Pipelined Asynchronous
Cache Design

Thesis by

Mika Nystrom
In Partial Fulfillment of the Requirements
for the Degree of
Master of Science

California Institute of Technology
Pasadena, California, U.S.A.

1997
(Revised April, 1999)

Caltech Computer Science Technical Report
caltechCSTR:2001.009

Abstract

This thesis describes the development of pipelined asynchronous cache memo-
ries. The work is done in the context of the performance characteristics of memories
and transistor logic of a late 1990’s high-performance asynchronous microprocessor.

We describe the general framework of asynchronous memory systems, caching,
and those system characteristics that make caching of growing importance and keep
it an interesting research topic. Finally, we present the main contribution of this
work, which is a latency-tolerating asynchronous cache micro-architecture suitable
for asynchronous microprocessors.

In Chapter Two, we present a case study of the Level 1 data and instruction
caches for the Caltech MiniMIPS asynchronous microprocessor, currently under de-
velopment at Caltech. The implementation is quasi-delay-insensitive in 0.6 micron
scalable CMOS rules, with a logic latency of approximately 2 nanoseconds.

ii

Acknowledgments

I wish to thank the past and present members of the Asynchronous VLSI Group
at Caltech for many stimulating discussions: Paul Pénzes, Robert Southworth,
Marcel van der Goot, Tony Lee, Peter Hofstee, José Tierno, Uri Cummings, and
especially Andrew Lines, whose comments inspired much of the work described in
this thesis and Rajit Manohar, whose help with TEXnicalities, among many other
things, made it at all possible. Last but not least, thanks to Alain Martin for being
my advisor and putting up with the many odd ideas I have had.

The work described in this thesis was sponsored by the Defense Advanced Re-
search Projects Agency and monitored by the Office of Army Research. It was also
supported in part by an Okawa Foundation Fellowship. This work would not have
been possible without the work of many hundreds of programmers who indirectly
supported it with free software such as Berkeley’s magic and BSD operating system,
Donald Knuth’s TEX, and too many minor utility programs to mention.

iii

Contents

Abstract

Acknowledgements

Contents

Chapter One.
1.1.
1.2.
1.3.
1.4.
1.5.
1.6.
1.7.

Introduction .
Organization of The51s .

The Memory Hierarchy

The Design Problem .

Pipelining the Cache .

Extending the pipelined cache scheme
Summary . .

Chapter Two. The MiniMIPS Cache System .

2.1. Introduction . .
2.2. The MiniMIPS Memory System .
2.3. Design by Decomposition . .
2.4. MiniMIPS-Specific Design Modlﬁcatlons
2.5. Decomposition of Cache Control
2.6. Low-level Implementation of CHP . .
2.7. Differences from Synchronous Implementations
2.8. Directions for Future Work .
2.9. Conclusion .
References

v

Strategies for Pipelined Asynchronous Caching

ii

. il
. v

Chapter One.

Strategies for Pipelined

Asynchronous Caching

1.1. Introduction

This Thesis discusses aspects of the design of the memory system of asyn-
chronous processors. In the most basic meaning of the word, asynchronous pro-
cessors are simply those that operate without the benefit of a single global clock
signal to which all actions are synchronized. In our work, however, we study the
quasi-delay-insensitive (QDI) subclass of asynchronous circuits[14]. QDI circuits
are those whose correct operation is independent of delays in operators or wires,
with the single exception that it is postulated that an electric signal may be copied
to multiple destinations in such a way that the maximum difference in arrival time,
or “skew,” of the signal at the destinations is small compared to the gate delays
in the system. (These copying wires, or isochronic forks, may be identified, and
the designer may wish to spend effort to ensure that the postulated isochronicity
condition holds for them.)

1.1.1. Asynchronous Advantages

Asynchronous design promises to bring many improvements to VLSI systems
design over the currently widespread synchronous fashion. Chief among these is:

Average-case instead of worst-case performance.
Asynchronous systems can be made to perform “as well as
they can” for any given set of inputs rather than needing to
be artificially constrained by a fixed clock.

In asynchronous circuits, the timing réle of the clock is taken over by locally
generated handshake signals. In our design style, these signals carry information
that is used to provide automatic flow control. This leads to another promise of
asynchronous design, less often stated but nonetheless important:

Modularity in design.
The use of handshake signals encodes relevant state in the
unit interfaces. This allows the use of modular interfaces, as
opposed to the complex pipeline control logic often seen in
synchronous designs.

The average-case performance and modularity properties act together to make it
possible for the asynchronous circuit designer to invent large high-performance sys-
tems with a relatively modest amount of effort.

1.1.2. Modern Memory Systems

In recent years, manufacturing technology has made it possible to fabricate
extremely fast microprocessors (the current (1997) state of the art commercial syn-
chronous CMOS designs operate with a clock frequency of one half gigahertz) and
very large dynamic random access memories based on trench capacitors and a sin-
gle transistor per bit (currently commercially available at about 70 million bits per
chip). However, there is a fundamental physical tradeoff in the design of memories.
It is not possible to design an extremely dense DRAM that has arbitrarily short
access time, and as a result DRAM (speed) performance has not been improving at
the same rate as CPU logic performance.

The reason that it has been possible to increase CPU speeds at the same time
as DRAM densities to the extent seen during the 1980’s and 1990’s lies in caching.
Most computer programs exhibit a great deal of locality of reference (both in terms
of instructions and data), and this property allows the use of a small, fast memory
to improve the average access time to memory by caching often-used data.

Current high-performance microprocessors are still more aggressive in terms of
the gap between processor speed and memory latency than a simple caching system
would allow. To allow processor instruction rates to escalate past the ability of
an on-chip SRAM cache, a prefetch buffer is used. The prefetch buffer is used to
compensate for latency in the level-one (L1) cache itself.

1.1.3. The Caltech MiniMIPS Processor

The Caltech MiniMIPS processor [11] serves as a convenient example of a high-
performance microprocessor. From the point of view of the cache system, the only
thing about the MiniMIPS processor that is “unconventional” is its asynchronous
interface. The MiniMIPS processor is designed very aggressively with respect to its
cache subsystem; the processor is targeted at 300 MHz operation (in 0.6m Scalable
CMOS) with an L1 cache access time of three nanoseconds (this is the access time
of the SRAM array itself, excluding the control logic presented in this work). This
means that under the best possible conditions, it takes almost a full instruction
cycle to fetch a new instruction from the cache.

The Caltech MiniMIPS processor architecture has been designed to take advan-
tage of the two asynchronous design promises. In this Thesis, we shall demonstrate
how we use low-latency design techniques to make possible a 300 MIPS single-
scalar processor and how we design a cache subsystem for such a microprocessor in
a reassuringly modular way.

1.2. Organization of Thesis

This Thesis consists of two major parts, organized in Chapters. In Chap-
ter One, we describe the memory hierarchy of modern digital computers, and we

3

present a high-level picture of a pipelined asynchronous cache architecture. The
goal is to show systematically how to arrive at the final design from an initial
specification, and we do this in three steps.

Step 1. A simple sequential specification for our cache is presented. This spec-
ification simply describes the input/output behavior of the cache—the
final decisions on the ordering and implementation of the actions are
left for later.

Step 2. We show how to decompose the sequential specification into multiple
implementable Communicating Hardware Processes. This step in itself
does not introduce pipelining or concurrency, but by specifying which
processes are independent, we set the stage for the introduction of con-
current actions.

Step 3. Finally, we reorder the communication actions of the processes gener-
ated in Step 2. This introduces the desired concurrency.

Chapter Two applies the lessons of the first Chapter to a real-world example:
The Caltech MiniMIPS processor cache system.

1.3. The Memory Hierarchy

In a von Neumann* computer, the central processing unit (CPU) carries out
computations by executing a program stored in “memory,” and the state of the
computations is also stored in this memory. In all modern computers, a deep
memory hierarchy may be identified, running from the fastest, most scarce (and
most expensive on a per-bit basis) downwards, with implementation technologies
in current vogue with associated approximate access times and sizes (in machine
words) in parentheses:

e Processor registers (specially designed registers, ~1 ns, about 2°).
Level-one (L1) cache (fast static RAM, 5 ns, about 2'2).
Level-two (L2) cache (static RAM, 10-20 ns, commonly omitted, about 2%).
Level-three (L3) cache (static RAM, only in recent use, about 2%).
Main memory (dynamic RAM, 70 ns, about 226).
Virtual memory (movable-head magnetic disk, 10 ms, about 23°).

This is in contrast with a “Harvard” machine that stores its program and data in separate
memories. Since the von Neumann (or “stored-program”) concept has come to dominate
completely, a Harvard machine is contemporarily meant to be one that simply has inde-
pendent data and instruction caches. Therefore it is not a contradiction to say that the

MiniMIPS is both a von Neumann and a Harvard machine[2].

4

e Off-line storage (tape or optical, seconds to minutes, basically unlimited).

Clearly, there exists an inverse relationship between speed of access and amount
of storage in any economical system. Many computer systems do not implement all
the levels of the memory hierarchy indicated here, whereas other systems introduce
more levels in the memory hierarchy by such methods as “near” and “far” memory
accesses in multiprocessors or multicomputers. It is also important to emphasize
that the implementation of the memory hierarchy is not entirely left to hardware.
The (s)lower levels of the memory hierarchy tend to be implemented by system-level
software. While we shall focus almost exclusively on hardware implementations of
the highest levels of the memory hierarchy, the reader should bear in mind that
many of the complications that we mention to occur in practical systems (e.g.,
exception handling mechanisms) are often due to attempts to implement efficiently
the lower levels of the memory hierarchy. Expanding the memory hierarchy is a
focus of much current research in computer systems.

1.3.1. Caches

In its most basic terms, a cache is a small, fast memory that is used to apply
knowledge about a program’s patterns of reference to memory in order to avoid
the latency of often referring to memory locations stored too far down the memory
hierarchy. In these terms, each one of the levels of the memory hierarchy can be
fairly seen as a cache for the next level down the list.

The primary focus of this work is on the L1 cache subsystem. The L1 cache is
especially interesting from a hardware design point of view because of its extreme
demands on throughput and latency. The L1 cache needs to operate at the full
throughput of the processor, and its latency is very important because the total
average latency of the memory system is dependent mostly on the latency of the
L1 cache.

The cache design that we develop does not attempt to help along the L1 cache
latency by using a prefetch buffer (except, in a sense, in combination with the
MiniMIPS branch prediction mechanism). Rather than that, we face the problem
head-on and use a low-latency asynchronous design approach and internal pipelining
of the cache to minimize total latency while maintaining acceptable throughput.
The performance of the cache memory array itself is taken as given.*

1.4. The Design Problem

To describe our algorithms, we shall use a language related to Hoare’s Commu-
nicating Sequential Processes (CSP), named Communicating Hardware Processes
(CHP) [13].

* The MiniMIPS cache memory array was designed by Mr. Andrew Lines [6].

5

In CHP, the program for a simple read-only memory would be

MEM =
x[MEM_ADDR?addr; MEM _DATA!mem [addr]]

Simply stated, the purpose of a cache memory is to store often-used data in
faster storage. We may write the program of a cache in CHP as:

SIMPLECACHE =
x*[READ?addr;
q := find_entry(addr);
[¢ ="not found” — MEM_ADDR!addr; MEM _DATA?z;
DATA!z, cache_entry Lrefill _policy(addr)] := =z
0 g #7not found” — DATA'cache_entry[q]
]

]

This program searches for an entry corresponding to the requested address addr—
this is done by the function find_entry. If find_entry finds a match, that value
stored at the matching location of the cache array is immediately returned to the
requestor. If not, the address is forwarded to the main memory system and the
value found in main memory is returned to the requestor at the same time as it is
stored in the cache array for future use. What remains is to specify the caching
policy, set by refill_policy and maintained by find_entry. It should be clear that if
we insert the SIMPLECACHE between its user (the process that communicates on
READ and DATA) and the MEMORY , the behavior from the point of view of a
delay-insensitive user will be unchanged. By implementing the smaller cache_entry
array with faster and more expensive memory than the larger mem array, we may
thus hope to improve average performance without changing the functionality.

We are going to restrict ourselves mostly to caches that are direct-mapped, i.e.,
caches for which the function find_entry can be implemented as a tags compar-
ison from a single array position, cache_entry can be implemented as a memory
read® from a single array position, and refill_policy is the identity function. Direct-
mapped cache systems as a rule offer slightly lower hit rates than set-associative
cache systems—we pick a direct-mapped cache architecture for simplicity. Further-
more, we do not consider the possibility of improving performance by sometimes
not writing the value read from memory to the cache array. On the other hand, we
shall refer to designs that read more than one entry (or cache line—the “atomic”
unit of cache storage associated with a single tags entry) from memory on refills.
The unit of data read in on refills is called a cache block; this must be at least one

* We shall interchangeably use the terms “load” and “read” as well as the terms “store” and

“write” since we are describing our design in the context of load/store (“RISC”) architectures.

6

line, but it may be chosen larger to improve performance. Finally, shared-memory
issues that arise when multiple independent writers are accessing the same memory
are outside the scope of this Thesis. (In the MiniMIPS processor, these issues are
handled by the use of “uncacheable” memory.)

The addition of the ability to write to the memory complicates things some-
what, so that now

MEMORY =
x[MEMOP?m, MEM _ADDR?addr;
[m="read” — MEM_DATA'mem [addr]
0 m="write” — MEM_WDATA?mem [Laddr]
]
]

and

CACHE =
x[CACHEOP?c, ADDR?addr;
[c="read” —
q := find_entry(addr)
[g #7not found” — DATA!cache_arraylq]
0 g ="not found” — MEM _ADDR'addr, MEMOP'c; MEM _DATA?z;

DATA'z, cache_entry Lindez(addr)] = =z
]
0 ¢c="write’" — WRITE?x, MEMOP'c, MEM _ADDR!addr;
cache_entry Lindex(addr)] = z, MEM_WDATA'z

11 .

We have chosen a simple write-through cache architecture for simplicity (it is
also required for the MiniMIPS by the MIPS Level 1 Instruction Set Architecture
(ISA) [4]). The simplicity of the write-through cache is based on the invariant that
after each cache operation has completed, the contents of the cache mirrors main
memory, i.e., that any datum in the cache is identical to that located at the address
in main memory cached by that datum. This allows, for instance, making space
in the cache for new data by simply discarding old data, rather than having to
remember to write back dirty lines. We shall refer to this invariant as the write-
through cache invariant.

1.5. Pipelining the Cache

The basic impediment to high cache performance (other than rudely inefficient
user programs) is the relatively long latency of the static RAM array forming the
cache core. A common approach for dealing with unacceptably high latencies is

7

to add pipelining, thereby allowing multiple operations to be in progress simul-
taneously. Unfortunately, pipelining cannot be applied directly in this case be-
cause of the possibility of data dependencies between successive cache operations—
dependencies that are particularly troublesome since the cache potentially involves
shared state between these operations.

The extra work necessary to pipeline a simple asynchronous cache system is
the primary subject of this Thesis. The general approach is simple: We decompose
the control process that we have wrapped around the cache core into two parts, one
that issues the commands to the cache core (we call this the L process) and one
that reads and acts upon the results of the cache reads (we call this the R process).
We now have a loop consisting of the L, CORE, and R processes (see Figure 1).

RESULT
READ - DATA
\ CORE
address, tags,data
command
from
memory

Figure 1. Simplified view of the loop consisting of the two control processes and the
cache core. The L process receives commands from the CPU, processes them, and issues
commands to the cache core. The R process receives results from the cache core and
sends the results back to the CPU, as appropriate. The R process is also responsible for
communicating with main memory.

1.5.1. Logical and Physical Pipelining

By examining the way a four-phase handshake is converted to a circuit im-
plementation, it is seen to be possible to move the production of the result early
enough in the handshake (see, e.g., the final section of this Thesis on low-level im-
plementation details) that the pipelining comes at essentially zero forward latency
cost compared to unpipelined logic.* (And of course it reduces the backward latency
since buffering tends to decouple the handshakes in the system.) This means that

* The forward latency of a unit is the time taken for it to produce its outputs given that all its
inputs have arrived; the backward latency is the time taken for it to acknowledge its inputs
[19].

we are free to insert pipelining anywhere we deem it suitable—in the MiniMIPS
this (for the most part) means that any logic that cannot comfortably be done in
a single stage of CMOS logic (due to fanin or fanout restrictions or other physical
considerations) is split and converted into multiple pipeline stages. In other words,
almost every stage of logic is a separate pipeline stage. This is what we refer to
as physical pipelining. Under certain conditions (which amount to the maintenance
of deterministic operation), adding physical pipelining or slack to a system does
not change its input-output behavior; in a system that satisfies these conditions it
is thus unnecessary to involve the physical pipelining in the highest-level specifica-
tions, which makes it possible to defer some of the performance-enhancing design
decisions. (Certain sufficient conditions for this to be true are easily verifiable, e.g.,
the lack of probes [15],[10],[3].)

In synchronous systems, the process of pipelining may introduce hazards. The
reason for this is that instead of the acknowledgement signals used in QDI asyn-
chronous design, the clock is abused as a global synchronization signal on the algo-
rithmic level, at great expense to the modularity of the design. In the QDI style,
the hazards do not appear at the level of physical pipelining. Instead, they appear
at the level of CHP description when communication actions in a pipeline are out
of step—i.e., when the number of outstanding writes into the pipeline exceeds the
number of completed reads by more than one.* This we term logical pipelining. The
addition of logical pipelining is the addition of concurrency to a system; this poten-
tially changes the input/output behavior of the system and can be made visible in a
high-level specification, permitting designers clearly to argue the concurrency issues
at this level rather than at the level of individual gates. The abstraction barrier
engendered by the separation of logical and physical pipelining is one of the most
important properties of our style of QDI design.f

1.5.2. A Few Words on Pipelining and CHP

While the pipeline stage handshakes (i.e., synchronization behavior expressed
in terms of handshaking expansions, “HSE”[13]) used throughout the design were

* Equivalently, we could say that there are multiple tokens in the pipeline at once. Even when
it is not quite the case that one end of the pipeline is several full handshakes ahead of the
other end, pipelining still helps performance by overlapping the different phases of a single
handshake.

t It would not be impossible to achieve the same separation of concerns in a synchronous sys-
tem. However, since it is usually not necessary to use handshakes in synchronous systems,
this opportunity is often overlooked in favor of the “simpler” (but much less modular) ap-
proach of computing the information that might be carried by handshake signals with extra
logic. Many clock-driven systems do use handshake signals when standard interfaces are to

be determined or for communication over longer distances.

9

all chosen from a set of only three (and the overwhelming majority of the processes
used just one of those), some of these processes communicated in unusual ways. It
is a easy to realize that communication in QDI asynchronous systems is easiest to
handle when it is unconditional, i.e., when a process executes an endless loop of

*[L ; R],

where L and R may be complex communication actions involving functions of data
values, etc., but where the communications that occur are always on the same chan-
nels. The reason this is so is that the completion and acknowledgement networks
involved reduce to simple collections of Muller C-elements rather than having the
more complex logic needed to decide whether or not to acknowledge certain inputs
dependent on data values.

The complications necessary to bring about conditional communications are
covered in [7]. The cache controllers in the MiniMIPS presented ample opportunity
to use processes with complex conditional communication patterns. We introduce
two new CHP constructs better to explain these communication patterns: the value
probe and the channel peek.

1.5.2.1. The value probe
We write the value probe as
A,B:P(A,B)

which consists of a list of channel references A, B,... separated by a colon from a
predicate on the values on those channels and any other program variables. If any
of the channels in the list of channels is not yet defined, the value of the probe is
false. The communication from the point of view of the sender does not complete.
Note that the syntax is defined so that

A = A:true .

The value probe is usually used for convenience to group together control values on
a channel. It is equivalent to using multiple channels.

1.5.2.2. The channel peek

We also introduce the channel peek
Az,

which has the same semantics as the receive A7z except that the value is not
removed from the channel and the communication does not complete from the
point of view of the sender. Note that it does block until there is a defined value
on the channel, as opposed to the value probe. The channel peek is used to avoid
reading and storing values that are going to be used repeatedly.*

* The syntax used for these additions to the CHP language was suggested by Mr. Matt Hanna.

10

1.5.3. Pipelining the Cache Loop

Each element in the cache loop (including the cache core) is made highly
pipelined in the physical sense. As long as the control program executes cache oper-
ations in sequence with the associated refill/use decisions, however, this pipelining
is effectively wasted. We remedy this by adding logical pipelining of the actions at
the CHP level. As in the other parts of the MiniMIPS design, here we find that the
low-level physical pipelining is almost orthogonal to the logical pipelining of data
that occurs when we do several things at once at the algorithmic level.

We shall investigate the pipelined cache design in two stages: First we shall
decompose the cache by factoring out a CORE process, corresponding to Mr. Lines’
static RAM array. Second, we (without motivation) decompose the cache control
into L and R processes, and then we shall finally introduce the pipelining by allowing
the L-CORE-R loop to process more than one operation at a time (whereupon our
decision to decompose into L and R will become motivated).

1.5.4. Decomposing the Cache

We begin by decomposing the sequential program given in the previous section
for CACHE by extracting the cache core array itself. The programs assume that
the address addr can be partitioned into two parts, offset(addr) and tag(addr). For
our immediate purposes, the nature of these functions is not important, but con-
ventionally, the offset part is some number of the least significant bits of the address
while the tag part is the remaining most significant part of the address—we shall
use the notations addr.offset and addr.tag for clarity. The choice of these functions
affects performance parameters such as hit rate, line contention, and convenience
of implementation.

A reasonable program for the cache CORE is (Note that addr.tag is unused
except for the refill and write cases.)

CORE =

x[CC?c, CA?addr;
offset := addr.offset;
[c ="read” — RTAG'tags[offset]l, CDATAdata Loffset]
lc ="write” — tagsLoffset] := addr.tag, CW ?data Loffset]
lc ="refill” — tagsloffset] := addr.tag, CW ?data Loffset]
]

1.5.5. The cache control

By factoring out the cache CORE, the remainder of the cache becomes a single
control process, which we call CONTROL, and write as

11

CONTROL =
x[CACHEOP?c, ADDR?addr;
[c="read” —>
CCV read”, CAladdr;
RTAG?, CDATA? c;
[t=addr.tag — DATA!c
0 t+# addr.tag — MEM _ADDR'addr; MEM _DATA?z;
DATA'z; CW !z, CC" write”, CAladdr
]
0 ¢c="write” — WRITE?x;
CCVwrite”, CAladdr, CWlx
11 .

The reader will recognize this as the process quotient of CACHE over CORE.

1.5.6. Factoring out the L process

After extracting the cache CORFE, the cache control process CONTROL is split
into two parts, one (called L) concerned with issuing commands to the CORE and
the other (called R) concerned with reading the results of the commands, including
tags comparisons.

The purpose of the L process is to issue commands to the cache core and to copy
the write data to the main memory. It corresponds to the generation of addresses
and commands into the cache_array entry in the sequential specification.

By referring to the sequential specification, we see that the addresses and com-
mands generated into the cache core depend on the results of previous operations;
since the in_cache function is not implemented in process L, we introduce a channel
RESULT that informs L. In order to know what to do after completing a core
operation, it reads the result of the operation (if it was a read) on the RESULT
channel, running from process R. A few extra channels have been introduced in
order to copy the cache command to inform the R process about it.*

L=
enum {false,true} channel RESULT;
x[CACHEOP?c, ADDR?addr; CC'c, CAladdr, RC!c, RAladdr;
[c="read” — RESULT?r;
[» — skip
0 —-r — CCVrefill”, CAladdr, CW!(MEM_DATAL?)
]

* In the future, we shall assume the existence of such channels without explicitly introducing
them except where necessary to resolve ambiguities. Similarly, we shall make use of C-style

declarations when this adds to the comprehensibility.

12

0 ¢ ="write” — WRITE?z; CW!z, MEMWRITE!'x
]

]

In this process, the channels CC, CA, and CW refer to the cache core opera-
tion, address, and write data channels, respectively.

1.5.7. The R process

The remaining part of the sequential program for the CACHE consists of read-
ing the results from the cache core, computing the tags comparison result in_cache,
and deciding on whether or not to refill. This is handled by the R process, which
compares tags and informs process L of the result.

Finally, to complete the correspondence between the sequential cache and the
decomposition, we are left with the channels to main memory for refilling and
writing. There seems to be no reason to choose either one of the two processes L or
R to handle these communications, but for reasons that will become apparent only
after the cache has been pipelined, we send the commands to write to the memory
through the R process. This is strictly necessary (even in the pipelined case) only
for cache refills, but we control the memory writes from R as well to avoid undue
channel proliferation.

R =
enum {false,true} channel RESULT;
*[RC?c¢, RADDR?addr;
[c="read” — hit:= (RTAG? = tag(addr));
RESULT!hit,
[hit —s DATAN(CDATA?)
0 —hit —s CDATA?_, MEM _ADDR'addr;
DATA\(MEM _DATAR?)

="write” — MEM_ADDR!addr

To verify the correctness of the given collection of processes, we first note that
the system is trivially deterministic since there are no probes. Since there is also
no pipelining, we may start, e.g., from process L and expand the communication
actions to the CORE and R processes as function calls. Doing this as an exercise,
we see that the parallel composition L || CORE || R is equivalent to the sequential
specification from the previous section, and thus trivially implements its specifica-
tion.

13

1.5.8. Introducing pipelining

In its simplest form, pipelining the cache corresponds to issuing two (or more)
commands to the cache core from L before reading the result of the first command
from R. In this way, the cycle of L-CORE—-R is split so that two instructions
can be in different stages of execution. Since the asynchronous datapath is al-
ready pipelined at the low level (to an extent far exceeding a two-token capacity),
adding the second instruction carries nearly no cost (in contrast to the non-zero cost
of adding pipelining to a synchronous system, expressed in the cost of additional
latches and delay allowances for component variation, clock skew, data dependence,
and temperature uncertainties) [7]. Since the pipeline stages operate as soon as
data is available and become ready to operate on the next operands as soon as the
data has been sent out, there is no requirement that the pipeline stages operate “in
phase” with each other. This means that for an outside process connecting to L
and R, the actual amount of pipelining present is not visible. Only the number of
tokens injected into the pipeline and not yet read can affect the behavior of the en-
vironment. This leads to a separation of concerns, allowing low-level performance
optimizations (physical pipelining) to be considered separately from algorithmic
optimizations.

—»—»—»—»—»—»

Figure 2. Pipelining in an asynchronous system. In the figure, an asynchronous
pipeline is built out of five stages but is made to hold only one token. This system is
physically pipelined but not logically pipelined.

In order to add successfully an additional token to the cache pipeline loop, we
need to maintain the given sequential specification. The changes that have to be
made can be deduced by noticing that the variables in the CHP programs seen so
far no longer need to hold only a single value, but rather need to maintain as many
values of state as there are tokens in the cache pipeline. In the L and R processes,
this can be handled by introducing buffers that hold old values until it is certain
they will no longer be needed. We shall add further buffers to the L process to
avoid having to modify the CORE.

1.5.8.1. Initial modifications

In the unpipelined decomposition given above, the RESULT channel is only

14

used to communicate the result of the cache hit test on reads. This means that
in a pipelined implementation, both the L and R processes would have to main-
tain enough state to deduce whether or not there was a cache read of which to
read the RESULT. It simplifies every level of decomposition to communicate on
the RESULT channel for each cache core operation. We also move the RESULT
communication earlier. The transformed code for L becomes

L=
enum {false,true} channel RESULT;
x[CACHEOP?c¢, ADDR?addr, RESULT ?r;
CC'c, CAladdr, RC'c, RA'addr;
[¢c="read” —>
[» — skip
0 -r —
CCVrefill”, CAladdr, CWRITE!\(MEM _DATAL?)
]
CcC =

I "write” — WRITE?x; CWRITE!'vx, MEMWRITE'x
]

15

Of course, we need to modify R as well (to “prime” RESULT), so that

R =
enum {false,true} channel RESULT;
RESULT'true;
*[RC?c, RADDR?addr;
[c="read” — hit:= (RTAG? = tag(addr));
RESULT'hit,
[hit — DATA(COREDATA?)
0 —hit — CDATA?_, MEM _ADDRaddr;
DATA(MEM _DATAR?)

]
0 ¢="write” — RESULT'true, MEM_ADDR!addr
0 c="refill” —> skip
]
1.

With these modifications, the correspondence between the sequential specifi-
cation and the composition L || CORE || R is unaffected.

1.5.8.2. Adding pipelining

We now add logical pipelining (some physical pipelining has already been
added by the process decomposition). We do this simply by communicating on
the RESULT channel before receiving anything in the R process.

The correctness problem alluded to in the previous section now becomes ap-
parent. The pipelining transformation may add a write-after-write (WAW) hazard
(with respect to the CORE process). The main problem occurs when cache writes
are supported. Assume that a load from a memory location is immediately followed
by a store to the same location. If the load hits in the cache, the store will update
the value in the cache and in the main memory, and all will be well. If, however,
the load misses, the store will already have been issued to the cache core (since the
cache is pipelined). Since the cache is write-through, the write will update the cache
line immediately without checking any further conditions. Meanwhile, the refill of
the line has begun, and the final state will be that the value that was written to
the cache core will be overwritten by the old value from main memory! In the final
state, an incorrect value will be found in the cache, but the value in memory will
be—inconsistently—correct. Clearly, this violates the write-through cache invariant
of Section 1.4.

We note that the value communicated on RESULT no longer corresponds di-
rectly to whether or not there was a cache hit or miss—in fact, this channel has
turned into a control channel for the L process, telling it exactly what to do; to
finalize this part of the transformation, we change the L process so that the com-

16

muncations on RESULT match those on the cache core data channels. We solve
the write-after-write problem by introducing the capability to repeat the cache in-
struction right after a cache miss. Now, a cache miss followed by a cache write to
the same address will result in the following trace: Cache miss, refill from memory
(and satisfaction of the register file’s demand for the data), cache core write, refill
overwrite (leading to the inconsistent state), and a second cache core write from
the repeated store (cleaning up the inconsistency).

Compared to the sequential specification, the addition of pipelining introduces
data hazards because it changes the CACHE program such that operations from
two consecutive passes through the program’s loop are deterministically interleaved.
As usual in cases like this, if the two passes refer to disjoint data, there can be no
correctness problem. If, on the other hand, the operations refer to the same datum,
a hazard is introduced. There are two basic ways to solve this problem—either we
do not dispatch operations that may fall prey to data hazards, or else we dispatch
the operations speculatively and check later whether or not a consistency problem
occurred. We choose the latter alternative. (“We shoot first and ask questions
later.”)

The CHP corresponding to this is*

L=
enum {"go”,"refill”,” repeat”} channel RESULT,
x[RESULT?r;
[r="g90" — oldc:= ¢, oldaddr := addr;
CACHEOP?c, ADDR?addr;
0 r="repeat” A oldc ="write” —>
¢ :="core_write”, addr := oldaddr
else — c¢:= oldc, addr := oldaddr

9

I

]

[r="g0" V r="repeat” — CAladdr,CC!c
0r

]

="refill” — CCVrefill”

* We have omitted the details of how the write value gets from the register file to the cache

core. It needs to be repeated on a repeat operation.

17

(Note that refills are never repeated and that writes are never refilled.) The
introduction of oldc and oldaddr is necessary to store the previous operation, so that
it may be repeated. For instance, if a write is issued, then a read that misses, the
RESULT channel will carry a repeat token, and at that point L needs to redispatch
the write.

On the R side, we could choose to cancel and repeat the instruction following
each cache read miss. This would lead to correct behavior, but we can do better.
We notice that a write instruction following a cache miss does not need to be
repeated unless it refers to the same cache block (and will thus be overwritten on
the next cycle). Conversely, why repeat a cache read following a miss? There is no
possibility of a write hazard on a read following a read. On the other hand, there is
an efficiency issue in this case. Consider what happens when two memory references
to adjacent memory locations occur in sequence. If the first one misses, the second
is highly likely to do so as well. However, if the two memory locations are in the
same block, the second miss will already have been satisfied by the refill of the first
and the second datum can be read out of the cache core after the first has been
refilled rather than being refilled from main memory, a significant optimization.

The modularity of the L-CORFE—R pipeline is shown by the relative ease with
which we may change the behavior of the cache. Modifications to R that change
caching policies, etc., are localized to this process.

The cases of non-conflicting writes and double refills may both be eliminated
by adding a comparison between the block of the missed instruction and that of
the next instruction. As a final optimization, we call writes that are repeated
“core writes” so that they do not need to be repeated to main memory. (We take
advantage of the inconsistency generated by the out-of-order writes to memory and
cache.) The R process implements this as shown on the next page.

18

R =

enum {”go”,”refill”,” repeat”} channel RESULT;
miss|; oldaddr := _;
RESULT" go”; RESULT!” go”;
*x[oldaddr := addr; RC?c, RADDR?addr;

L
I

m B /s 83

c.op="read” — h:= (RTAG? = tag(addr))

else — skip 1],

c.op =" write” — MEM_ADDR!addr

else — skip],

miss —> ma = (block(addr) = block(oldaddr))

else — skip I;

—miss A

(c.op ="write” V c.op =" core_write”) —
RESULTY go”, miss|.

(miss A —ma) A

(c.op =" write” V c.op =7 core_write”) —
RESULT" go”, miss|

miss A c.op ="write” AN ma —

RESULT" repeat”, miss|.
c.op ="refill” — RESULT" go”, miss|
c.op="read” N h — [/ hit
RESULT" go”, miss)., DATA(MEM _DATAR?)

—miss A c.op="read” AN —h — [/ miss
RESULT" refill”,
MEM _ADDR!addr,
misst

miss A c.op ="read” AN —-h A ma —
RESULT" repeat”, [/ miss in delay slot
missl

miss A c.op ="read” AN —-h A —-ma —
RESULT" refill”, DATA!(MEM _DATAR?)
MEM _ADDR!addr, misst // pipelined miss

19

1.5.9. Correctness argument

In our cache design, we have without comment sidestepped a progress pitfall.
One might think that, given that the cache has the capability of reissuing requests
internally, the best way to handle a cache miss would be to refill from memory into
the cache core and then reissue the original lookup to the cache core, knowing that
the miss has been satisfied, hence is guaranteed to generate a cache hit. This is not
the case. Consider a program that consists of a single read from data memory. That
would become, perhaps, a cache miss. The cache miss would lead to a memory refill
that would complete, and the data would be available for the cache core to refill.
The L process, however, would still be waiting for the nonexistent second memory
reference to come through, since it is not supposed to handle the refill until after
the next instruction has completed—in other words, the system would deadlock.
We solved this problem by making cache refills also bypass the cache directly to the
processor busses and then to the register file.

The other progress condition is that we avoid livelock given that we have in-
troduced the repeat mechanism. Is it possible that the same instruction could be
repeated over and over again? The answer to this is no. If we follow an instruction
through the cache, we see that we may repeat both kinds of instructions: reads and
writes. A read that is repeated will be processed after a refill, which means that it
will either be refilled itself (if it misses), or that it will be read out correctly (if it
hits). In either case, progress is made since it cannot turn into a repeat.

The reader will see by inspecting the program that the operations carried out
will be properly matched as reads and writes at every process in the loop, and this
is enough to demonstrate that the actions correspond to those of the sequential
specification. This could be proved formally by introducing ghost variables into the
programs. We have met the sequential specification by executing two consecutive
passes partly in parallel and redispatching conflicting operations. While this does
not maintain the write-through cache invariant strictly at the end of each cache
operation, it does guarantee that data in the cache eventually mirrors the main
memory and that states in which the invariant is violated are hidden from the
outside interface.

1.6. Extending the pipelined cache scheme

The decomposition of the cache into the L and R processes introduces specula-
tion. The amount of speculation is, naturally, dependent on how many tokens are
injected into the L-CORE—-R loop. In the simple case described so far, the spec-
ulation has been on whether or not a cache miss has happened. If the speculation
fails, a “hardware exception handler” is invoked to handle the problem.

The speculation mechanism can be used in general to take advantage of “com-
mon case” operations. Implicitly, we may assume that cache reads that hit in the

20

cache and plain memory writes form the majority of the operations. If we do this,
then the cache architecture will be seen to be easily adapted to managing these
cases at (almost) the same speed as before while we add other functionality. Taking
hints from the MIPS Level 1 ISA, a few of the features that can be added in this
way are:

e Multiple writeback units to increase tolerance to cache misses.

e Partial-word loads and stores.

e Virtual memory support through memory read and write exceptions and mem-

ory address translation via a translation lookaside buffer (TLB).

We shall show how each of these features may be added to the memory sys-
tem by modifying the cache processes L and R without significantly affecting the
complexity of handling the common cases of cache hit loads and word-sized stores.
Such a design would efficiently handle the entire MIPS 1 ISA, and other features
might also be contemplated.

1.6.1. Adding slack in the memory system

For a data cache (and for a system that can handle multiple threads of execu-
tion, perhaps speculatively, also for the instruction cache), it is not always necessary
to satisfy loads in order. We have designed a pipelined cache system that would be
capable of handling one load while simultaneously handling a cache miss. This is
done by splitting the datapath associated with the R process in two. We alternate
between the two output sections, 0 and 1. A cache miss on an access destined for
output section 0 will allow the second token (in the pipelined cache) to exit via
output section 1 and vice versa. This scheme is described in more detail in [16]. In
order to add to this scheme the capability to satisfy more than one lookup after a
cache miss, the amount of pipelining in the cache would have to be increased. This
should be straightforward, but it has not yet been explored in any detail.

1.6.2. Adding partial-word operations

Partial-word operations are memory operations that do not operate on a full
machine word. For instance, (ASCII) string operations require manipulation of
byte-sized data (char data in the C programming language). Such operations are
difficult to implement easily in a way that does not cause the more common word-
sized operations to be slowed down; indeed, the presence of partial-word memory
operations has been considered the Achilles’ heel of the MIPS ISA.

In our asynchronous cache architecture, partial-word operations are imple-
mented using a “merge buffer” that allows partial-word cache writes to be handled
correctly without adding complexity to the cache core itself. Partial-word cache
reads are implemented using an alignment shifter. In our discussion, we shall re-
strict ourselves to halfword reads and writes. Reads and writes can be given still
finer granularity without qualitatively changing the pipelined cache mechanism.

21

We are going to illustrate how to add exactly the mechanism specified by
the MIPS 1 ISA. Partial-word writes are specified to be write-through if they hit
in the cache and write-around otherwise, avoiding the need to read in the cache
line prior to writing the data. While this may have been a simplification for the
pipelined synchronous MIPS cache, it does not lead to a substantial savings for
an asynchronous cache, and it would be easy enough to implement a true write-
through cache capable of partial-word operations. This ability to handle partial-
word operations without a common-case penalty is a significant advantage of the
asynchronous implementation.

The merge buffer is

MERGEBUF =
«[OFFSET?z, CACHEDATA?a, REGDATA?b;
[2="10" — c:= bit_or(mask_hi(b), mask_lo(a))
0 2="hi" — c:= bit_or(mask_lo(b), mask_hi(a))
1;
R'c
1.

For high performance, we wish to maintain cache pipelining during partial
word writes. This gives rise to a write-after-write problem complementary to that
experienced with pipelined refills. Basically, a cache read following a partial-word
write to the same word needs to be repeated since the write will not yet have taken
effect in the cache core. The data correctness problem with respect to the data in
the cache core is the same as for the original pipelined cache mechanism, except
that the coherence is now destroyed by explicit writes to the cache core, rather than
by missed read operations. The following fragments illustrate the mechanism:

L=
enum {"go” " refill”,” repeat”,” hww_hit"} channel RESULT,
*[RESULTr;

[...

/] go covers write — around case as well
D r = 2 gO” i

0 r="hww_hit” — CC'”core_write”

22

R=
hwopl, miss|, oldaddr := __; // initialize
RESULT" go”; RESULT" go”;
*x[oldaddr := addr; RC?c, RADDR?addr;
[c.op="read” V c.op="hw_write”
— h:= (RTAG? = tag(addr))
0 else — skip 1,
L c.op=""write” V c.op="hw_write”
— MEM _ADDR!addr
0 else — skip 1,
[miss V hwop — ma := (block(addr) = block(oldaddr))
0 else — skip 1;
[

0 c.op="hw write” N h — hwopt, RESULT!” hw_hit”
0 c.op="read” AN hwop AN ma — hwopl, RESULT" repeat”

0 c.op="hw_read” A h A lhwop —>
DATA!(shift(MEM _DATAR?), LSB(addr)), RESULT"’ go”
1;
[c.op #"hw_write” — hwl [else — skip 1]
]

23

RESULT

READ - DATA
\ CORE /
address, tags from
command \ memory

partial word write data

merge

buffer
write data

Figure 3. Schematic view of the cache loop modified to handle partial word operations.

1.6.3. Adding memory translation

In order to implement paged virtual memory, the current standard approach
is to add a translation table from virtual memory addresses (each process’s address
space) to physical memory addresses. The contents of this translation table are
usually maintained by an operating system (see, e.g., [18]).

Having each memory access by every user-level process processed by a software
memory translation would be prohibitive. Commonly, part of the translation table
is cached in a translation lookaside buffer (TLB) that maintains a small number
(less than, say, 28) of virtual-to-physical mappings. Given a virtual address, the
physical address is formed by combining the lower bits of the virtual address with
the top bits of the virtual address translated via the TLB into the top bits of the
physical address. The number of “lower bits” used by this algorithm determines
the page size of the machine and the number of “upper bits” of the virtual address
determines the size of the address space seen by a process (this need not be the
same as the maximum size of physical memory).

Hardware memory translation is a substantial complication of the memory
system. The main problem is how to handle the situation when a virtual address
is presented to the memory system and that virtual address lacks a mapping in

24

the TLB. This is usually* handled by an ezception, i.e., the user’s program state
is saved and the operating system begins executing with the state of the machine
being that which held exactly before the execution of the instruction that lacked
a translation. This mechanism is called a precise exception. The “preciseness” of
the exception is a necessity to be able to restart faulting instructions transparently
without assistance from the user program.f

Adding exceptions to the memory system introduces a host of problems that
can, if handled carelessly, have a substantial performance impact on the entire
system. We are going to solve these problems by allowing the L process to speculate
that the cache line looked up is the one containing the translated address. We allow
the R process to check whether or not L’s speculation was successful, just as in the
case of the cache hit test.

The changes necessary to the pipelined cache system to implement virtual
memory and exception support are very straightforward and do not affect the basic
pipelined cache scheme. We add an exception information receive to L from the
CPU writeback (so that the system can cancel writes that are not supposed to take
place due to an already occurred exception):

* In some systems, primarily older CISC machines such as the Digital VAX, this mechanism
is implemented in microcode within the CPU rather than by an operating system software
routine. In such systems, the exception is raised only when the target physical page is not in
memory and has to be “paged in” from magnetic storage. This does not qualitatively affect

the nature of the problem.

1 Although the MiniMIPS design does not support memory translation through a TLB, it
should be clear that the main difficulty from the hardware design point of view is not the
translation itself, but rather the implementation of the precise exceptions, due to the com-
plex “sweeping up” of processor state that is required to be able to restart from exactly the
same state. The reader may object that the implementation of interrupts in any processor
has exactly the same implications. This is not the case. By their nature, interrupts may
be deferred an arbitrary but finite time, and this may be used to stall the instruction fetch
until all dirty state has been written back, while this is impossible with exceptions, where the
effects of already issued (and partially executed) instructions have to be inhibited. The Min-
iMIPS does implement precise exceptions for other things, such as reserved instructions (to
implement partial-word operations or other unimplemented instructions by emulating them
in supervisor mode), and add overflows. The MiniMIPS exception mechanism is described
in [11].

25

RESULT
READ —~ DATA

CORE /

from
virtual] memory
page physical
number page
TLB number

o

exception information

Figure 4. The pipelined cache architecture modified to support memory translation.
The TLB lookup is done in parallel with the cache lookup. The read operation is only
successful if both the physical page number hits in the TLB and the cache entry is valid.
If no reference to the physical page number is present in the TLB, an exception is raised;
if the cache line does not correspond to the referenced memory address, a cache miss is
detected and refilled as in the untranslated cache.

L=
enum {”go”,”refill”,” repeat”} channel RESULT;
*[RESULT?r;
[r="90" — olde :=c ; CACHEOP?c, ADDR?addr;

0 r#7g0” A olde ="write” — c:="core_write”
[else — c:= oldc
1;

[Lr="g0" AN c¢c="write” — WB?wb
0 else — wb:=true 1;
[r="g0" V r="repeat” N wb — CAladdr,CC!c
0 r="refill” — CORECY refill”
0 ~wb — skip
]
]

On the R side, we check for a missing TLB translation and forward this as
exception information to the main CPU pipeline. We also must make certain not to
issue writes to main memory if there is a TLB miss—the behavior on memory reads
is immaterial since those instructions are going to be canceled in the CPU pipeline.

26

Further optimizations are possible; e.g., we could not repeat writes that will lead
to TLB misses, or cancel reads after TLB misses. Due to the low frequency of TLB
misses, such modifications are likely to be insignificant from the point of view of
system performance.

R=
enum {"go”,"refill”,” repeat”} channel RESULT,
missl; oldaddr .= __;
RESULT" go”; RESULT" go”,;
*x[oldaddr := addr; RC?c, RADDR?addr, TLBMISS?tlbm;
[c.op="read” — h:= (RTAG? = tag(addr))
0 else — skip 1,

[cop ="write” A —tlbm — MEM _ADDR!addr
0 else — skip 1,
[miss — ma := (block(addr) = block(oldaddr))
0 else — skip 1;
[-miss A

(c.op =" write” V c.op =7 core_write”) —

RESULT" go”, miss|
0 (miss A —ma) A
(c.op ="write” V c.op =" core_write”) —
RESULTY go”, missl|.
0 miss A c.op="write” N ma —> RESULT!" go”,miss]

1, ERESULT!tlbm
]

As a final note, the addition of a TLB in parallel with the cache lookup works
well for a direct-mapped cache only if the cache size is smaller than or equal to
the page size. If the cache is to be larger than this, a set-associative cache must
be used if the operating system is to have complete freedom in the placement of
virtual pages in physical memory. A less traditional alternative would be to allow
the operating system to place virtual pages only in physical pages that agree in
their least significant bits.

1.7. Summary

We have presented a general architecture for pipelined asynchronous caches and
demonstrated how to extend it for virtual memory support, partial word operations,
and deeper pipelining.* In Chapter Two, we shall show an application of this

* In [17], the arcane feature of “cache swapping” specified by the MIPS ISA is handled using

27

general architecture to the specific design of the Caltech MiniMIPS processor, a
high-performance asynchronous MIPS-compatible processor designed at Caltech.

a “pipelined semaphore” structure.

28

Chapter Two.

The MiniMIPS Cache System

29

2.1. Introduction

The cache mechanism used in the Caltech MiniMIPS processor is based on
the techniques developed in Chapter One of this Thesis. The MiniMIPS cache
implementation is further intended to be close in behavior to the cache specified in
detail by the MIPS Level 1 Instruction Set Architecture (ISA).

The MiniMIPS processor has separate instruction (I-cache) and data (D-cache)
caches. The instruction cache was originally intended to be optimized entirely
for reading, with no provisions for writing to the cache, and the data cache was
intended to have two separate R sections, one for each execution bus (Z-bus) of
the MiniMIPS processor. Such an architecture would have allowed the MiniMIPS
D-cache to satisfy certain load requests out of order (in particular, this architecture
could satisfy a load miss-load hit combination out of program order—i.e., with the
load hit data appearing on the Z-buses before the load miss). This would have
increased the tolerance of the MiniMIPS to memory latency.

The design of the cache system of the MiniMIPS processor was modified for
layout reasons—it was felt that the extra area taken by the multiple writeback units
of the D-cache would not have been justified by the relatively minor performance
improvement. Also, the amount of actual layout labor involved was a significant
factor in this decision.

In this Chapter, we shall present the complete design of the data cache first. We
shall describe the design of the cache as as application of the techniques developed
in Chapter One and as an exercise in process decomposition and explain some of the
low-level microarchitecture used to achieve the expected performance of the system.
Finally, the MiniMIPS instruction cache will be presented only in the ways that it
differs from the data cache.

2.2. The MiniMIPS Memory System

The MiniMIPS processor has a slightly simplified memory system compared to
the MIPS R3000 processor. While the extensions to the cache architecture described
at the end of Chapter 1 were developed with an asynchronous MIPS R3000 in
mind, most of them were not implemented in the MiniMIPS. Relevant things not
implemented were:

e Partial word operations.

e Exceptions generated by the memory system (virtual memory support), omit-
ted due to the lack of a TLB.

e Multiple out-of-order memory result writeback (not in MIPS R3000).

The basic pipelined cache structure was retained for performance (it is ab-
solutely essential for the I-cache since the tags comparison delay would otherwise
curtail the operating speed of the MiniMIPS processor), both for the I- and D-cache,
which were made almost identical.

30

The MiniMIPS cache system was designed with the details of the MIPS instruc-
tion set in mind. The MiniMIPS caches use 48-bit cache lines: 32 bits of data and
16 bits of tags. The 16 bits of tags are generated from bits 12 through 27 of the ad-
dress. Address bits 28-32 are hard-wired to zero in the cache; this technique is used
to implement an “uncacheable” segment starting from address (hex) 0x10000000
to Oxffffffff. Furthermore, this allows flushing the caches by reserving a four
kilobyte block of zeros in the uncacheable segment. Reading this block as data or
executing it* will flush the caches. Both caches are four kilobytes in size, and refills
are 128 bits wide (i.e., the cache block size is four words or lines). Partly, the design
was chosen to stay as close to the MIPS R3000 architecture as possible, and partly
it was chosen for simplicity. Nothing fundamentally prevents the design from being
extended to larger lines and/or blocks.

2.3. Design by Decomposition

Much of the design of the pipelined cache architecture presented here was car-
ried out and tested in the language mcc.* A dual-writeback pipelined cache was
designed by decomposition and reordering of the actions of a sequential specifi-
cation, and then translated back to CHP. The simulation was a part of a larger
simulation of the entire MiniMIPS processor.t This gave us a chance to experiment
with different high-level architectures. The simulation was annotated with perfor-
mance information and the ghost variables mentioned in Section 1.5.9, allowing
performance measurements and run-time verification of invariants.

2.4. MiniMIPS-Specific Design Modifications

Although the vast majority of our design closely followed the generic cache
architecture developed in Chapter 1, we made some refinements in order to make
the best possible use of the leeway granted by the MiniMIPS specification. One
of the performance-critical parts of the MiniMIPS processor is the “fetch loop”
consisting of the FETCH, ICACHE, and DECODE units. This is the loop in
which the program counter is maintained, and even though the MIPS ISA specifies
a one-instruction branch delay slot (i.e., branches do not take effect immediately,

* For the I-cache—by happy coincidence, the MIPS instruction denoted by a word of zeros is
defined to be the no-op instruction NOP.

* Multicomputer C, mcc, was developed by Dr. Marcel van der Goot.

T When this work was done, the scope of the asynchronous MIPS project had not yet been
crystallized into the MiniMIPS architecture, so this simulator actually included all the detail
of partial-word operations, memory translation, and dual Z-bus ports developed in Chap-

ter One.

31

but rather with a one instruction delay), we found it difficult to meet its throughput
target.

The fetch loop of the MiniMIPS processor has two items in it at any given
time, effectively computing the program counters of two different instructions at a
time. All MIPS branches involve register comparisons. Thus, when the processor
encounters a branch instruction, it gets the register operand(s) involved from the
register file, passes it (them) through a comparator, and makes its branch decision
based on the result of the comparison. This means that in order to maintain full
throughput (without modifications) during branches, the latency through a loop
consisting of the fetch loop plus the register file and comparator must be less than
three instruction fetch cycles. A back-of-the-envelope calculation convinced us early
on that this would not be the case—indeed, this latency was found to be on the order
of almost three instruction fetch cycles for normal, non-branching instructions and
much more for branches. To avoid stalling the processor on branches, we developed
two optimizations: pre-decoding and a simple branch prediction scheme.

address
tags hit R
»| control
comp.
— Pl result | part
\\
tags '
cache N
\
CORE AN
L Y /
data
—\ pre- dZta to DECODE
decode - »
part

Figure 5. Placement of the pre-decode in parallel with the cache tags test. This
arrangement allows the otherwise dead time of the tags test to be used to decode the
instruction speculatively. As explained below, the result of the (current) comparison is
actually sent directly to the datapath to minimize the latency, rather than via the control
process.

2.4.1. Pre-decoding

A substantial part of the latency through the MiniMIPS cache subsystem (ap-
proximately 1 ns out of a total 3.5 ns cycle time) is taken by the tags comparison.
The sequential “retrieve line from cache core; compare tags; decode instruction” ex-

32

poses this latency on the critical fetch loop, on every cycle, whether or not a branch
has been detected. In order to avoid this, we decided to decode speculatively the
retrieved cache line in parallel with the cache hit test. This is done at essentially
zero cost—the cost of managing a greater number of decoded bits in the R process
as opposed to the 32 raw bits of the instruction plus the (insignificant) energy cost
of sometimes pre-decoding the wrong instruction.

2.4.2. Branch prediction

We mentioned earlier that the fetch loop latency is exacerbated by branches,
since they involve register value retrieval and comparison in the fetch loop. Instead
of seeing this as a drawback, we can recognize that this time—during which the
fetch loop is partially “drained”—is, in fact, an opportunity for the processor to do
something useful!

We use the dead time after a branch instruction to fetch speculatively an addi-
tional instruction from the cache; this is a form of branch prediction. Following the
recommendations of Hennessey and Patterson [2], we assume that backward “loop”
branches are taken and forward “if” branches are not taken. (This is called “static
branch prediction.”) We use the dead time of the cache comparison to fetch and
pre-decode the predicted instruction from the I-cache. Once the result of the branch
comparison is available, the processor knows whether or not the prediction was cor-
rect. If it was correct, the prefetched instruction is executed; else, it is “tossed” and
the correct program counter dispatched. We estimate a branch prediction rate of
approximately 70% correct. In the correctly predicted cases, the mechanism hides
basically all of the extra comparison latency, meaning that on average seven out of
ten branches will execute at the same speed as normal instructions.

The branch prediction mechanism is implemented partly in the FETCH process
and partly as an addition to the R process of the I-cache. The only change is
that the communications from R on the output channel DATA are prefixed with
a communication on T'0OSS, the channel from the FETCH unit that informs the
cache whether or not there has been a branch mispredict.

L I

[...

lc ="read” N h — TOSS?t;
[t — skip
-t — DATA(CACHE _DATAR?)
]

I

]

]

33

result of branch compare

speculative instr |
pc FETCH
branch control
TOSS

\
CACHE > DECODE [~~~ -~—- »| branch
comp.

instruction

Figure 6. MiniMIPS branch prediction mechanism. The fetch loop is drawn with

heavier arrows.

2.5. Decomposition of Cache Control

In this section, we shall describe the implementation of the MiniMIPS caches
in some detail. We shall focus on the D-cache; the I-cache will be explained in terms
of how it differs from the D-cache.

After the introduction of pipelining as described in Chapter 1, the remaining
design steps carried out for the cache were quite straightforward decomposition
operations. The basic structure of the L-CORE-R pipeline has been retained,
although each of these processes has been decomposed into smaller parts.

2.5.1. Process L

Process L is decomposed into four separate parts:

e an address generating part, which takes the previously generated address plus
the input address from the main pipeline and chooses between the two,

e a state loop, used to store the address in case it needs to be repeated or used
for a refill—this goes from the address generator and loops back to it,

e a datapath process, which is used to repeat values from the register file used for
storing in the memory system—this does not need to be a state loop since two
consecutive stores never need to be repeated (we can get away with using the
same value twice in succession rather than needing to interject another value
between the two uses),

e control processes.

34

control
—| DpCL » 1O
CORE
and R
T
‘\
\
\
' state

- buffer
REFILLA

Y

from datapath to

- repeat —
register file unit CORE

Figure 7. The L process in decomposed form.

2.5.1.1. Process DCL

As an example of the decomposition process, we follow the main control part
of the L process to its final form. We start with the L process from Chapter One;
after adjusting for the requirements of the MiniMIPS, we are left with

DCL =
x[RESULT?z;

[2="g0" — A%a,C7c

0 z ="refill” — c:="refill”, REFILLA?a
0 z="repeat” — XCOREA?a, XCOREC?c
1;
COREA'a, COREC'c
1,

where channels XRA and XCOREC receive a buffered version of the previous com-

35

mand (sent on COREA and COREC), so that it can be repeated. The final de-
composition of DCL splits the process into two, one for the address, and one for the
command, and this is what is implemented in the MiniMIPS.

2.5.2. Process R

The R process decomposition is more complex than the L process—this can
be seen from the version in Chapter One. The R process can be split into several
parts: A control part, implementing the if-statement seen in Chapter One, and many
scattered pieces of datapath implementing the tags comparator, refill circuitry, etc.

The control part of R has been further decomposed. We implement the if-
statement as a separate process with a one-of-five code output, one rail for each
case of the if-statement so that

CASEBOX =
missl;
x[C7c, MISS?miss, MATCH ?ma, HIT?h;
Lec="refill” Vv
((¢ ="write” V ¢ ="core_write”) A
(mmiss V —ma)) —> R!casel”
0(c ="write” V ¢ ="core_write”) A miss A ma
— R!”casel”
I ¢c=7"read” N h — R!”case2”
1 ¢c="read” N —h A (—miss V -ma)
— R!”cased”
0 c="read” N —h A ma A miss
— R!"cased”

]

In this program, the channels MATCH and HIT carry information about whether
the cache block of the current request matches that of the previous (to know whether
or not to repeat the command as explained in Chapter One) and whether or not the
current read is a cache hit. Since this information is not generated automatically
by every command issued to the cache core, processes MATCHBOX and HBOX
are used to generate dummy values on these channels for other commands—this is
done to keep the decomposition as modular as possible.

36

The five “cases” correspond to:

casel. A refill or uneventful write command (no possibility of data hazards or
other misbehavior)

casel. The repeat case for writes—a core write that follows a cache miss
that will clobber the write (this should never happen for the case of
core_write since that already constitutes a repeated command).

case2. A read hit—for most purposes, the same as case0.

case3. The refill case—a cache miss on a read either not following another
cache miss or following a cache miss that was to a different block (the
pipelined refill case; in this case, the R process may dispatch two refills
to the memory system without even receiving back the results of the
first one).

case4. The repeat case for reads—a cache miss whose refill may already be
pending.

The CASEBOX is where the control of the R process originates. The R channel
from the CASEBOX is copied to a number of processes that convert the cases to
the appropriate communications to the datapath, the L process, and to memory.

RESULT to L

RESULTBOX
—®| HBOX \
from CASE
comparator CASEBOX l
MATCH |7
BOX t
MISSBOX MBOX
state loop
for "miss" bit
to
memory

Figure 8. The R process in decomposed form.

37

2.5.3. 20-bit tags comparator

A 20-bit (ten one-of-four code) comparator was used to do the tags comparison
in the MiniMIPS. This comparator is described in more detail in Section 2.6.

2.5.4. Interface to main memory

The interface to the main memory was the last part designed of the MiniMIPS.
Original design plans called for the use of high-speed pipelined synchronous CMOS
static RAM, which would have allowed an off-chip speed of up to 200 MHz, for a
main memory bandwidth of 3.2 gigabytes per second. These plans were delayed in
favor of a simpler system utilizing standard (but fast) asynchronous SRAM parts.
The two caches (I- and D-cache) are connected to a memory controller, which
arbitrates between requests from the two caches and satisfies them in any order. A
write buffer is used to allow the cache system to proceed on writes without having
to wait for the off-chip latency of the main memory.

2.6. Low-level Implementation of CHP

Almost all processes in the decomposition are implemented as precharge half-
buffering pipeline stages as mentioned earlier. In other words, in terms of an L-R
buffer, the handshake followed is

*[[f(L)A—ril; RA; [w(L)1; lot; [ril; R; [n(L)1; lol]

where f(L) denotes that L has reached the point where it is possible to infer a value
for R (either this is the same as v(L) or else f(L) may denote some intermediate
state), v(L) that L is completely valid, and n(L) that L is neutral.*

The implementation of the pipeline stages in terms of mask layout was done
with the help of the University of California, Berkeley magic layout editor[8], modi-
fied at Caltech to incorporate a Scheme[1] interpreter allowing the user to construct
useful higher-level functions.

2.6.1. Example: TOSS2GEN

In order to illustrate the type of design used throughout the MiniMIPS cache
controller, we first need to mention a few details about the environment of the cache
controller. As we have explained, the basic specification of the (D-)cache controller
is

* The exceptions to the use of half-buffering logic were certain buffers used to maintain state,
for which it was deemed worthwhile to use a reshuffling that decoupled the L and R operations
more than the half-buffer reshuffling. Also, some buffering and logic were implemented using

“weak-condition half-buffering logic”[7].

38

x[LA?addr, LC?cmd,;

[LC = 7"read” — R'!mem[addr]
0 LC = write” — LW?mem [addr]
]

1,

or in other words, exactly the same as the processor’s memory. It is up to the cache
controller to implement this program in an efficient way, and ideally, the interface
to the cache controller would contain no more channels than this. Unfortunately,
however, we made several optimizations in the MiniMIPS, aiming at reducing the
total loop latency of the FETCH—-ICACHE—-DECODE loop and aiming at reducing
the overall average latency of a load.

If the decoding to be done in the pre-decode were strictly a function D of the
value in memory, all would be well, and the I-cache/pre-decode combination would
be

ICP =
[LA?addr; R!D(memLaddr])]

This is unfortunately not the case. One bit of information, the exception mecha-
nism’s valid-again bit va, needs to cross the boundary imposed by the cache con-
troller, so that

ICP =
*[VA?va, LATaddr; R!D(va, mem[addr])]

The complication this represents is easily understood by considering what happens
on a cache miss. In this situation, the operation will be retried, since in fact
what was computed was not D(va, mem [addr]) but rather D(va, X) where X is
whatever data happened to reside at the unfortunate cache line that was implicated
in the miss. In order to compute the correct decoded value, we clearly need va
again, and this is not something that lets itself be done easily in the precharge
half-buffering scheme[7] that we normally use.* We may recognize two distinctly
different domains: one inside the cache control, where actions need to occur a
variable number of times, dependent on repeat and refill operations, and another
outside it, where actions need to match commands issued on READ and DATA in
Figure 9. Any communications (@ in the figure) that cross this boundary need to
be re-synchronized.

* Another bit, the TOSS, implicated in the single-instruction branch-prediction mechanism
mentioned earlier, needs to be repeated using exactly the same mechanism; this is from
whence the TOSS2GEN derives its name.

39

RESULT

I
READ -

\ CORE

Figure 9. The channel @) crosses the cache control boundary and needs to be made
to match events inside the cache control using the TOSS2GEN process.

2.6.1.1. Specification of TOSS2GEN

Concretely, the program that needs to be executed is

TOSS2GEN =
x[TOSS?t ; TOSS2't ; s:=0;

*x[s=0 — CASE7?c;
[Lc=0V ¢=1 — skip
lc=2 — s:=1
0l c=3 — TOSS2't; s:=1
0l c=4 — TOSS2!t
]

40

Informally, what this program does is that it reads the TOSS from the main CPU
pipeline (the FETCH, in fact) and sends it to the pre-decode on channel TOSS2.
It repeats this until the cache operation has succeeded, which is indicated by the
inner loop setting s to 1. At most, TOSS will be sent three times, twice due to
the case where ¢ is 4, and once again for ¢ = 3. (This is related to the progress
argument in Section 1.5.9; in fact, livelock in that program would correspond to
¢ = 4 repeatedly in this one.)

While the program for TOSS2GEN may look innocuous enough, a seasoned
designer will notice several potential problems: as many as six operations to be
done in sequence (the precharge half-buffers that we use only do two operations
in sequence, which is to say that they have a single synchronization point or state
variable), a nested loop, a state variable, and plenty of conditional communications.
It is highly unlikely that this process could be directly implemented in hardware
with good results. Instead, process decomposition will be used to bring TOSS2GEN
to a manageable size.

2.6.1.2. Decomposing TOSS2GEN

The decomposition of TOSS2GEN proceeds along the following path: We
pick out the communications on TOSS and T0S5S52 and do these in a separate
process. Since t is never inspected by the program, we could justly call this process
a “datapath” process. The program for it is

TOSS2GENLOGIC =
x[TOSS?t; s:=0;

*x[s=0 — SUCCESS?s; TOSS2!t 1]
1.

This is to be composed with

SUCCESSGEN =

x[CASE?c;
[c=2 — SUCCESS!1
0l c=3 — SUCCESS!0; SUCCESS!1
0l c=4 — SUCCESS!0
0le=1V ¢c=0 — skip
]

so that

TOSS2GEN = TOSS2GENLOGIC || SUCCESSGEN .

41

2.6.1.3. Implementation of TOSS2GENLOGIC

In order to implement TOSS2GENLOGIC as a simple precharge half-buffer,
we need to remove the nested loop. This is done by sending ¢ on a channel back
to the process itself, reducing the problem to one of conditionally acknowledging
TOSS so that

TOSS2GENLOGIC =

x[S7s
[s=1 — TOSS2(TOSSX?), XTOSS?_
0l s=0 — TOSS2(XTOSS?)
]

]

I
¢ :=_ *[TOSSz, XTOSS!z; TOSSX?z]

|
S11; *[SI(SUCCESS?) 1 ,

where _ stands for an arbitrary value. Also, we rewrite SUCCESSGEN as a simple
finite-state machine with two states, z = 0 and z = 1.

SUCCESSGEN =
z = 0;
*[[2 =0 — CASE?c 1 =1 — skip I;

Lz=1 — S!1; 2z:=0
lz=0 A ¢c=2 — Sl ; z:=0
lz=0 A ¢c=3 — SI0; z:=1
0l z=0 A ¢=1 — skip
lz=0 A c=4 — S0

1]

and again note that this is non-trivial to implement as a precharge half-buffer due
to the presence of the z state variable. The implementation turns z into a feedback
loop as with TOSS above.

42

The final programs for TOSS2GENLOGIC and SUCCESSGEN may be con-
verted into production rules using the methods described in [7].

2.6.1.4. Comparison to traditional QDI implementation

The approach taken in the MiniMIPS project of minimizing the number of
reshufflings used marks a departure from tradition as exhibited in the Caltech Asyn-
chronous Microprocessor[12]. The main reason for using the precharge half-buffer
as the archetypal circuit in the MiniMIPS was that the performance of this class of
circuits is well understood, and when generating production rules “by hand,” it is
much easier to use a single template. That this is not necessarily the best way to
do things can be illustrated by considering the circuit for SUCCESSGEN in Sec-
tion 2.6.1.2. After the processor was designed, it was realized that this circuit may
be implemented directly simply by sequencing the steps for the case ¢ = 3, using
approximately half the area of the circuit used in the MiniMIPS.

2.6.2. Circuit techniques in the 20-bit comparator

As an example of the circuit techniques used in the MiniMIPS cache subsystem,
the tags comparator posed a particular challenge as a circuit design problem. The
requirement was that this comparator be able to compare 20 bits of tags (actually
ten one-of-four codes corresponding to the tags) and broadcast the result to the
datapath (32 bits in the D-cache, about 50 bits in the I-cache due to the pre-
decoding mechanism—the broadcast is necessary to inform the datapath whether to
retain or discard the line read from the cache as valid and proper data or as a cache
miss). The necessity to broadcast the result to the datapath in two stages follows
from the pipelined completion mechanism described in [11]. This comparator was
optimized as much as possible for the common case of a cache hit, and a broadcasting
mechanism was folded into the design. The comparison and broadcast are done in
two low-level pipeline stages (four stages of CMOS logic), at a maximum cycle rate
of approximately 300 MHz with less than 1 ns latency in 0.6 micron scalable CMOS.

43

- T
H—

16 or 32

datapath
destinations

merge
and

comp
B broadcast (up to 8 per merge)

(4) -

Figure 10. Simplified block diagram of tags comparator. The tags comparator com-
bines the comparison and result broadcast operations in an effort to minimize the total
latency of the cache system. The first stage compares two one-of-four codes in a single cell;
this result is broadcast four ways to the four merge units, which merge the results from
all the units in the first stage and broadcast the result to eight bits’ worth of destination
each, for a total of 32 bits of datapath (more than this in the I-cache).

The first stage of the comparator is a straightforward comparison of two quad-
rail channels. The production rules for the logic computation are

e A ((a1-0 A b1.0)V (a0-0 A b00)V (a2-0 A 52-0) V (a3.0 A b3_0))A
((al_LADBLI1) V...V (a3 1ADB31)) —s t_|

e A ((a0-0 A (B10V 5220V 53.0)) V (al_0 A (b0_0 V 2.0V b3.0)))V
((a01A...)) — foL

The comparator is implemented in exactly this way, and this gives rise to some
problems with charge sharing due to the capacitance of the large internal nodes
in the pulldown network. These problems are handled by precharging the internal
nodes. The first method we use to do this depends on the fact that a single enable
signal is generated by the completion network of the cell. This signal is used to
precharge internal nodes to Vdd through p-channel transistors at the same time as

44

the outputs are precharged. The other, more aggressive approach used to reduce the
occurrence of charge sharing is by precharging the largest internal nodes of the pull-
down network via (again, fairly weak) n-channel transistors connected to Vdd. This
method is also used in the true network of the tags comparator. HSPICE simula-
tions indicate that these two approaches greatly reduce or eliminate the occurrence
of unacceptable (static) charge sharing[9] in the comparator circuit.

| —@FeJt J%

b0 1— | b1l 1 —|b21 —|b3 1 — A f_
L L L L |
| second channel |:
] 1]] |
a01l—|at1 —1|la21 —1|a31 — Y =
. N R — A
b0 0—— | b1 0 —1| b2 0 —1|b3 0 — ,
]]]] : first channel
|
_ _ _ _ |
a00—1| alo —1|a20 —1|a3 0 — Y

g

Figure 11. The logic to compute a true comparison result in the first stage of the tags
comparator. The small precharge transistors for the internal nodes are shown (far right).

The design challenge in the second stage of the tags comparator was to im-
prove the speed of the handshake with the first stage. In order to do this, careful
attention was paid to the completion network by first pipelining the completion
on a byte-wide basis and then by merging the output data completion of pairs of
second comparator stages directly (i.e., instead of the usual two NAND gates and
C-element). Unfortunately, this led to charge sharing problems due to the large
internal capacitance of the dynamic NAND/C-element combination, which had to
be handled by careful analog circuit design.

45

AL el

o 4L L

t0_ t0_— B
fo_
(:)Z S : fO_—
- valid - |
t1_
fl_ _ |
t1_—
f1_—

y

Figure 12. Merging of completion circuits used in the completion detection of the
final stage of the comparator. The merged single-stage network (bottom) replaces the
three stages of the original completion detection network (top).

46

Figure 13. Layout of cache comparator in magic.

The main challenges faced in the design of the tags comparator were to im-
prove the circuit in such a way that the throughput target could be met without

47

compromising latency (which contributes to the throughput of the processor as a
whole) or robustness.

2.6.3. Example: DCACHEL

To illustrate some of the concepts used in the MiniMIPS cache controllers with
emphasis on the unorthodox communication actions introduced in section 1.5.2.1,
we study part of the decomposition of the DCACHEL process. As mentioned in
Section 1.5.8.2, the final CHP program presented in Chapter One for the L pro-
cess leaves out the production and repetition of store data. Adding these back,
DCACHEL becomes

DCACHEL =
x[RESULT?r;
[r="g90" — oldc:= ¢, oldaddr := addr;
CACHEOP?c, ADDR?addr
0 r="repeat” A oldc ="write” —>

¢ :="core_write”, addr := oldaddr
0 else — c:= olde, addr:= oldaddr
1;
[c="write’ —
[r="90" — DATAL?d; CWRITE\d
0 r="repeat” — CWRITE!d
]
0 else — skip
1;
CAladdr,

[r="g0" V r="repeat” — CClc
0 r="refill’ — CCVrefill”
]

1.

The addition of exceptions to the MiniMIPS makes it necessary to be able
to cancel writes to the memory (just like writes to the register file are canceled to
inhibit the effect of instructions that appear “after” the exception in the instruction
stream). We introduce a channel DO for this functionality. Whenever a write
(rw = 1) is dispatched to the cache control, it will be followed by a communication
on DO. If a one is sent, the write is to be executed, else it is to be ignored. If
the operation is a read rather than a write, there will be no communcation on DO.
This complicates things since three separate channels need to be read in order to
know what communication pattern to follow, and we may write

DCACHEL =
*x[[skipresult — skip
0 —skipresult — RESULT?r
1;
skipresult = 0;
[r = 2 gO” H
savec := oldc, saveaddr := oldaddr;
oldc := ¢, oldaddr := addr;
CACHEOQOP?c, ADDR?addr;
[c="write” — DO?do; DATAL?d
[do — CWRITE!d
0 ~do — skipresult = 1;
oldc := savec, oldaddr := saveaddr
]
0 ¢c="read” — skip
]

0 r="repeat” — addr := oldaddr,
[olde =" write” — ¢ :="core_write”, DATAL\d
0 oldc ="read” — c:="read”
]
0 r="refill” — addr:= oldaddr, c:="refill”
1;
CAladdr, CC'lc
1.

49

The last program is unsatisfactory. When discussing ways to produce a circuit
implementation of a CHP program such as this, it is important to argue in terms
that are meaningful from the circuit level. The CHP constructs presented in Sec-
tion 1.5.2.1 are helpful in this respect—although these constructs are unorthodox
from the point of view of concurrent programming, they are quite natural from the
point of view of circuit implementation. Using the value probe, the program may
be simplified to

DCACHEL =
x[RESULT r;
[DO,CACHEOP : —-D0O AN CACHEOP ="write” A
r = 2 9077 H
DO?_, CACHEOP?_ADDR?_ DATAL?_
0 r="repeat” — addr := oldaddr,
[olde =" write” — c¢:="core_write”, CWRITE!d
0 oldc ="read” — ¢ :="read”
1;
CAladdr, CClc, RESULT?_
0 r="refill’ —
CAloldaddr, CCVrefill”, RESULT?_

D r = 779077 /\
(CACHEOP : CACHEOP ="read” V
DO :D0O) —

oldc := ¢, oldaddr := addr;

CACHEOP?c, ADDR?addr, RESULT?_;

[¢c="write’" — DATAL?d; CWRITE!d
0 else — skip 1,

CAladdr, CClc

1.

(Note that

[DO,CACHEOP :-DO AN CACHEOP ="write”
0 CACHEOP : CACHEOP ="read” vV DO : DO

=

[DO A CACHEOP 1 ,

by our definition.) This program is much more satisfactory, being written as a
single reactive process, especially elucidating the mechanism by which the exception-
overriden writes are cancelled. In the final implementation, the datapath variable
d is decomposed from this program, together with addr. The datapath variables as

50

well as the ¢/olde pair are implemented using feedback loops, avoiding the need for
the direct implementation of state variables. This implementation may be derived
by writing out the conditions for each statement in terms of the value probes and
more or less directly implementing these probes as production rules according to
the precharge half-buffer pipeline template.

2.7. Differences from Synchronous Implementations

Given our current design, we may ask what the application of asynchronous
design methodologies to the cache pipelining problem in general and to the Min-
iMIPS cache system in particular has taught us about designing well-performing
VLSI systems. The currently overwhelmingly most popular way of designing sys-
tems such as the ones studied in this Thesis is by the application of decades of
experience with synchronous design. An analysis of a few of the differences seen
between synchronous and asynchronous solutions in this case will highlight the most
important lessons.

The major gain that the use of asynchronous design techniques has brought to
the MiniMIPS caching system has been the modularity of the design. The timing
requirements of the system components (the static “setup” and “hold” times of the
traditional world-view) are here exposed where it is most convenient, i.e., in the
subsystems’ interfaces where they may be processed dynamically.

As an illustration of the modularity of the QDI design style, consider the case
of the cache core. The cache core has a, comparatively speaking, long latency—it
may be long enough (on average) that it would not fit in one processor “cycle.”
On a synchronous machine, this might have led to a system-wide reduction in the
clock frequency. Furthermore, what has not been mentioned so far is that for ease
of implementation, the minimum cycle time of the lowest level cache cell is actually
on the order of twice the minimum cycle time of the rest of the chip, but by virtue
of the asynchronous implementation, this is not readily seen outside the cache cell
itself. The upshot of this is that given certain combinations of addresses issued to
the cache, the cache throughput (and thus the latency) will suffer. This does not,
however, affect the correctness of the cache.

In a synchronous implementation, an additional control structure would have
to be used to achieve the asynchronous data-dependent latency behavior by holding
back the dispatch of successive operations to the same cache bank, at substantial
cost: the complexity of the control structure itself (including an address comparator)
plus the more important additional latency of the address check before dispatching
the commands to the cache core; also, this approach would have to be part of
the interface of the synchronous cache to other parts of the processor—in effect,
the synchronous implementation would include the same handshake signals as the
asynchronous implementation, but it would use them only for flow control rather

51

than also to maintain safe circuit timing, using the clock signal for this more “low-
level” purpose.

The use of asynchronous design techniques allowed us to optimize the cache
control for cache hits—cache miss transistors and circuitry were not designed to
keep up with the core of the CPU, since misses were assumed to be less frequent
than hits. On the other hand, a carefully designed synchronous comparator would
almost certainly have been faster and simpler.

The strongest claim for the modularity of the asynchronous cache design prob-
ably comes from the (as yet unimplemented) partial-word circuitry described in
Chapter One. By using speculative execution, it would be possible to allow a Min-
iMIPS cache to do partial-word operations without any significant performance
penalty for the common case of full-word operations.

2.8. Directions for Future Work

In this Thesis, we have shown how to apply a pipelined asynchronous cache
architecture to a simple sequential specification, namely, that of the Caltech Min-
iMIPS processor. This cache architecture could be extended to handle the infamous
partial-word operations at little cost, and doing so would be an interesting test of
asynchronous design solving a difficult real-world computer architecture problem.
Furthermore, additional work in deeper pipelining, arbitrated cache architectures,
and looser concurrency will be essential to future high-performance asynchronous
computer systems.

2.9. Conclusion

We have demonstrated how to apply the techniques for the design of pipelined
high-throughput asynchronous cache systems to a real-world example, namely the
Caltech MiniMIPS processor. At this point, we might want to ask whether we
have fulfilled the two promises made for asynchronous design methodologies at
the beginning of this Thesis. We claimed that average-case performance could be
achieved instead of worst-case performance. Nowhere is this shown more effectively
than in the memory subsystem of the MiniMIPS processor. The cache is designed
to make it appear to the rest of the processor as a straightforward memory—the
parts that communicate with the cache dispatch an address to read from or to write
to and then simply wait until the operation has completed. In the case of a cache
hit, this takes a few nanoseconds; in the case of a miss, it may take a hundred times
longer. This difference is logically invisible to the core of the CPU, but yet, average-
case performance is obtained; on a cache miss, the processor simply stalls and waits
until the result is available. Formally speaking, this behavior may be described by
saying that the sequence of values on all input and output channels of the cache
system is the same in both situations. As for the second promise, the modularity

52

of the design style is shown in the same scenario. The amount of pipelining and
other design details internal to the cache were private matters between the cache
designer and his simulations; these decisions could all be changed without affecting
other parts of the MiniMIPS processor.

53

[SATENTN

B

10.

11.

12.

13.

14.

15.

10.

References

. H. Abelson and G. J. Sussman, with J. Sussman. Structure and Interpretation
of Computer Programs. MIT Press, 1985.

. J. Hennessey and D. Patterson. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann, 1990.

. H. P. Hofstee. Synchronizing Processes. PhD thesis, California Institute of
Technology, 1995.

. G. Kane and J. Heinrich. MIPS RISC Architecture. Prentice-Hall, 1992.

. T. K. Lee. Performance Analysis and Optimization of Data-Dependent and
Inherently Disjunctive Asynchronous Circuits. Ph.D. thesis. Caltech, 1995.

. A. M. Lines. Private communication, 1997.
A. M. Lines. Pipelined Asynchronous Circuits. M.S. Thesis. Caltech, 1995.

. R. N. Mayo, M. H. Arnold, W. S. Scott, D. Stark, and G. T. Hamachi. 1990
DECWRL/Livermore Magic Release. WRL Research Report 90/7. Digital
Equipment Corporation, 1990.

. C. A. Mead and L. Conway. Introduction to VLSI Systems. Addison-Wesley,
1980.

R. V. Manohar. Ph.D. thesis, to be published. Caltech, 1997.

A. J. Martin, A. M. Lines, R. V. Manohar, M. Nystrom, P. Penzés, R. G. South-
worth, and U. V. Cummings. The Design of an Asynchronous MIPS R3000 Mi-
croprocessor. 17th Conferene on Advanced Research in VLSI, ed. R. B. Brown
and A. T. Ishii, IEEE Computer Society, 1997.

A. J. Martin. The Limitations to Delay-Insensitivity in Asynchronous Circuits.
Sizth MIT Conference on Advanced Research in VLSI ed. W. J. Dally, MIT
Press, 1990.

A. J. Martin. Synthesis of Asynchronous VLSI Circuits. Formal Methods for
VLSI Design, J. Staunstrup, ed. North-Holland, 1990.

A. J. Martin, S. M. Burns, T. K. Lee, D. Borkovic, P. J. Hazewindus. The
Design of an Asynchronous Microprocessor. Decennial Caltech Conference on
VLSI, ed. C. L. Seitz, MIT Press, 19809.

A. J. Martin. The Probe: An addition to communication primitives. Informa-
tion Processing Letters, 20:125-130, 1985.

M. Nystrom. MiniMIPS Cache Mechanism. Unpublished internal document.
Asynchronous Systems Architecture Project, California Institute of Technology,
1997.

04

17. M. Nystrom. MIPS Caching Schemes. Unpublished internal document. Asyn-
chronous Systems Architecture Project, California Institute of Technology,
1996.

18. E. I. Organick. The Multics System. MIT Press, 1972.

19. T. E. Williams. Performance of Iterative Computation in Self-Timed Rings, in
Journal of VLSI Signal Processing, vol. 7, nos. 1-2. Kluwer, 1994.

95

