ordering of

processes can always be found that satis�es the fairness rule�

����� Communication and Synchronization

Communication and synchronization between parallel processes is implicit�

communication is through shared variables
 and synchronization is through

one process suspending until another process assigns a value to a shared

variable� This single mechanism explains communication and synchroniza�

tion between parallel processes at all levels of granularity� In this manner

the scheduling of processes is automatically constrained by the data 	ow

that occurs during the execution of a program�

For example
 in producer�consumer interactions
 a producer process gener�

ates as output a data�structure that is used as input by a consumer process�

The consumer suspends whenever it attempts to use the value of an unde�

�ned component of the data�structure
 and it resumes execution after the

producer assigns a value to that component� It is not required that all the

components of the shared data�structure be assigned values by the producer

before the consumer is executed�

�

��� Syntax Notation

The syntax of the language is described using a simple variant of BNF�

�a� Lower case words� some containing embedded underlines� are used to

denote syntactic categories� For example�

adding operator

�b� Boldface words are used to denote reserved words� For example�

array

�c� Square brackets enclose optional items� For example�

parameter association ��� �mode	 actual parameter

�d� Braces enclose a repeated item that can appear zero or more times�

For example�

term ��� factor fmultiplying operator factorg

�e� A vertical bar separates alternative items� For example�

mode ��� in j out j in out

�f� If the name of any syntactic category starts with an italicized part�

it is equivalent to the category name without the italicized part� The

italicized part is intended to convey some semantic information� For

example� type name is equivalent to name alone�

��� Execution Errors

Throughout the language de
nition� the term error is used to describe

execution error conditions that cannot� in general� be checked at compile

time� The result of a program with an execution error is implementation�

dependent and not necessarily deterministic�

�

� Lexical Elements

��� Character Set

The only characters allowed in the text of a program are graphic characters

and format e�ectors�

The graphic characters consist of�

�a� lower case letters

a b c d e f g h i j k l m n o p q r s t u v w x y z

�b� upper case letters

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

�c� digits

� � � 	
 � �
 � �

�d� special characters

� � � � � � � � � � � � � � � � � j � � � � � � � � ! f g �

�e� the space character

The format e"ectors consist of horizontal tabulation� vertical tabulation�

carriage return� line feed� and form feed�

��� Lexical Elements and Separators

Characters in a program are composed into lexical elements of the following

kinds�

�a� Delimiters

�b� Identi#ers

�c� Numeric literals

�d� Character literals

�e� String literals

�f� Comments

�g� Reserved words

One or more separators are allowed between any two adjacent lexical el�

ements� at the start of the program� or at the end of the program� The

following are separators�

�a� The space character� except within a comment� string literal� or space

character literal�

�b� The end of line� which is signi�ed by any format e�ector other than

horizontal tabulation�

�c� Horizontal tabulation� except within a comment�

Note�

Some of the de�ned lexical elements do not occur anywhere in the syntax of

Declarative Ada� They are included solely for compatibility with Ada�

��� Delimiters

A delimiter is either one of the following special characters�

	
 � � � � � � �
 � � � � � j

or one of the following compound delimiters composed of two adjacent special

characters�

�� �� �� ��
� �� �� �� �� ��

Delimiters have special signi�cance in the language�

�

��� Identi�ers

identi�er ��� letter f�underline� letter or digitg

letter or digit ��� letter j digit

letter ��� upper case letter j lower case letter

Identi�ers are used as names� All characters of an identi�er are signi�cant�

Identi�ers di�ering only in the use of corresponding upper and lower case

letters are considered the same� No identi�er can have the same spelling as

a reserved word�

Examples�

COUNT X get symbol Ethelyn Marion

SNOBOL 	 X
 PageCount STORE NEXT ITEM

��� Numeric Literals

numeric literal ��� integer ��integer� �exponent�

integer ��� digit f�underline� digitg

exponent ��� E ��� integer j E � integer

There are two classes of numeric literals� real literals and integer literals� A

real literal is a numeric literal that includes a point� An integer literal is a

numeric literal without a point�

An underline character within a numeric literal does not a�ect its value�

The letter E of the exponent can be written either in lower case or in upper

case� The exponent for an integer literal must not have a minus sign�

�

Examples�

�� � �E� ��� ��� �� integer literals

���� ��� ����� ������	 �� �� real literals

����E��� ���E
� �� real literals with exponent

��� Character Literals

character literal ���
graphic character

A character literal consists of a graphic character between two apostrophe

characters�

Examples�

A

�

��� String Literals

string literal ��� �fgraphic characterg�

A string literal consists of a �possibly empty� sequence of graphic characters

enclosed between two quotation characters� If a quotation character is to be

represented in the sequence of characters� then a pair of adjacent quotation

characters must be written at the corresponding place within the string

literal�

��

Examples�

�Message of the day��

�� �� an empty string literal

� � �A� ���� �� three string literals of length �

�Characters such as �� �� and j are allowed in string literals�

��� Comments

A comment starts with two adjacent hyphens and extends up to the end of

the line� A comment has no in�uence on the meaning of a program�

Examples�

end	 �� processing of LINE is complete

�� a long comment can be split onto

�� two or more consecutive lines

���������������� the
rst two hyphens start the comment

��� Reserved Words

The words listed below are called reserved words and have special signi
cance

in the language�

��

abort declare generic of select

abs delay goto or separate

accept delta others sequential

access digits if out subtype

all do in

and is package task

array parallel terminate

at else pragma then

elsif limited private type

end loop procedure

entry

begin exception raise use

body exit mod range

record when

rem while

new renames with

case for not return

constant function null reverse xor

A reserved word must not be used as an identi�er� Reserved words di�ering

only in the use of corresponding upper and lower case letters are considered

the same�

Note�

The reserved words consist of all the Ada reserved words and the additional

words parallel and sequential�

� Identi�ers� Scope� and Visibility

��� Named Entities

Identi�ers can be declared to name the following entities�

��

� Constant objects�

� Variable objects�

� Types�

� Components of record types�

� Procedure and function subprograms�

� Formal parameters of subprograms�

� Loop parameters�

��� Declarative Regions

Each declaration is local to a declarative region� A given identi�er cannot

be declared more than once in the local declarations of a declarative region�

A declarative region is formed by the text of each of the following�

� A program�

� A subprogram declaration�

� A record type declaration�

� A loop statement�

Declarative regions can be nested within other declarative regions�

��� Scope and Visibility

The scope of a declaration extends from the beginning of the declaration

to the end of the declarative region� The visibility of a declaration de�nes

where in the scope of a declaration it is legal to use the identi�er to refer to

the declared entity�

Unless stated otherwise� a declaration is visible throughout its scope except

in those places where it is hidden by the scope of a declaration of the same

��

identi�er within an enclosed declarative region� Additionally� a component

declaration has scope and visibility in the selector of a selected component

whose pre�x is the appropriate record or access type�

� Constant Declarations

constant declaration ���

identi�er � constant type mark �� expression�

A constant declaration declares an object with a value de�ned by an expres�

sion� The expression must be of the same type as the type mark� The value

of a constant cannot be rede�ned�

The visibility of a constant declaration begins immediately after the decla�

ration� i�e�� self�referencing constants cannot be declared�

Examples�

rows � constant integer �� 	

�

columns � constant integer �� � �
rows � 	��

large � constant Boolean �� rows � columns � 	

�

	�

� Type Declarations

type declaration ���

incomplete type declaration j full type declaration

incomplete type declaration ���

type identi�er�

full type declaration ���

type identi�er is type de�nition�

type de�nition ���

array type de�nition j record type de�nition

j access type de�nition

type mark ��� type simple name

A type declaration declares a type� Each type is a distinct type�

An incomplete type declaration declares a type for which a full type declara�

tion must occur later� Until the full type declaration occurs� an incomplete

type can only be used as the designated type in an access type de�nition�

The visibility of a type declaration begins immediately after the declaration�

i�e�� self�referencing types cannot be declared�

Examples�

type node�

type list is access node�

type node is record

head � integer�

tail � list�

end record�

type vector is array	
 �� N��� of
oat�

��

��� Prede�ned Scalar Types

����� Integer Type

An integer object is a numeric object that can be de�ned to have an integer

value in an implementation�dependent range�

����� Float Type

A �oat object is a numeric object that can be de�ned to have a �oating�

point value in an implementation�dependent range with implementation�

dependent precision�

����� Boolean Type

A Boolean object is a enumeration object that can be de�ned to have the

value of one of the two prede�ned Boolean constants� false and true� For

ordering purposes� false precedes true�

��� Prede�ned String Type

A string object is an object that can be de�ned to have the value of a string

literal� The only signi�cant use for strings is in output operations�

��� Array Types

array type de�nition ���

array	range f� rangeg
 of type mark

range ��� integer simple expression �� integer simple expression

An array object is a composite object consisting of components that have

the same type�

��

A null range is a range for which the lower bound is greater than the upper

bound� If any of the index ranges is a null range� the array type has no

components and all arrays of the type are null arrays�

Examples�

array�� �� �� of �oat

array�� �� N�	� � �� N�	� of Boolean

��� Record Types

record type de
nition ���

record

component list

end record

component list ���

component declaration fcomponent declarationg

j null

component declaration ���

identi
er f� identi
erg � type mark

A record object is a composite object having named components of possibly

di�ering types� If the component list is the word null� the record type has

no components and all records of the type are null records�

	�

Examples�

record

null�

end record

record

value � integer�

left� right � tree�

end record

��� Access Types

access type de�nition ��� access type mark

Access to an object created by an allocator is achieved through an access

value returned by the allocator� The access value is said to designate the

object� The type of objects designated by an access type is called the des�

ignated type of the access type�

For each access type� there is a literal null that designates no object at all�

Example�

access node

� Variable Declarations

variable declaration ���

identi�er f� identi�erg � type mark�

A variable initially has an unde�ned value� For a composite type� this

��

means a value in which all components have unde�ned values� The value

of a variable or component of a variable can be de�ned by an assignment

statement�

Examples�

sum � integer�

u� v � vector�

unsorted � list�

� Subprogram Declarations

subprogram declaration ���

incomplete subprogram declaration j full subprogram declaration

incomplete subprogram declaration ���

subprogram speci�cation�

full subprogram declaration ���

subprogram speci�cation is

fvariable declarationg

begin

composition of statements

end subprogram simple name�

�	

subprogram speci�cation ���

procedure identi�er �formal part�

j function identi�er �formal part� return type mark

formal part ���

�parameter speci�cation f� parameter speci�cationg	

parameter speci�cation ���

identi�er f
 identi�erg � �mode� type mark

mode ��� in j in out j out

A subprogram declaration declares a procedure or function� An incomplete

subprogram declaration declares a subprogram for which a full subprogram

declaration must occur later� The subprogram speci�cation of the corre�

sponding full subprogram declaration must be formed by exactly the same

sequence of lexical elements �ignoring comments	�

A formal parameter of a subprogram has one of the three following modes�

� in� The formal parameter can be read but not written�

� out� The formal parameter can be written but not read�

� in out� The formal parameter can be read and written�

The default formal parameter mode is in� All formal parameters of a func�

tion must be of mode in�

The body of a function subprogram must include one or more return state�

ments specifying the returned value�

�

Examples�

function min�x� y � integer� return integer�

procedure �nd min�a� b� c� d � in integer� result � out integer��

function min�x� y � integer� return integer is

begin

if x � y then return x� else return y� end if�

end min�

procedure �nd min�a� b� c� d � in integer� result � out integer� is

temp�� temp	 � integer�

begin

temp� �
 min�a� b��

temp	 �
 min�c� d��

result �
 min�temp�� temp	��

end �nd min�

� Names

name ��� simple name j indexed component j selected component

simple name ��� identi�er

pre�x ��� name j function call

A simple name denotes the entity associated with an identi�er by its decla�

ration�

A pre�x occurs as part of an indexed component or selected component�

A function call cannot occur in the pre�x of a name evaluated as a variable�

��

��� Evaluation

A name can be evaluated as a variable �e�g�� on the left�hand side of an

assignment� or as an out or in out mode actual parameter� or as an expres�

sion �e�g�� on the right�hand side of an assignment� or as an in mode actual

parameter��

Evaluation of a name as an expression suspends when the named object

has an unde�ned value and terminates after the named object has a de�ned

value�

Evaluation of a name as a variable does not suspend when the named object

has an unde�ned value�

��� Simple Names

In the case of a name evaluated as an expression� a simple name can be

a variable� constant� formal parameter of mode in or in out� or a loop

parameter� In the case of a name evaluated as a variable� a simple name

can be a variable or formal parameter of mode out or in out�

��� Indexed Components

indexed component ��	

pre�x�integer simple expression f� integer simple expressiong�

An indexed component denotes a component of an array� The pre�x must

be an array or access an array� The expressions specify the index values for

the component� There must be one such expression for each index position

in the array type�

It is an error if the pre�x value is null� or if any of the index expressions lie

outside of the corresponding index range�

Examples�

data�i�

board�row� column�

paths�k��i� j�

heap�all�i�

add�u� v��i�

��� Selected Components

selected component ��� pre�x�selector

selector ��� component simple name j all

A selected component with a component simple name as a selector denotes

a component of a record� The pre�x must be a record or access a record�

A selected component with all as a selector denotes the object designated

by an access value� The pre�x must be an access type�

It is an error if the pre�x value is null�

Examples�

sorted�head

sorted�tail�head

sorted�all

sorted�all�head

add�u� v��x

	

� Expressions

expression ���

relation fand relationg j relation fand then relationg

j relation for relationg j relation for else relationg

j relation fxor relationg

relation ���

simple expression �relational operator simple expression�

simple expression ���

�unary adding operator� term fbinary adding operator termg

term ��� factor fmultiplying operator factorg

factor ��� primary j abs primary j not primary

primary ���

numeric literal j null j string literal j expression name j allocator

j function call j type conversion j quali�ed aggregate j �expression�

Examples�

count

not found

height 	 width
 ��

�left � right�
 �

� deduction � price � tax

height � width

�cold and sunny� or warm �� parentheses are required

Evaluation of an expression evaluates zero or more subexpressions and yields

a result�

��

��� Operators

logical operator ��� and j and then j or j or else j xor

relational operator ��� � j �� j � j �� j � j ��

binary adding operator ��� � j �

unary adding operator ��� � j �

multiplying operator ��� � j � j mod j rem

highest precedence operator ��� abs j not

The operators above are given in order of increasing precedence� For a

sequence of operators of the same precedence level� the operators are asso	

ciated with their operands in textual order from left to right�

Unless stated otherwise� all operators have their conventional meaning�

It is an error if the result of a numeric operation lies outside of the range

that can be represented by the result type�

����� Logical Operators and Short�circuit Control Forms

The logical operators take two Boolean operands and yield a Boolean result�

The operators and� or� and xor always evaluate both of their operands�

The short	circuit forms and then and or else always evaluate their left

operand
rst� If the left operand of and then is false� the right operand is

not evaluated and the expression yields false� If the left operand of or else

is true� the right operand is not evaluated and the expression yields true�

����� Relational Operators

The equality and inequality operators evaluate two operands of the same

scalar or access type and yield a Boolean result� If the operands are of an

��

access type� one of the operands must be null�

The ordering operators evaluate two operands of the same scalar type and

yield a Boolean result�

����� Binary Adding Operators

The binary adding operators evaluate two operands of the same numeric

type and yield a result of that type�

����� Unary Adding Operators

The unary adding operators evaluate a single numeric operand and yield a

result of the same type�

����� Multiplying Operators

The multiplication and division operators evaluate two operands of the same

numeric type and yield a result of that type�

The mod and rem operators evaluate two integer operands and yield an

integer result�

It is an error if the value of the right operand of a division� mod� or rem

operator is zero�

����� Highest Precedence Operators

The abs operator evaluates a single numeric operand and yields a result of

the same type�

The not operator evaluates a single Boolean operand and yields a Boolean

result�

��

��� Allocators

allocator ���

new type mark j new quali�ed aggregate

Evaluation of an allocator creates an object and yields an access value that

designates the object� For an allocator with a quali�ed aggregate� the value

of the designated object is given by the quali�ed aggregate� For an allocator

without a quali�ed aggregate� the designated object has an unde�ned value�

The type of the access value returned by an allocator is determined from

the context in which it occurs�

Examples�

new node

new node��items�head� insert�item� items�tail		

new matrix���
� �� �	� ���
� �	� ��� ��
		

��� Function Calls

function call ���

function simple name �actual parameter part

Evaluation of a function call evaluates the actual parameter variables and

expressions� and executes the function body� The value of a function call is

de�ned by the execution of a return statement within the function body�

It is an error if no return statement is executed within the function body�

Example�

insert�unsorted�head� sort�unsorted�tail		

��

��� Type Conversions

type conversion ��� numeric type mark�expression�

Evaluation of a type conversion evaluates the expression given as an operand

and converts the resulting value to a speci�ed target type� Type conversions

are only allowed between numeric types� The conversion of a �oat value

to an integer type rounds to the nearest integer� If the operand is halfway

between two integers	 rounding can be either up or down�

It is an error to convert a �oat value to an integer if the result is outside of

the range that can be represented by an integer value�

Examples�

�oat�i�

integer�x�

��� Quali�ed Aggregates

quali�ed aggregate ��� composite type mark
aggregate

aggregate ��� �component association f	 component associationg�

component association ��� expression j aggregate

Evaluation of a quali�ed aggregate evaluates component values and combines

them into a composite value of an array or record type� The aggregate must

have one component association for every component of the type� In the

case of a record or one�dimensional array	 each component association must

be an expression of the same type as the corresponding component� In the

case of a multi�dimensional array	 each component association must be an

aggregate�

�

Examples�

node��item� null�

vector��x� y� z�

matrix����� �� ��� ��� �� ��� ��� �� ���

�� Statements

statement ��	

simple statement j compound statement

simple statement ��	

assignment statement j null statement

j procedure call statement j return statement

compound statement ��	

block statement j if statement

j loop statement

A statement is either simple or compound
 A simple statement encloses no

other statements
 A compound statement can enclose compositions of other

statements

���� Compositions of Statements

composition of statements ��	 �composition� statement fstatementg

composition ��	 parallel j sequential

Execution of a parallel composition consists of the parallel execution of

the enclosed statements
 Execution of a sequential composition consists

of the execution of the enclosed statements in succession �execution of each

�

statement terminates before execution of the next statement is initiated��

The default composition is parallel�

���� Assignment Statements

assignment statement ��� variable name �� expression�

Execution of an assignment statement consists of the evaluation of the vari�

able name and expression� and the de	nition of the value of the variable to

be the value of the expression�

The variable and expression must be of the same type�

In the case of array and record types� an assignment statement is the same

as a parallel composition enclosing component�by�component assignment

statements�

It is an error if the same variable or component of a variable is assigned a

value more than once�

Examples�

paths
�� �� edges�

paths
k�
i� j� �� min
paths
k���
i� j��

paths
k���
i� k�
 paths
k���
k� j���

left �� new node�
items�head� left tail��

���� Block Statements

block statement ���

begin

composition of statements

end�

Execution of a block statement consists of the execution of the enclosed

��

composition of statements�

Example�

begin

sequential

p�in a� out b��

q�in b� out c��

begin

parallel

r�in c� out d��

s�in c� out e��

end�

end�

���� If Statements

if statement ���

if condition then

composition of statements

f elsif condition then

composition of statementsg

	 else

composition of statements

end if�

Execution of an if statement consists of the evaluation of one or more of

the conditions� determining the execution of one or none of the enclosed

compositions of statements�

Execution of an if statement begins by evaluating the �rst condition and

proceeds as follows�

� If a condition evaluates to true� the corresponding composition of

statements is executed�

� If a condition evaluates to false and it is not the �nal condition� the

�

next condition is evaluated�

� If the �nal condition evaluates to false and the if statement has an else

part� the �nal composition of statements is executed�

� If the �nal condition evaluates to false and the if statement has no else

part� execution of the if statement has no e�ect�

Example�

if left � null then

result �� right�

elsif right � null then

result �� left�

elsif left�head � right�head then

merge	in left�tail� in right� out tail
�

result �� new node�	left�head� tail
�

else

merge	in left� in right�tail� out tail
�

result �� new node�	right�head� tail
�

end if�

���� Loop Statements

loop statement ���

for identi�er in �reverse
 range �composition
 loop

composition of statements

end loop�

Execution of a loop statement consists of the evaluation of the range bounds�

and the execution of the enclosed composition of statements zero or more

times�

The identi�er is the declaration of an integer loop parameter� For each ex�

ecution of the composition of statements� the loop parameter is a constant

de�ned to be a value from the loop range� The visibility of the loop pa�

��

rameter begins immediately after the range� i�e�� the loop parameter value

cannot be used in the range expressions�

If the lower bound is greater than the upper bound� execution of the loop

statement has no e�ect�

If the lower bound is less than or equal to the upper bound� the enclosed

composition of statements is executed once for each value of the range� If

the loop composition is parallel� the executions occur in parallel� If the

loop composition is sequential� the executions occur in succession �each

execution terminates before the next execution is initiated�� In the se�

quential case� the loop parameter values occur in increasing order� unless

the word reverse is present� in which case the loop parameter values occur

in decreasing order� The default loop composition is parallel�

Example�

for k in � �� N sequential loop

for i in � �� N loop

for j in � �� N loop

paths�k��i� j� �	 min�paths�k����i� j��

paths�k����i� k�
 paths�k����k� j���

end loop�

end loop�

end loop�

���� Null Statements

null statement ��	 null�

Execution of a null statement has no e�ect�

��

���� Procedure Call Statements

procedure call statement ���

procedure simple name �actual parameter part��

actual parameter part ���

�parameter association f� parameter associationg	

parameter association ���

�mode� actual parameter

actual parameter ���

expression j variable name

Execution of a procedure call statement consists of the evaluation of the

actual parameter variables and expressions� and execution of the procedure

body

In a procedure or function call�

� One actual parameter must occur for each formal parameter declared

in the subprogram declaration

� An actual parameter corresponding to a formal parameter of mode in

must be an expression
 In the execution of the subprogram body� the

formal parameter name will be de�ned to have the value of the actual

parameter expression

� An actual parameter corresponding to a formal parameter of mode out

or in out must be a variable name
 In the execution of the procedure

body� operations on the formal parameter name will be performed on

the actual parameter variable

� For the mode in out� the variable must not be a formal parameter of

mode out or a component thereof

� An actual parameter must be of the same type as the corresponding

formal parameter

�

� If a mode is associated with an actual parameter� it must be the same

as the mode of the corresponding formal parameter�

Examples�

main�

partition�in pivot� in items� out left� out right��

partition�pivot� items�tail� left tail� right��

���� Return Statements

return statement ��� return expression�

Execution of a return statement consists of de	ning the result returned

by a function� The type of the expression must be the same as the type

returned by the enclosing function� A return statement cannot occur within

a procedure�

If a return statement occurs within a sequential composition of statements�

it must be the 	nal statement in that composition� Similarly� if a compound

statement that anywhere contains a return statement occurs within a se

quential composition of statements� it must be the 	nal statement in that

composition�

A return statement cannot occur within a loop statement�

It is an error if more than one return statement is executed in the evaluation

of a function call�

Example�

return merge�sort�split�list��left�� sort�split�list��right���

��

�� Program Structure

program ���

fconstant declarationg

ftype declarationg

fsubprogram declaration j subprogram bodyg

A program consists of a sequence of constant declarations� followed by a

sequence of type declarations� followed by a sequence of subprogram dec�

larations� The means by which one of the subprograms is initiated as the

main program when the program is executed is not speci�ed by the language

de�nition�

�� Input and Output

Input and output operations are through calls to the prede�ned procedures

get� put� and new line� described in Section �	� To avoid nondeterminacy�

the parallel execution of input and output statements is restricted in the

following manner�

� It is an error if more than one parallel subprocess of a process executes

an output statement�

� It is an error if more than one parallel subprocess of a process executes

an input statement�

Deterministic sequential execution of input and output statements can be

speci�ed using sequential compositions of statements and sequential loop

statements�

�� Prede�ned Environment

The following declarations are prede�ned in a declarative region that en�

closes the program�

	

type integer is prede�ned integer type�

type �oat is prede�ned �oat type�

type Boolean is �false� true��

type string is prede�ned string type�

procedure get�item � out item type��

�� Reads item from the standard input �le	

�� Item can be integer or �oat	

procedure put�item � in item type��

�� Writes item to the standard output �le	

�� Item can be integer� �oat� or string	

procedure new line�

�� Writes an end of line to the standard output �le	

�� Acknowledgment

The design of the programming language Declarative Ada was supported in

part by Air Force O
ce of Scienti�c Research grant ASFOR��
�����	

References

�
� American National Standards Institute� Inc	 The Programming Language

Ada Reference Manual� ANSI�MIL�STD�
�
�A�
���	 Springer Verlag�

Berlin�
���	

��� Grady Booch	 Software Engineering with Ada� Benjamin�Cummings�

Menlo Park� California�
���	

��

��� John Thornley� A Collection of Declarative Ada Example Programs� CS�

TR������� Computer Science Department	 California Institute of Tech�

nology	
����

��� John Thornley� Parallel Programming with Declarative Ada� CS�TR����

��� Computer Science Department	 California Institute of Technology	

����

��

