On Seitz! Arbiter

Alain J Martin

Computer Science Department
California Institute of Technology

5212:TR:86

On Seitz’s Arbiter

Alain J. Martin
Department of Computer Science
California Institute of Technology

Pasadena CA 91125

1. Introduction

In [5], C.L. Seitz proposes a self-timed circuit, called an “arbiter”, with the following spec-
ification. Two independent processes compete for mutually exclusive access to a shared
resource—e.g., a store. The arbiter selects a request from one of the two processes and,
before granting the resource to the selected process, activates—i.e. communicates by a four-
phase handshaking protocol with—a so-called “transfer module” associated with the process.
The transfer module prepares parameters for the shared resource which is activated after
the transfer module activity has terminated.

All communications—i.e. communications between the arbiter on the one hand and the
processes, or the transfer modules, or the shared resource on the other hand— are imple-
mented by four-phase handshaking protocols. The arbiter is self-timed, i.e. no assumptions
are made about the propagation time in wires and the gate delays (see [4]). However we
will assume that some wires inside the arbiter are equipotential (isochronic), i.e. the wires
are short enough to assume that propagation is instantaneous along those wires.

In [1], Gregor Bochmann shows that the original solution proposed by Seitz is wrong,
and proposes a modified version. In [2], D.L.Dill and E.M.Clarke apply their circuit ver-
ification method to Bochmann’s circuit and discover an error in it. They also propose a
modified version. Due to the successive modifications to the original circuit, their solution
is unnecessarily complicated. Applying the synthesis method described in [3], we have been
able to derive a simple and correct solution. The solution is different from, and simpler
than, all correct solutions the author knows of.

The purpose of this small note is to present this new solution directly and informally.
It is left as an exercise to the interested reader to derive it rigorously applying the method
of [3].

2. The Solution

The arbiter communicates with processes A and B, transfer modules T and R (associated
with A and B respectively), and shared resource S. Each communication uses two directed

1

wires. A directed wire is an operator with a boolean input and a boolean output: the wire
(z w y) has input z and output y.

For X € (A,B,T,R,S), the arbiter communicates with X by the input zi of a wire
and the output zo of another wire (see Fig. 1).

ton whi

]

ag g
ac s | . SO
5o .

Fo b J #

—Figure 1-

Further, for boolean variable z, 7 means z := true and z | means r := false.

From the specification of the problem, if process A is granted the resource the following
sequence of actions occurs:

ai f;toT;ti T;801;8¢ 1500 1; 1
ai |;to];ti ;80];8i ;a0 . (1)

And similarly if process B is granted the resource:

bit;rof;rit;s0t;9i1;bot; 0
bi |;rol;ri|;s0];81 ;b0 . ()

Sequence (1) is enforced by the arbiter if it implements the set of commands:

at — to]
i — sol
st »aotl

(3)

—at — to]
-t — so |

-8t —ao|.

(A command of the form C — D means that when C holds, D is executed. “The
arbiter implements the set of commands (3)” means that the activity of the arbiter consists
of repeatedly executing the commands of (3).) Observe that the commands of (3) are not

ordered. The ordering corresponding to (1) is enforced by the oredering of actions in the
four-phase handshaking protocol used by A, T, and S.

The six commands of (3) are obviously implemented by the three wires (ai W to),

(ti w s0), and (si W ao). Similarly, sequence (2) is enforced by the arbiter if it implements
the set of commands:

bi —rol
ri —sof
st — bol
-bi — ro)
-t — 80

-8t — bo .

(4)

The commands of (4) are implemented by the three wires (b W ro), (ri W s0), and (s

w bo). (See Fig.2.)

ao

to Yic

¢

Se

bo

ro AR

—Figlire 2-

8¢

Now, the composition of (3) and (4) inside the arbiter has to enforce mutual exclusion
between the two sequences. As in all other solutions, we introduce the mutual exclusion
element ((af,bi) me (ai’',bi')) where ai and bi are inputs and the new variables ai’ and

bi' are outputs. The specification of me is the set of commands:

ai A =bi' — ai' 1
bi A —~at' — bi' 1

at' A —ai — ai' |

bi' A —bi — bi' | .

(5)

We replace ai by ai’ in (3), and bi by b’ in (4). The resulting sets of commands are
called (3’) and (4°) respectively. But observe that as soon as —ai' holds in (3’), the mutual
exclusion element can execute the second command of (5), which could cause the sequence
(2) to start before the sequence (1) is completed. (And the same holds for —bi' in (4°).)
These possible interferences are avoided if we replace ai’ by ai’ A —bo and —ai’ by —ai’' Abo
in the first and fourth command of (3’) respectively. And similarly for (4’). The verification
that the new (3’) and (4’) still enforce the sequences (1) and (2) is left to the reader. The
implementation of the arbiter so far is shown on Fig. 3.

3

to e

s
a0« —— <
ai! so
:)
Al Pre———] >
-/
, T\ so
b »— | __J >
‘&
s
604 . 2 <

-Figure 3-

Further, since so and si are duplicated in (3’) and (4°), we replace so by so' in (3
and by so" in (4’), and si by si' in (3’) and 8" in (4’). And we add the two commands

s0'Vso" — sot

—80' A 80" — 50,

which are implemented by the or-operator ((so', s0") or 80).

The transition si T should cause only one of the two transitions ss’ T or st" 1 depending
on whether (1) or (2) is being executed, which depends on whether so' or s0” holds. Hence
we add the two C-elements ((s7,50") C si’) and ((sf,s0") C 8t"). (The C-element ((z,y)
C z) is specified by the two transitions:

zAy—z7

TAYy >z,

Which gives the final circuit of Fig. 4.

ao‘ f C
ai;
— R
aL —o — .S
> s
. T
&o *— C

ro re

~Figure 4-
3. References

[1] G. V. Bochmann, “Hardware Specification with Temporal Logic: An Example”, IEEE
Trans. Comput., vol. C-31, March 1982.

(2] D. L. Dill and E. M. Clarke, “Automatic Verification of Asynchronous Circuits Using
Temporal Logic”, in Proc. 1985 Chapel Hill Conf. VLSI. Ed. Henry Fuchs, pp. 127-
143, March 1985.

(3] A.J. Martin, “The Design of a Self-timed Circuit for Distributed Mutual Exclusion”,
in Proc. 1985 Chapel Hill Conf. VLSI. Ed. Henry Fuchs, PP. 247-260, March 1985.

[4] C. L. Seitz, “System Timing”, Chapter 7 in Mead & Conway, Introduction to VLSI
Systems, Addison-Wesley, Reading, MA (1980).

[5] C. L. Seitz, “Ideas About Arbiters”, LAMBDA, First Quarter, 1980.

June 1985.

