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Abstract. The lock acquisition scheme for the Advanced LIGO optical configuration, which
makes use of “resonant sideband extraction”, is under investigation in the 40meter prototype
interferometer at Caltech. The 40m has a similar optical configuration to the one planned for
Advanced LIGO which has 5 degrees of freedom for length control. So far we have succeeded in
locking the 5 degrees of freedom routinely. The differential mode of arm cavities was locked in
the same state as the final setup, and the peak of optical resonance was verified to be around
4 kHz. Currently, since an offset remains in the common mode of the arm cavities, another
optical resonance can be seen in common mode optical gain.

1. Introduction
Currently, several gravitational wave detectors are operated all over the world, such as LIGO[1],
VIRGO[2], GEO[3], TAMA[4]. The present detectors are called first generation observatories
which have sufficient sensitivity to detect the gravitational wave sources within or near our
galaxy. In order to increase the event rate to detect gravitational waves, further improvements
in the sensitivity are required. The Initial LIGO detectors will be upgraded to have high power
lasers, multi-stage seismic isolation systems and a more complicated optical setup, etc. These
new detectors are referred to as Advanced LIGO (AdLIGO)[5, 6], which will start observation
in 2013. However AdLIGO’s optical configuration, which has 5 degrees of freedom in length
control, is much more complicated than that of Initial LIGO. Therefore it becomes necessary
to establish a lock acquisition scheme using an interferometer with an optical configuration as
close as possible to AdLIGO.

2. 40m prototype interferometer
The 40m interferometer at Caltech[7] is a prototype gravitational wave detector that is currently
being used to investigate the AdLIGO optical configuration. This configuration is a Michelson
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based interferometer, employing Fabry-Perot cavity arms, a power recycling mirror (PRM)
to enhance effective laser power, and a signal recycling mirror (SRM) to enhance the signal
bandwidth and overcome the standard quantum limit (SQL)[8, 9, 10]. This type of interferometer
employs resonant sideband extraction (RSE) which was proposed by Mizuno[11].

The 40 m has an Initial LIGO type 10 W pre-stabilized laser (PSL) which has a pre-mode
cleaner (PMC), frequency stabilization system (FSS), intensity stabilization system (ISS), and
a 13 meter length suspended mass mode cleaner (MC). There are ten core optics and each of
them is suspended by an Initial-LIGO-type single pendulum and locally damped by a digital
servo system.

RF phase modulation at 33 MHz and 166 MHz are applied to the main laser beam within a
Mach-Zehnder interferometer, and demodulation processes are used to extract the length sensing
control (LSC) signal of the 5 degrees of freedom of the interferometer. These two modulations
make it possible to use double/differential demodulation techniques where the signal is produced
by a beat between two RF sidebands. This signal is used to control 3 degrees of freedom at the
central part of the interferometer in order to eliminate disturbances by the arm cavities.

All LSC signals are digitally sampled just after the demodulation. These digital signals are
then manipulated in software before being fed back to the cavity lengths. Signals can be added
and subtracted, multiplied and filtered by software that can be changed in real-time to react to
changing needs.

3. Lock acquisition scheme
Lock acquisition of the 40 m is done in three major steps. With the LSC servos for all 5 degrees
of freedom turned on, the first step is to lock the central part of the interferometer which is
made up of the Michelson interferometer (MICH), power recycling cavity (PRC) and signal
recycling cavity (SRC) (See Fig. 1). The second step is then to lock the arms, bringing the
whole interferometer into lock. Actually, the feedback signals for the arms are switched on/off
based on power levels in the interferometer. The last step is to change the control topology by
switching the input signals as shown in Fig. 2. The details of lock acquisition will be discussed
in the following sections.
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Figure 1. Sensing and control topology for the first step of lock acquisition.
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Figure 2. Signal switching after lock acquisition.

3.1. Dual recycled Michelson (DRMI)
Lock of the central part is acquired using a separate signal for each of its three parts: the
quadrature-phase of the 33 MHz single demodulation signal at the symmetric port (SP) for
MICH, the in-phase of 33 MHz single demodulation signal at the SP for PRC, and the 199 MHz
(33+166 MHz) differential demodulation signal at the pick-off port (PO) for SRC. Once lock is
acquired, the MICH signal is switched to the 133 MHz (33−166 MHz) differential demodulation
at the anti-symmetric port (AP), and the PRC signal is switched to the 133 MHz differential
demodulation at SP. Lock is typically acquired within ten seconds, and lasts several hours or
more. This lock acquisition might also be done by a mechanical modulation scheme or double
demodulation scheme[12], but differential demodulation is easier for now. Both differential
demodulation and double demodulation make use of the beats between the RF sidebands, and are
thus independent of the phase of the main carrier light. Therefore, when the carrier light begins
to resonate in the arms, it does not disturb the control of the central part of the interferometer.

Figure 3 shows the output of an optical spectrum analyzer placed at the SP. It has a carrier
peak at the center, ±33 MHz sidebands near the carrier, and unbalanced 166 MHz sidebands,
due to the detuned SRC, at the edge of the graph. Two 166 MHz sidebands can be seen on
each side of the carrier. The outermost pair belong to the carrier seen here, and the inner pair
actually belongs to the carrier at ± one free spectral range of the optical spectrum analyzer.
The macroscopic length of SRC is chosen so that one of 166 MHz sidebands is perfectly resonant
in the dual recycling cavity, and the other is perfectly anti-resonant. The ±33 MHz sidebands
are resonant in the PRC but anti-resonant in the SRC. Figure 4 shows the output of an optical
spectrum analyzer placed at AP. One of the 166 MHz peaks is hidden below analyzer noise.

3.2. Arm cavities
After DRMI lock is acquired, each arm cavity is locked using the carrier light transmitted
through the arms (Tr). The transmitted light is sampled by an ADC and the signal is digitally
re-formed as

1√
Tr

+ offset. (1)

267



0.30

0.25

0.20

0.15

0.10

0.05

0.00

P
ow

er
[a

.u
]

-200 -100 0 100 200
Frequency[MHz]

Figure 3. Response of the optical spectrum
analyzer at the symmetric port.
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Figure 4. Response of the optical spectrum
analyzer at the asymmetric port.

This signal has a much wider linear range than the normal RF signal but is not useful around
resonance. Around resonance, this signal has no gain due to the flatness of Tr.

The offset makes it possible to adjust the locking position. We have chosen this position to
be where the cavity power is 1/160 of the full resonance, and where the differential mode has no
offset and the common mode has an offset by flipping the sign of feedback signal. The reason
why the transmitted light is used is that the signal 1 has sufficiently small coupling to the other
degrees of freedom when the locking point is away from resonance.

Typically both arms are locked within 1 minute. Once arm cavities are locked, the servo
topology for the arms changes from independent arm lock to common/differential mode lock
(See Fig. 2).

3.2.1. Differential mode As mentioned above, an arm locking position is chosen that produces
no offset in the differential mode which is very similar to the final configuration. Fig. 5 shows the
measured optical gain of the differential mode of the arms. This transfer function was measured
from feedback signal to error signal, and multiplied by the theoretical pendulum transfer function
which goes like f−2 above the resonant frequency. The gain floor is normalized to unity. An
RSE optical resonance peak can be seen near the design values of 4 kHz. The theoretical line is
calculated using the FINESSE[13] which shows the frequency response of interferometer. The
phase is different from the calculated line because of time delay in the digital servo system.
Two notches around 440Hz and 880Hz are due to filters which notch out the violin mode of the
pendulum.

3.2.2. Common mode The arm locking position is chosen, on the other hand, to intentionally
produce an offset in the common mode. When this offset is reduced, the cavity pole moves from
around 1.6 kHz to a lower frequency. Measured common mode optical gains with various offsets
are shown in Fig. 6. The optical gain has a peak instead of the normal f−1 cavity pole because
the offset is too far from a resonant point. This peak introduces phase delay around the unity
gain frequency and it breaks the lock as the offset is reduced. Dynamically changing filters were
implemented which compensates the additional gain loss and phase delay.

Recently we succeeded in reducing the offset to zero, which will be reported in another paper.
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Figure 5. Optical gain of differential mode
of arms. Optical resonance due to detuned
signal recycling cavity can be seen around
4kHz.
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Figure 6. Optical gain of common mode of
arms with various offset. Optical peaks move
with the reduction of offset in the loop.

4. Result
Locking the length control for 5 degrees of freedom in the 40m prototype is now routinely
achieved.. The central part is locked using double demodulation or differential demodulation
signal extraction techniques. When the differential mode of the arm cavities is locked in the
final configuration, an optical resonance of RSE can be seen clearly around 4kHz in the optical
gain. The common mode of the arm cavities still has a small offset, which produces additional
peaks in the optical gain. A full test of the Advanced LIGO lock acquisition and control scheme
is in progress.
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