N , '

i = I]

{ B =]
) ——m“xl !qm“',m | §]

= . r = H] 4‘- -
S B! =1 W 7L
CHAHLHTHEHCHH
= T4 I

3 et H +' -
[] . T 7 1 I
== AT

SUBMICRON SYSTEMS ARCHITECTURE PROJECT .
Department of Computer Science
California Institute of Technology
Pasadena, CA 91125

Semiannual Technical Report

Caltech Computer Science Technical Report
Caltech-CS-TR-88-18
9 November 1988

The research described in this report was sponsored by the Defense Advanced Research
Projects Agency, DARPA Order number 6202, and monitored by the Office of Naval
Research under contract number N00014-87-K-0745.

SUBMICRON SYSTEMS ARCHITECTURE
Semiannual Technical Report

Department of Computer Science

California Institute of Technology

Caltech-CS-TR-88-18
9 November 1988

Reporting Period: 1 April 1988 — 31 October 1988 (7 months)
Principal Investigator: @ Charles L. Seitz

Faculty Investigators: William C. Athas
K. Mani Chandy
Alain J. Martin
Martin Rem
Charles L. Seitz
Stephen Taylor

Sponsored by the
Defense Advanced Research Projects Agency
DARPA Order Number 6202

Monitored by the
Office of Naval Research
Contract Number N00014-87-K-0745

SUBMICRON SYSTEMS ARCHITECTURE

Department of Computer Science
California Institute of Technology

1. Overview and Summary

1.1 Scope of this Report

This document is a summary of the research activities and results for the seven-
month period, 1 April 1988 to 31 October 1988, under the Defense Advanced
Research Project Agency (DARPA) Submicron Systems Architecture Project.
Previous semiannual technical reports and other technical reports covering parts
of the project in detail are listed following these summaries, and can be ordered
from the Caltech Computer Science Library.

1.2 Objectives

The central theme of this research is the architecture and design of VLSI
systems appropriate to a microcircuit technology scaled to submicron feature sizes.
Our work is focused on VLSI architecture experiments that involve the design,
construction, programming, and use of experimental message-passing concurrent
computers, and includes related efforts in concurrent computation and VLSI design.

1.3 Changes in Key Personnel

Dr. William C. Athas completed his appointment as a Postdoctoral Research Fellow
in Computer Science in August 1988, and has joined the faculty at the University
of Texas at Austin as an Assistant Professor of Computer Science. Dr. Stephen
Taylor, a new PhD from the Weizmann Institute of Science and the author of
a multicomputer implementation of flat concurrent prolog, joined the project in

September 1988 with an appointment at Caltech as an Instructor in Computer
Science.

-1-

2. Architecture Experiments

2.1 Mosaic Project

Bill Athas, Charles Flaig, Glenn Lewis, Jakov Seizovic, Don Speck, Wen-King Su,
Tony Wittry, Chuck Seitz

The Mosaic C is an experimental multicomputer with single-chip nodes, currently in
development. The stipulation that the nodes fit on a single chip so limits the storage
for each node that relatively fine-grain concurrent programming techniques must be
used. The Mosaic C will be programmed using the Cantor programming language,
a fine-grain object-based (or Actor) language. We are working toward building a
16K-node Mosaic system using nodes fabricated in 1.2um CMOS technology, with
a near-term milestone of a 1K-node system using nodes fabricated in 1.6pm CMOS.

Much of our effort in this period has been concentrated on the Mosaic C project.
The following is a brief summary of these activities (See also sections 3.1 & 4.5):

1. Cantor version 2.2 has been used internally within the research group for the past
several months, and has been documented for external distribution. A technical
report describing a collection of exemplary Cantor 2.2 programs that range up
to 15 pages of program text in length was published. The report also reports
the rationale for many of the design decisions in the evolution of Cantor from
version 2.0 to 2.2.

2. Our initial implementation of a Cantor code generator for the Mosaic C indicated
that only a simple procedure call mechanism was required; otherwise, the Mosaic
C instruction set has been an efficient target for code generation. Work has
commenced on a final Cantor code generator and runtime system for the Mosaic.

3. In accordance with the studies of code generation, the microcode for the Mosaic
C processor was revised to implement an instruction set having a simpler
procedure-call mechanism, together with several other minor refinements. The
simplification of the instruction set reduced the number of implicants in the
microcode that controls the processor from 66 to 102. The impact of this
simplification on the processor area is merely favorable; its greatest benefit is
in improving the processor speed (the RISC effect).

4. The entire processor was simulated at the clock-cycle and microcode level
to debug and verify the microcode. The verified microcode was then used
to generate a PLA structure, which was tied to the Mosaic C datapath for
switch-level simulation and verification of the entire processor. A hybrid
static /precharge PLA was designed to maximize the performance, and will be
used in the final version of the processor.

5. An interface between the router and memory was designed, laid out, and
verified by switch-level simulation. This final section of the Mosaic C single-

-2

chip multicomputer node also includes the arbitration for memory refresh and
memory access.

Fabrication of the first prototype processors and full Mosaic elements is now
anticipated for early CY1989.

2.2 Second-Generation Medium-Grain Multicomputers*

Chuck Seitz, Alain Martin, Bill Athas, Charles Flaig, Jakov Seizovic, Craig Steele,
Wen-King Su

Deliveries of the first production models of the Ametek Series 2010, a second-
generation medium-grain multicomputer developed as a joint project between our
research project and Ametek Computer Research Division, took place in this period.
The reports we have received have been favorable. One customer who is also a
DARPA contractor had developed 10,000+ lines of source code using the Cosmic
Environment prior to taking delivery of the Ametek 2010, and apparently ported
this code in a few days with no difficulties.

Additional benchmarks on the Ametek Series 2010 continue to show that it runs
8-10 times faster per node than such first-generation machines as the Intel iPSC /1.

Copies of the Cosmic Environment system have been distributed to approxi-
mately an additional 35 sites in this period, bringing the total copies distributed
directly from the project to over 150. In addition, source copies of the Reactive
Kernel node operating system were provided to two government contractors who
are purchasing Ametek 2010 systems. An article titled “Multicomputers: Message-
Passing Concurrent Computers” was published in the August 1988 issue of IEEE
COMPUTER. This article on the current status of the multicomputers that have
developed out of the work of our research group stimulated requests for many ad-
ditional copies of “The C Programmer’s Abbreviated Guide to Multicomputer Pro-
gramming” [Caltech-CS-TR-88-1].

We expect to take delivery of the first 16-node increment of a 256-node Ametek
2010 in November 1988, and also a 16-node Intel iPSC/2, which will later be
expanded to 64 nodes. Substantial blocks of time on the Ametek 2010 will be
available to guest DARPA researchers.

Our Caltech project continues to work with both Ametek and Intel on the
architectural design, message-routing methods and chips, and system software
(evolutions of the Reactive Kernel (RK) node operating system and the Cosmic
Environment (CE) host runtime system) for multicomputers. (See sections 3.2, 3.6
and 4.6 for details on these efforts.) We expect to see additional major advances in
the performance and programmability of these systems over the next two years. In

* This segment of our research is sponsored jointly by DARPA and by grants from

Intel Scientific Computers (Beaverton, Oregon) and Ametek Computer Research
Division (Monrovia, California).

-3-

a.ddition, we continue to develop applications in VLSI design and analysis tools, and
in other areas in which the programming of these multicomputer systems presents
particular difficulties or opportunities. (See sections 3.3-3.5 and 4.9.)

2.3 Cosmic Cube Project
Bill Athas, Wen-King Su, Jakov Seizovie, Chuck Seitz

This section summarizes the current usage and the hardware and software status
of our first-generation multicomputers, the Cosmic Cubes and Intel iPSC /1 d1.

These systems continue to operate reliably. Overall usage has been moderately
heavy. The most time-consuming application in this period from within our own
group has been a continuation of an extensive series of simulations by John Ngai
concerned with the maximal utilization of networks with faulty routers or channels
(see section ?). Supersonic flow computations being performed by students and
faculty in Aeronautics at Caltech continue as the largest share of outside use.

The 64-node Cosmic Cube exhibited a hard failure in this seven-month period,
a complete failure of its primary 5V, 130A power supply. The power supply was
replaced, and the system rebooted without any problems. Counting the power
supply failure as a single failure, the two original Cosmic Cubes have now logged 3.6
million node-hours with only four hard failures, three of them being chip failures in
nodes. Curiously, we have not encountered a single connector failure. The calculated
node MTBF of 100,000 hours reported before these machines were constructed was
extremely conservative. A node MTBF in excess of 1,000,000 hours is probable,
and can be stated at a 54% confidence level.

Our Intel iPSC/1 d7 (128 nodes) was contributed to the Submicron Systems
Architecture Project as a part of the license agreement between the Caltech
and Intel, and is accessible via the ARPAnet to other DARPA researchers
who may wish to experiment with it. To request an account, please contact
chuck@vlsi.caltech.edu. The Ametek Series 2010 system to be installed later
this month will be available for outside use on a similar basis.

3. Concurrent Computation

3.1 Cantor

Nanette J. Boden, William C. Athas, Chuck Seitz

Programming for Fine-Grain Multicomputers

Over the last year we have been conducting a series of fine-grain programming
experiments using Cantor. The purpose of this series of experiments was both
to evaluate Cantor as a programming language and to investigate the nature of
fine-grain programming. Application programs that have been written in these
experiments include: fast-Fourier transform, shortest-path algorithms, a 2D convex
hull solver, R-C chain-circuit simulation, digital logic simulation, a checkmate
analyzer, an enumerator of paraffin isomers, and many others.

As a result of these programming experiments, modifications to Cantor
have been made to facilitate fine-grain programming. Iteration internal to
objects, custom objects, functional abstraction, and one-dimensional vectors are
programming constructs that are now available in the newest version of Cantor,
Cantor 2.2. A feature has also been added to the language to permit rudimentary
discretion over message receipts. Analysis of the programming experiments clearly
indicates that programming situations exist where some message discretion is very
useful. In addition to these modifications, unnecessary features of the original
language specification have been removed, including dynamic typing of variables.
The changes that have been made to Cantor thus enhance programming abstraction
while removing unnecessary constructs.

Using the latest version of Cantor as an experimental tool, we have written
enough programs in the fine-grain style to draw some conclusions. Although
formulations for Cantor programs are myriad, we have detected three general
paradigms for the development of fine-grain programs:

1. Functional program specifications can be mapped directly into message-driven
programs.

2. Solution specifications can be mapped into message-driven programs.

3. The object program can operate as a “logical apparatus” to solve the application
problem.

In addition to observing these paradigms, we have been encouraged by the high
degree of concurrency that is achieved in Cantor programs and by the convenience
and generality of fine-grain programming. Based on our experiments with Cantor
thus far, we believe that large, highly concurrent programs can be efficiently
expressed in the fine-grain programming style.

-5

Pfogramming for the Mosaic

Recent research in the area of Mosaic programming has focused on the definition
and analysis of an abstract machine for the execution of Cantor code. The Cantor
Abstract Machine (CAM) definition is based on the fine-grain multicomputer
architecture, yet encapsulates operations like object creation, message sends and
receives, etc, in single instructions. The purpose of this approach is to isolate
the implementation of these complicated operations as much as possible from the
development of an efficient runtime system.

A new Cantor code generator and simulator have been written for the CAM.
Analysis of the abstract machine has already suggested improvements in the
Cantor intermediate format. In addition, simulation of program execution on the

CAM is expected to be very useful in evaluating potential Mosaic runtime system
alternatives.

3.2 The Cosmic Environment and Reactive Kernel
Jakov Seizovic, Wen-King Su, Chuck Seitz

The Cosmic Environment and Reactive Kernel continue to run reliably on the
original Cosmic Cubes and on the Ametek Series 2010, and no major changes have

been made. The internals of RK are now documented in technical report Caltech-
CS-TR-88-10.

In the original version of the RK, we were able to guarantee the weak fairness
of scheduling on a multicomputer node only if all processes on that node satisfied
the reactive property that they would eventually either terminate, or execute an
xrecv(). The producers of an infinite number of messages are an important class
of processes that do not satisfy the reactive property. A simple modification of
the implementation of the xmalloc() system call has enabled us to support the
infinite computations as well. The xmalloc() system call is implemented in terms
of the RPC mechanism. The requested buffer is not delivered immediately; instead
it is sent to the requesting process and delivered through the regular scheduling
mechanism.

3.3 CONCISE — A Concurrent Circuit Simulator*
Sven Mattisson, Lena Peterson, Chuck Seitz

Within this project, a concurrent circuit simulation program called CONCISE has
been developed. This program is a circuit simulator for transient analysis of CMOS-
circuits. It is written in C and uses the Cosmic Environment/Reactive Kernel
message-passing primitives.

* This segment of our research is a joint project between the Caltech Submicron
Systems Architecture Project and the Department of Applied Electronics at the
University of Lund, Sweden.

-6-

‘ Recently, CONCISE was ported to the Ametek Series 2010. Thus, the program
now runs on several multicomputers with loosely coupled nodes, including the
Ametek 2010 and the Intel iPSC, and on a shared memory multicomputer, the
Sequent Symmetry. The port to the Ametek 2010 showed that CONCISE is more
than eight times faster on the Ametek 2010 than on the Intel iPSC/1, which is a
typical first-generation multicomputer.

The Reactive Kernel primitives support a programming model where each
process has its own memory space. This model makes dynamic partitioning and load
balancing expensive in CPU time. Thus, we have developed a static partitioning
scheme that tries to enhance the convergence rate of the waveform relaxation
method without sacrificing the grain-size of the computational tasks. It is important
to notice that the requirements on the partitioning algorithms in this case differ from
the “traditional” parallelization, where only a few processing nodes are used.

So far, six different combinations of iteration schemes and partitioning have
been tested. The iteration schemes tested are ordinary Jacobi iterations, ordinary
Gauss-Seidel, and n-colored Gauss-Seidel. The n-colored Gauss-Seidel uses the
incidence-degree algorithm to find a coloring with the least number of colors for the
circuit graph. Then, the different colors can be solved concurrently, since each node
has a color different from those of its neighbors. These three algorithms have all
been run with two different partitioning schemes: one in which each circuit node

forms a cluster on its own, and one where source-drain connected circuit nodes are
clustered together.

The results show that regular Gauss-Seidel iterations are not suitable except
for very few processing nodes, and this scheme is the most popular for sequential
waveform-relaxation implementations. Instead, the n-coloring version of Gauss-
Seidel iterations are useful for the case when the number of processing nodes is

large, but significantly less than the number of processes. The number of colors
needed usually lies between three and five.

When the number of computing nodes is close to the number of circuit nodes,
Jacobi iterations do surprisingly well. This is due to the fact that the load imbalance
gets increasingly severe for the other schemes. For some circuits, the clusters get
very big, and splitting schemes fail in producing reasonable size clusters that still
achieve comparable convergence speed. For such circuits a hierarchical approach
where more than one node can be assigned to solving a cluster would be desirable.
Such an approach will be possible with the faster message passing of the second-

generation multicomputers, and experiments in this area are presently being carried
out.

In another effort, Concise has been used by Anthony Skjellum in the Chemical
Engineering Department at Caltech for the simulation of distillation columns. This
work has shown that it is possible to use Concise to simulate dynamic systems that

-7-

are not at all like circuits. As part of this effort, Concise has been modified to make
it easier to install models of other kinds of “devices.”

3.4 Variants of the Chandy-Misra-Bryant Distributed Discrete-Event
Simulation Algorithm

Wen-King Su, Chuck Seitz

A new and more versatile logic simulator has been written in the past six months
to better evaluate a more diverse set of conservative variants of the Chandy-
Misra-Bryant (CMB) distributed discrete-event simulation algorithm. Most of
the conclusions from this study are included in the paper “Variants of the
Chandy-Misra-Bryant Distributed Discrete-event Simulation Algorithm,” accepted
for publication in the 1989 SCS Eastern Multi-conference. The primary conclusions
are that the variants examined are similar, in that all of them take an initial penalty
running on a single node in comparison with sequential event-driven simulators
that exploit an ordered event list. The penalty is due to the generation and
the processing of null messages. However, as the number of processing nodes
increases, the simulation time decreases linearly until all usable concurrency has
been exhausted. Depending on the circuit being simulated, the crossover point (the
point at which the time taken by the concurrent simulators drops below the time
taken for the sequential simulator) has been observed to be anywhere between four
and 200 nodes.

After the paper was submitted, a new simulator variant was written to try to
reduce the initial overhead by combining sequential simulation methods with the
concurrent simulator variants. The resulting simulator has the performace of a
sequential simulator for the single processor case, and it converges with that of the
concurrent simulator when the number of nodes is sufficiently large. However,
the nature of the logic circuit being simulated strongly influences the rate of
convergence. We have observed all three cases:

1. The simulation time humps upward toward that of the concurrent simulators as
soon as the number of processing nodes is increased beyond one.

2. The simulation time remains the same until the concurrent-sequential crossover
point.

3. The simulation time starts to decrease as soon as the number of nodes are
increased, but the drop is less than linear.

A conclusion of this study is that very-high-performance logic simulation on
concurrent computers is completely plausible for systems with very large numbers
of nodes, where the CMB null-message scheme is fully exploited. Conversely, it
is efficient for small-/V systems only when the elements being simulated are more
complex and have longer running times than logic elements.

-8-

3.5 Automatic Mapping of Processes and Channels

Drazen Borkovic, Alain Martin

To facilitate programming of message-passing machines, we have developed a
preprocessor, map®, that allows for a certain level of abstraction in the mapping
of processes and channels on the nodes and physical channels of a message-passing
multicomputer. *

The description of a set of processes and the channels between them has been
compiled into a set of C functions that perform the mapping of the processes onto
physical nodes of the target machine. The preprocessor supports a hierarchical
organization of processes and local names for the channels. There is also a set of
library routines that can emulate channels with arbitrary slack.

The preprocessor and the library routines have been successfully implemented
and tested under the Cosmic Environment/Reactive Kernel system.

3.6 A Multicomputer “Page Kernel”
Craig S. Steele, Chuck Seitz

As described in a previous report, an experimental “page kernel” is being developed
that uses memory-access-protection mechanisms as the interface to multicomputer
message subsystems. A prototype of the “page kernel” is now running on a
sequential machine. The current code is simulating the memory-management

hardware of the Ametek Series 2010 computing node, and will be ported to the
Series 2010 shortly.

The page kernel supports dynamic load-balancing and process relocation. The
kernel’s ability to transparently update copies of data distributed across a multi-
node system is particularly well-suited for chaotic iterative programs, such as
process-placement optimization.

-9

4. VLSI Design

4.1 Testing Self-Timed Circuits
Pieter Hazewindus, Alain Martin

We are investigating methods to test self-timed circuits. Traditionally, it is thought
that these circuits are hard to test because of the possibility of races and hazards,

and because these circuits are sequential. In our design method, however, races and
hazards are absent.

The fault model we use is the stuck-at model, where each wire may be stuck
forever at a high (logic-1) or low (logic-0) voltage. We have proven that it is sufficient
to perform a single four-phase handshake on each channel to detect all detectable
stuck-at faults. Some faults are undetectable.

For the automatic compilation, the main sequencing element is the so-called
D-element. For the D-element, there are twenty-two possible stuck-at faults, two
of which are undetectable. We have designed an alternate D-element that does not
have any undetectable stuck-at faults. Most other circuit constructs in this compiler
are completely testable.

Although it is not yet certain whether all constructs can be made entirely
testable, our present estimate is that self-timed circuits designed according to our
method should be easier to test than traditional clocked circuits.

4.2 A Self-Timed 3z + 1 Engine
Tony Lee, Alain Martin

We have designed and fabricated a self-timed special-purpose processor for
implementing the 3z+1 algorithm. The processor consists of a state-machine and an
80-bit-wide datapath. It contains approximately 40,000 transistors and operates at
over 8 MIPS in 2um MOSIS SCMOS technology. As usual, the chip was functional
on first silicon.

4.3 Performance Analysis of Self-Timed Circuits

Steve Burns, Alain Martin

We have developed methods for determining the repetition time of a set of
communicating sequential processes described as handshaking expansions. This
performance measure is provided in the form of constraint equations involving
symbolic values of the communication and sequencing delays. The analysis is valid
regardless of the actual delay values, and thus provides a means of comparing designs
described at the handshaking expansion level without first generating detailed
circuit implementations. Circuits for handshaking expansions that result in slow
repetition times need never be designed.

-10-

This method has proven particularly useful in the analysis of programs involving
data. It has been used throughout the design of the self-timed microprocessor,
increasing the performance of programs involving data up to a factor of two.

4.4 The Design of a Self-Timed Microprocessor

Alain Martin, Steve Burns, Tony Lee, Drazen Borkovic, Pieter Hazewindus

In order to refute the claims that our design method would be too slow and too
wasteful in area for anything but small circuits, we have embarked on the design of
complete general-purpose microprocessor. The instruction set is “classic”: 16-bit
instructions with offset, load/store type of instructions, and separate memories

for instructions and data. The only restriction is the absence of an interrupt
mechanism.

As expected, since the method is based on concurrent programming techniques,
the design is highly concurrent. The fetch, decode, and execute phases overlap, as
do the execution of ALU and memory instructions. The different processes share
16 general-purpose registers, and four buses are used to communicate with the
registers, in addition to point-to-point channels.

We are now in the layout phase of the design. Preliminary estimates of the
performance are encouraging. In 2um SCMOS, we expect to reach 20MIPS.

4.5 Mosaic Elements

Chuck Seitz, Bill Athas, Charles Flaig, Glenn Lewts, Don Speck, Jakov Seizovie,
Wen-King Su

With the completion of the packet interface section and the near-completion of the
processor, and with the other sections having already been fabricated and tested,
the Mosaic C single-chip multicomputer node is rapidly approaching completion.
Assembly of the sections will start within the next month, and fabrication of
complete elements early in 1989.

The packet interface for the Mosaic chip has been layed out and verified with the

switch-level simulation. It is entirely synchronous, and was designed conservatively,
so no problems with it are anticipated.

The packet interface consists of two independent finite-state machines, one for
sending packets, and the other for receiving packets. Both machines act as simple
DMA channels, stealing unused memory cycles, and the packet interface is designed

to be able to sustain a throughput equal to the maximum possible message rate that
can be achieved by the message router.

The packet interface provides for a fairly complete testing of itself and the router,
initiated by a CPU request to send a message to itself. In this mode of operation, the

message will be taken from the memory, sent through all three router dimensions,
and received back into the memory.

-11-

4.6 Fast Self-Timed Mesh Routing Chips

Charles Flaig, Chuck Seitz

A new design of a mesh routing chip (MRC), the FMRC2.0 design, was sent to
fabrication in May 1988, together with a separate test chip containing only the
FIFO used in the FMRC2.0. These chips employ a circuit design style that is
potentially faster but less conservative than is usual for self-timed designs. The
chips returned from fabrication do indeed operate nearly three times faster than
previous designs. The FIFO test chip, fabricated in a 2um MOSIS SCMOS process
(this chip was also a test of the new 40-pin 2um pads and design frame that we
developed for MOSIS) operated correctly at 70 MBytes /s!

The critical path in a routing chip includes somewhat longer delay paths due
to the switching of the packets; hence, although the FMRC2.0 was fabricated in a
1.6um process, and its FIFOs might be expected to operate at around 85 MBytes /s,
it operates as anticipated at 70 MBytes/s. However, it routes packets incorrectly,
showing symptoms of directing packets according to the tail of the previous packet
rather than the head of the current packet. This fault was finally traced to a timing
error of approximately 0.7ns in the latching of a routing decision. The timing error
was fixed, and the timing margins in the entire chip were reexamined. A post facto
Spice simulation of what the analysis showed were the critical points in the old
and new designs verified that the original design had a timing error of 0.7ns, while
the revised design has a timing margin of about 1.0ns (about 50% of the difference
between two short delay paths; hence, not as close as it may sound).

If successful, we expect this new FMRC chip to replace the MRC currently
used in the Ametek Series 2010 multicomputer. With help from George Lewicki,
this design is also being transferred to an Intel fabrication process for possible use
in a future Intel multicomputer.

Tests of the self-timed FIFO in a 2um MOSIS SCMOS technology will be of
interest to other chip designers in the DARPA VLSI community — particularly
those designing self-timed chips.

The 2um FIFO tests yielded a request — acknowledge time of 6.5-7.0ns, and
a throughput of over 70 MBytes/s on these byte-wide channels. Lest someone
interpret this test result as implying that we are driving 70MHz signals through
these pads, please understand that in 2-cycle R/A signaling (cf, Mead & Conway,
figure 7.16), only one transition is required for each data transfer, so the maximum
fundamental frequency on any R/A or data pin is 35MHz to transfer data at a
70MHz rate.

The total fall-through time for all 101 FIFO stages was measured as 350ns,
or 3.5ns fallthrough per stage. The fallthrough time calculated by the 7-model
is about 707, so this is consistent with a value of 7 for the 2um MOSIS SCMOS
n-well process of about 50ps (which is a bit smaller than expected). The internal

-12-

cycle time when the operation is not impeded by signals passing through pads and
package pins is about 1807, or about 9ns, corresponding to an internal throughput
rate of 114MHz.

These speeds in the 2u MOSIS n-well SCMOS technology are, as expected,
about twice as fast as a nearly identical test device fabricated in a 3um MOSIS
p-well SCMOS process. The fallthrough times are more difficult to measure in the
1.6um FMRC2.0 chip, because of switching and address-decrementing logic in the
FIFO pipeline. We can infer than the FIFO fall-through times are about 2.8ns per

stage, corresponding to a 7 of 40ps, and an internal throughput rate of about 140
MHz.

It is quite evident from these tests that we are able to achieve much higher

internal speeds with self-timed and/or asynchronous designs than we know how to
achieve with clocked designs.

4.7 Adaptive Routing in Multicomputer Networks
John Y. Ngai, Chuck Seitz

Our studies of adaptive routing in multicomputer networks are approaching a
conclusion, and have been generally successful. We now believe that the Adaptive
Cut-Through (ACT) routing scheme is capable of outperforming the existing highly
evolved oblivious routing devices by a factor of about two in throughput, and have
numerous other advantages in hot-spot throughput and fault-tolerance. A summary
of the results of our investigations is attached at the end of this report.

What remains to be done to realize the advantages of the ACT routing scheme
is to design a VLSI routing chip and/or a new routing section for the Mosaic C.

4.8 Pads and Pad Frame Generation
Charles Flaig, Chuck Seitz

Derived in large part from the pads and pad frames we have designed for mesh
routing chips (MRCs), a variety of new pad circuits have been designed for the
A = 0.6um, 0.8um, and 1.0um MOSIS SCMOS processes. One of these design
variations was used to produce a new 2um 40-pin “tiny-chip” frame for MOSIS,
including input, Schmitt input, output, and tristate output pads. The unusual
features of these pad designs include the use of longitudinal (bipolar) clamp
transistors for static and overvoltage protection, and a variety of pad pitches.

We can now report some test results for the 2pm pads. This 40-pin pad frame
was fabricated with a 101-stage self-timed FIFO from the FRMC2.0 design (see
section 4.6), together with some output pads being driven directly from input pads.

Overvoltage clamping on the inputs clamps to 6V at 200mA, and 7V at 800mA,
which is excellent. Undervoltage protection is about the same as above, BUT, at

-13-

about -500mA the chip appears to suffer latchup (if power is supplied). This is not
a problem for normal static, where no Vdd is applied, but if an input does goes
more than about 1V negative while power is applied, latchup may be induced.

For the Schmitt input pad, trigger voltages are 0.8V and 3.9V, for a 2.9V
hysteresis. Inpad — Outpad delay is 1.5-2.0ns for no load, 2.0-2.5ns for a fanout
of 1, and 2.5-3.5ns for a fan-out of 2. Rise/fall time is 3.5ns for no load, 4.5ns for a
fanout of 1, and 6.5ns for a fan-out of 2. The output pads can sink about 30mA at
1.0V, or source about 30mA at 4.0V, under 5.0V operation. These characteristics
are more than adequate for student projects.

4.9 The Notorious CIF-flogger Program
Glenn Lewis, Chuck Seitz

The CIF-flogger is a multicomputer program for flattening CIF files, rasterizing the
geometry, and for performing parallel operations on the geometry in strips. It runs
under the CE/RK system, and hence, on most available multicomputers, including
the Ametek Series 2010.

The CIF-flogger currently supports simple bloat, shrink, and logical operations
on the flattened geometry, and hence can perform most geometrical design-rule
checks. It establishes connected component labeling and will eventually provide
complete design-rule checking, well checks, and circuit extraction. Based on timings
on the iPSC/1, CIF-flogger is expected to perform design rule checks for 100K-
transistor chips in much less than 1s per rule on second-generation multicomputers.

-14-

California Institute of Technology
Computer Science Department, 256-80
Pasadena CA 91125

Technical Reports
23 August 1988
Prices include postage and help to defray our printing and mailing costs.

Publication Order Form
To order reports fill out the last page of this publication form. Prepayment is required for all materials. Purchase orders will not

be accepted. All foreign orders must be paid by international money order or by check drawn on a U.S. bank in U.S. currency,
payable to CALTECH.

___CS-TR-88-17 $3.00 Constrained Diffrential Optimization for Neural Networks,
Platt, John C and Alan H Barr
____CS-TR-88-16 $3.00 Programming Parallel Computers,
Chandy, K. Mani
___CS-TR-88-15 $13.00 Applications of Surface Networks to Sampling Problems in Computer Graphics, PhD Thesis
Von Herzen, Brian
___CS-TR-88-14 $2.00 Syntaz-directed Translation of Concurrent Programs into Self-timed Circuits
Burns, Steven M and Alain J Martin
—___CS-TR-88-13 $2.00 A Message-Passing Model for Highly Concurrent Computation,
Martin, Alain J
____CS-TR-88-12 $4.00 A Comparison of Strict and Non-strict Semantics for Lists, MS Thesis
Burch, Jerry R
___CS-TR-88-07 $3.00 The Hezagonal Resistive Network and the Circular Approzimation,
Feinstein, David 1
___CS-TR-88-06 $3.00 Theorems on Computations of Distributed Systems,
| Chandy, K Mani
| ———CS-TR-88-05 $3.00 Submicron Systems Architecture
ARPA Semiannual Technical Report
__CS-TR-88-01 $3.00 C Programmer’s Abbreviated Guide to Multicomputer Programming,
Seitz, Charles, Jakov Seizovic and Wen-King Su
—5258:TR:88 $3.00 Submicron Systems Architecture
ARPA Semiannual Technical Report
—-5256:TR:87 $2.00 Synthesis Method for Self-timed VLSI Circuits,
Martin, Alain
current supply only: see Proc. ICCD’87: 1987 IEEE Int’l. Conf. on C) - ’
— 5253:TR:88 $2.00 Synthesis of Self- Timed Circuits by Program Transformation, g emputer Design, 224:228, Oct'8?
Burns, Steven M and Alain J Martin
—5251:TR:87 $2.00 Conditional Knowledge as a Basts for Distributed Simulation,
Chandy, K. Mani and Jay Misra
Images, Numerical Analysis of Stngularities and Shock Filters, PhD Thesis
Rudin, Leonid Iakov
Logic from Programming Language Semantics, PhD Thesis
Choo, Young-il
VLSI Concurrent Computation for Music Synthesis, PhD Thesis
Wawrzynek, John
—5246:TR:87 $3.00 Framework for Adaptive Routing
Ngai, John Y and Charles L. Seitz
—5244:TR:87 $3.00 Multicomputers
Athas, William C and Charles L Seitz

Resource-Bounded Category and Measure in Ezponential Complezity Classes, PhD Thesis
Lutz, Jack H ’

__5250:TR:87 $10.00
—5249:TR:87 $6.00

— 5247:TR:87 $6.00

—5243:TR:87 $5.00

Caltech Computer Science Technical Reports

—5242:TR:87 $8.00 Fine Grain Concurrent Computations, PhD Thesis
Athas, William C.
——5241:TR:87 $3.00 VLSI Mesh Routing Systems, MS Thesis
Flaig, Charles M
—5240:TR:87 $2.00 Submicron Systems Architecture
ARPA Semiannual Technical Report
—5239:TR:87 $3.00 Trace Theory and Systolic Computations
Rem, Martin
——5238:TR:87 '$7.00 Incorporating Time in the New World of Computing System, MS Thesis
Poh, Hean Lee
—5236:TR:86 $4.00 Approach to Concurrent Semantics Using Complete Traces, MS Thesis
Van Horn, Kevin S.
—5235:TR:86 $4.00 Submicron Systems Architecture
ARPA Semiannual Technical Report
— 5234:TR:86 $3.00 High Performance Implementation of Prolog
Newton, Michael O
—5233:TR:86 $3.00 Some Results on Kolmogorov-Chaitin Complezity, MS Thesis
Schweizer, David Lawrence
—5232:TR:86 $4.00 Cantor User Report
Athas, W.C. and C. L. Seitz
—5230:TR:86 $24.00 Monte Carlo Methods for 2-D Compaction, PhD Thesis
Mosteller, R.C.
—5229:TR:86 $4.00 @¢naLOG - A Functional Simulator for VLSI Neural Systems, MS Thesis
Lazzaro, John
——5228:TR:86 $3.00 On Performance of k-ary n-cube Interconection Networks,
Dally, Wm. J
——5227:TR:86 $18.00 Parallel Ezecution Model for Logic Programming, PhD Thesis
Li, Pey-yun Peggy
——5223:TR:86 $15.00 Integrated Optical Motion Detection, PhD Thesis
Tanner, John E.
—5221:TR:86 $3.00 Sync Model: A Parallel Ezecution Method for Logic Programming
Li, Pey-yun Peggy and Alain J. Martin
current supply only: see Proc SLP’86 $rd IEEE Symp on Logic Programming Sept ’86
—5220:TR:86 $4.00 Submicron Systems Architecture
ARPA Semiannual Technical Report
—5215:TR:86 $2.00 How to Get a Large Natural Language System into a Personal Computer,
Thompson, Bozena H. and Frederick B. Thompson
—5214:TR:86 $2.00 ASK 1is Transportable in Half a Dozen Ways,
Thompson, Bozena H. and Frederick B. Thompson
—5212:TR:86 $2.00 On Seitz’ Arbiter,
Martin, Alain J
—5210:TR:86 $2.00 Compiling Communicating Processes into Delay-Insensitive VLSI Circuits,
Martin, Alain
current supply only: see Distributed Computing v 1 no 4 (1986)
<207 TR:86 $2.00 Complete and Infinite Traces: A Descriptive Model of Computing Agents,
van Horn, Kevin
—5205:TR:85 $2.00 Two Theorems on Time Bounded Kolmogrov-Chaitin Complezity,
Schweizer, David and Yaser Abu-Mostafa
____5204:TR:85 $3.00 An Inverse Limit Construction of a Domain of Infinite Lists,
Choo, Young-Il
___5202:TR:85 $15.00 Submicron Systems Architecture,
ARPA Semiannual Technical Report

—5200:TR:85

__5198:TR:85

__5197:TR:85

—-5195:TR:85

__5194:TR:85

__5193:TR:85

—..5190:TR:85
__5189:TR:85
——-5185:TR:85
_.—5184:TR:85
——5179:TR:85
— 5178:TR:85
—5174:TR:85
— - 5172:TR:85
—— 5168:TR:84
— 5165:TR:84
— 5164:TR:84
— 5160:TR:84
—5158:TR:84
——5157:TR:84
— 5147:TR:84
——5143:TR:84
——5140:TR:84
— 5139:TR:84

——5137:TR:84

$18.00
$8.00
$7.00

$3.00

$5.00

$2.00

$3.00
$10.00
$11.00
$7.00
$3.00
$9.00
$7.00
$6.00
$3.00
$4.00
$13.00
$7.00
$6.00
$15.00
$4.00
$5.00
$5.00
$4.00

$7.00

Caltech Computer Science Technical Reports

ANIMAC: A Multiprocessor Architecture for Real-Time Computer Animation, PhD thesis
Whelan, Dan

Neural Networks, Pattern Recognition and Fingerprint Hallucination, PhD thesis
Mjolsness, Eric

Sequential Threshold Circuits, MS thesis

Platt, John

New Generalization of Dekker’s Algorithm for Mutual Ezclusion,

Martin, Alain J

current supply only: see Information Processing Letters, 23, 295-297 {(1986)
Sneptree - A Versatile Interconnection Network,

Li, Pey-yun Peggy and Alain J Martin

Delay-insensitive Fair Arbiter

Martin, Alain J

current supply only: see Distr Computing 1:226-234 (1986)

Concurrency Algebra and Petri Nets,

Choo, Young-il

Hierarchical Composition of VLSI Circusts, PhD Thesis

Whitney, Telle

Combining Computation with Geometry, PhD Thesis

Lien, Sheue-Ling

Placement of Communicating Processes on Multiprocessor Networks, MS Thesis
Steele, Craig

Sampling Deformed, Intersecting Surfaces with Quadtrees, MS Thesis,

Von Herzen, Brian P.

Submicron Systems Architecture,

ARPA Semiannual Technical Report

Balanced Cube: A Concurrent Data Structure,

Dally, William J and Charles L Seitz

Combined Logical and Functional Programming Language,

Newton, Michael

Object Oriented Architecture,

Dally, Bill and Jim Kajiya

Customizing One’s Own Interface Using Englisk as Primary Language,
Thompson, B H and Frederick B Thompson

ASK French - A French Natural Language Syntaz, MS Thesis
Sanouillet, Remy

Submicron Systems Architecture,

ARPA Semiannual Technical Report

VLSI Architecture for Sound Synthesis,

Wawrzynek, John and Carver Mead

Bit-Serial Reed-Solomon Decoders in VLSI, PhD Thesis
Whiting, Douglas

Networks of Machines for Distributed Recursive Computations,
Martin, Alain and Jan van de Snepscheut

General Interconnect Problem, MS Thesis

Ngai, John

Hierarchy of Graph Isomorphism Testing, MS Thesis
Chen, Wen-Chi

HEX: A Hierarchical Circuit Eztractor, MS Thesis
Oyang, Yen-Jen

Dialogue Designing Dialogue System, PhD Thesis
Ho, Tai-Ping

— 5136:TR:84
~===5135:TR:84
— 5134:TR:84
—5133:TR:84
—5132:TR:84
——5129:TR:84
—-5128:TM:84
——5125:TR:84
——5123:TR:84
—5122:TR:84
— 5114:TM:84
—5112:TR:83
—5106:TM:83
—5104:TR:83
. —5094:TR:83
——-5092:TM:83
—5091:TR:83
—5090:TR:83

__5089:TR:83

. 5086:TR:83
__5082:TR:83

—5081:TR:83

—__5074:TR:83
__5073:TR:83

—5065:TR:82

$5.00
$7.00
$2.00
$13.00
$10.00
$5.00
$3.00
$6.00
$14.00
$8.00
$3.00
$22.00
$1.00
$9.00
$2.00
$2.00
$2.00
$9.00

$10.00

$4.00
$10.00

$4.00

$10.00
$12.00

$3.00

Caltech Computer Science Technical Reports

Heterogeneous Data Base Access, PhD Thesis
Papachristidis, Alex
Toward Concurrent Arithmetic, MS Thesis
Chiang, Chao-Lin
Using Logic Programming for Compiling APL, MS Thesis
Derby, Howard
Hierarchical Timing Simulation Model for Digital Integrated Circuits and Systems, PhD Thesis
Lin, Tzu-mu
Switch Level Fault Simulation of MOS Digital Circuits, MS Thesis
Schuster, Mike ’
Design of the MOSAIC Processor, MS Thesis
Lutz, Chris)
Linguistic Analysis of Natural Language Communication with Computers,
Thompson, Bozena H
Supermesh, MS Thesis
Su, Wen-king
Mossim Simulation Engine Architecture and Design,
Dally, Bill
Submicron Systems Architecture,
ARPA Semiannual Technical Report
ASK As Window to the World,
Thompson, Bozena, and Fred Thompson
Parallel Machines for Computer Graphics, PhD Thesis
Ulner, Michael
Ray Tracing Parametric Patches,
Kajiya, James T
Graph Model and the Embedding of MOS Circuits, MS Thesis
Ng, Tak-Kwong
Stochastic Estimation of Channel Routing Track Demand,
Ngai, John
Residue Arithmetic and VLSI,
Chiang, Chao-Lin and Lennart Johnsson
Race Detection in MOS Circuits by Ternary Simulation,
Bryant, Randal E
Space-Time Algorithms: Semantics and Methodology, PhD Thesis
Chen, Marina Chien-mei . §.
Signal Delay in General RC Networks with Application to Timing Simulation of Digital
Integrated Circuats, :
Lin, Tzu-Mu and Carver A Mead
VLSI Combinator Reduction Engine, MS Thesis
Athas, William C Jr .
Hardware Support for Advanced Data Management Systems, PhD Thesis
Neches, Philip
RTsim - A Register Transfer Simulator, MS Thesis
Lam, Jimmy
current supply only: see Acta Informatica 20, 301-313, (1983)
Robust Sentence Analysis and Habitability,
wick, David S :
Ezomated Performance Optimization of Custom Integrated Circuaits, PhD Thesis
Trimberger, Steve
Switch Level Model and Simulator for MOS Digital Systems,
Bryant, Randal E

___5054:TM:82

____5051:TM:82

___ 5035:TR:82

___5034:TR:82

___5033:TR:82

_5029:TM:82

—5018:TM:82

- 5017:TM:82

__5015:TR:82

—...5014:TR:82

——-5012:TM:82

__ 5000:TR:82

__ 4684:TR:82

. 4655:TR:81

—3760:TR:80

_ 3759:TR:80

——3710:TR:80

__ 3340:TR:79

—2276:TM:78

$3.00
$2.00
$9.00
$12.00
$4.00
$4.00
$2.00
$2.00
$15.00
$15.00
$2.00
$6.00
$3.00
$20.00
$10.00
$10.00
$10.00
$26.00

$12.00

Caltech Computer Science Technical Reports

Introducing ASK, A Simple Knowledgeable System, Conf on App’l Natural Language Processing
Thompson, Bozena H and Frederick B Thompson

Knowledgeable Contezts for User Interaction, Proc Nat’l Computer Conference
Thompson, Bozena, Frederick B Thompson, and Tai-Ping Ho

Type Inference in a Declarationless, Object-Oriented Language, MS Thesis
Holstege, Eric

Hybrid Processing, PhD Thesis

Carroll, Chris

MOSSIM II: A Switch-Level Simulator for MOS LSI User’s Manual,
Schuster, Mike, Randal Bryant and Doug Whiting

POOH User’s Manual,

Whitney, Telle

Filtering High Quality Tezt for Display on Raster Scan Devices,

Kajiya, Jim and Mike Ullner

Ray Tracing Parametric Patches,

Kajiya, Jim

VLSI Computational Structures Applied to Fingerprint Image Analysis,
Megdal, Barry

Eztension of Object-Oriented Languages to a Homogeneous, Concurrent Architecture, PhD Thesis
Lang, Charles R Jr '

Switch-Level Modeling of MOS Digital Circuits,

Bryant, Randal

Self-Timed Chip Set for Multiprocessor Commaunication, MS Thesis
Whiting, Douglas

Characterization of Deadlock Free Resource Contentions,

Chen, Marina, Martin Rem, and Ronald Graham

Proc Second Caltech Conf on VLSI,

Seitz, Charles, ed.

Tree Machine: A Highly Concurrent Computing Environment, PhD Thesis
Browning, Sally

Homogeneous Machine, PhD Thesis

Locanthi, Bart

Understanding Hierarchical Design, PhD Thesis

Rowson, James

Proc. Caltech Conference on VLSI (1979),

Seitz, Charles, ed

Language Processor and ¢ Sample Language,

Ayres, Ron

Caltech Computer Science Technical Reports
Please PRINT your name, address and amount enclosed below:

name

Address -

City State Zip Country

Amount enclosed $

Please check here if you wish to be included on our mailing list

Please check here for any change of address

Please check here if you would prefer to have future publications lists sent to your e-mail address.

E-mail address

Return this form to: Computer Science Library, 256-80, Caltech, Pasadena CA 91125

__ 88-17 5238 5197 5135
88-16 5236 5195 5134
88-15 5235 5194 5133
88-14 5234 5193 5132
88-13 5233 5190 5129
88-12 5232 5189 5128
88-07 5231 5185 5125
88-06 5230 5184 5123

___ 88-05 5229 5179 5122
88-01 5228 5178 5114

5258 5227 5174 5112
5256 5223 5172 5106

5253 5221 5168 5104
5251 5220 5165 5094

5250 5215 5164 5092
5249 5214 5160 5091

5247 5212 5158 5090
5246 5210 5157 5089

5244 5207 5147 5086
5243 5205 5143 5082

5242 5204 5140 5081
5241 5202 5139 5074

5240 5200 5137 5073

5239 5198 5136 5065

Variants of the Chandy-Misra-Bryant Distributed
Discrete-event Simulation Algorithm

Wen-King Su and Charles L. Seitz
Department of Computer Science
California Institute of Technology

1. Introduction

We have been using variants of the Chandy-Misra-Bryant (CMB) distributed
discrete-event simulation algorithm [1,2,3] since 1986 for a variety of simulation
tasks [4]. The simulation programs run on multicomputers [5| (message-passing
concurrent computers), such as the Cosmic Cube, Intel iPSC, and Ametek Series
2010. The excellent performance of these simulators led us to investigate a family
of variants of the basic CMB algorithm, including lazy message-sending, demand-
driven operation with backward demand messages, and adaptive adjustment of the
parameters that control the laziness.

These studies were also motivated by our interest in scheduling strategies for
reactive (message-driven) multiprocess programs [5,6,7], which are semantically
similar to discrete-event (event-driven) simulators. @ The simulator itself is
implemented in the reactive programming environment that we have developed
for multicomputers, the Cosmic Environment, and the Reactive Kernel [8].

This paper is a brief and preliminary report of the simulation algorithms and
performance results. A more definitive report will be found in the first author’s
forthcoming PhD thesis.

2. The CMB Simulation Framework

As usual, the system to be simulated is modeled as a set of communicating elements.
A CMB simulator can be implemented by coding the behavior of elements in
processes that communicate by messages. A message conveys both a time interval
and any events within this interval. A process reacts to the receipt of an input
message by updating its internal state; and, if outputs can be ‘advanced in time,

The research described in this paper was sponsored in part by the Defense
Advanced Research Projects Agency, DARPA Order number 6202, and monitored
by the Office of Naval Research under contract number N00014-87-K-0745; and in
part by grants from Intel Scientific Computers and Ametek Computer Research
Division.

by sending messages to connected processes. These messages may include null
messages that convey no events (changes in the state information), but serve only
to advance the simulation time.

It is easy to show that such a simulator is correct [3], in the sense that it computes
a possible behavior of the system being simulated. A sufficient condition for freedom
from deadlock in this eager message-sending mode is that there is a positive delay in
every circuit in the graph of element vertices and communication arcs. Intuitively,
it is the delay of the elements being simulated that permits the element simulators
to compute the outputs over an interval that is later than the time of the inputs,
so that time advances. Simulation time is determined locally, and may get as far
out of step at different elements as their causal relationships permit.

This conservative (also known as pessimistic) type of simulator exploits precisely
the concurrency inherent in the system being simulated. In practice, just as
with other concurrent programs, if the number of concurrently runnable processes
substantially exceeds the number of processors, the utilization of concurrent
resources is high. The speculative (also known as optimistic) type of simulator
attempts to exploit additional concurrency by computing beyond the interval during
which inputs are defined, at the risk of having to roll back if the speculations
prove incorrect. Such approaches are attractive for simulating systems whose
inherent concurrency is insufficient to keep concurrent resources busy, and in which
speculations can be made with high confidence. Our studies have concentrated on
conservative variants of the CMB algorithm.

The principal trouble with naive implementations of conservative CMB dis-
tributed simulation programs is a volume of null messages that may greatly exceed
the number of event-containing messages. This difficultly is most evident when
simulating systems with many short-delay circuits having relatively low levels of
activity.

In practice, an element simulator may take as long to process a null message
as an event-containing message, particularly with simple elements such as logic
gates. In distributing the simulation, we seek to reduce the time required
to complete the computation; however, we have an immediate problem if the
element simulators must perform many more message-processing operations in the
distributed simulation than they would perform event-processing operations in a
sequential simulation. The centralized regulation of the advance of time achieved
through the ordered event list maintained by sequential simulation programs allows
these simulators to invoke element routines only once for each input event. The null
messages inflate not only the volume of messages the system must handle, but also
the computational load. Thus, if we are going to compete with the best sequential
simulators, we must reduce the volume of null messages.

3. Indefinite Lazy Message Sending

To reduce the volume of messages, we use various strategies to defer sending outputs
in the hope that the information can be packed into fewer messages. For example,

2

one of the most obvious schemes is to defer sending null messages, so that a series
of null messages and an event-containing message can be combined to form a single
message that spans a longer interval. Since output events are often triggered only
by input events, deferring the delivery of preceeding null messages is less likely
to hamper the progress of the destination element than deferring the delivery of
event-containing messages.

The first problem that must be addressed in employing such strategies is
deadlock. When element simulators defer sending output messages, they may
cyclically deny themselves input messages, leading to deadlock. All of our simulators
have employed a technique of indefinite lazy message sending to permit arbitrary
strategies for deferring message sending, while still avoiding deadlock. The following
is the inner loop of the simulator, shown in the C programming language:

while(1)
if (p = xrecv())
simulate_and_optionally_send_messages(p);
else
take_other_action();

The function xrecv returns a pointer, p, that points to a message for the simulation
process if a message has been received. The simulator then dispatches to the
appropriate element simulator, and may either send or queue the outputs that
the element simulator produces. If there is no message in the node’s receive queue,
the pointer returned is a NULL (0) pointer. In this case, the simulator takes other
action to break any possible deadlock. For a source-driven simulator, it selects a
queued output to send as a message. For a demand-driven simulator, it selects a
blocked element, and sends a demand message to its predecessor to request that
queued outputs be sent. A deadlock in deferring messages cannot occur without
“starving” a node of messages. When this situation is detected by xrecv returning
a NULL pointer, the resulting action breaks the potential deadlock.

Within this indefinite lazy message-sending framework, we can experiment with
any scheme for deferring and combining messages without concern for deadlock.
A message is free to carry any number of events, and an element is free to defer
message sending on any basis.

4. Variant Algorithms

We have experimented with many CMB variants; in the interests of comprehension,
we will outline the operation and report the performance of six variants that are
representative of the range of possibilities that we have studied:

A Eager message sending: This basic form of CMB serves as a baseline for
comparison against the variants.

B Eager events, lazy null messages: Null outputs are queued. Event outputs are
sent immediately combined with any queued null outputs. When xrecv returns

3

a NULL pointer, the null output that extends to the earliest time is sent as a
null message.

C Indefinste lazy, single event: All output from element simulators is queued.
Messages are sent only when xrecv returns a NULL pointer. The output queue
that extends to the earliest time is selected to generate a message up to the first
event, if any, or a null message to the end of the interval.

D Indefinite lazy, multiple event: This scheme is a slight variation on C, motivated
by characteristics of multicomputer message systems that make it economical to
pack multiple events into fewer messages. All output from element simulators is
queued. The output queues may contain multiple events. When xrecv returns
a NULL pointer, the output queue that extends to the earliest time is selected
to generate a message up to the last queued event, if any, or a null message to
the end of the interval. However, to allow a direct comparison with sequential
simulators, events are processed singly.

E Demand driven: Although we usually think of simulation as source driven from
inputs, one can equally well organize the simulation as demand driven from
outputs. In the pure demand-driven form, all output from element simulators
is queued. When xsend returns a NULL pointer, the input that lags furthest
behind selects the destination for a demand message. Upon receipt of a demand
message, if the output queue is not empty, the simulator sends all the information
in the output queue; if the output queue is empty, the simulator generates another
demand message to the source of lagging input to this element.

F Demand driven adaptive: Demand messages single out critical paths in a
simulation. In an adaptive form of demand-driven simulation, a threshold is
associated with each communication path. Outputs of element simulators are
queued only up to the threshold; when the threshold is exceeded, the contents
of the queue are sent as a message. Demand messages operate as in E, but also
cause the threshold to be decreased (in the cases shown below, the threshold is
halved). The simulator is accordingly able to adapt itself to the characteristics
of the system being simulated.

Although these variants are described here in terms of message passing, the
same variants also appear as different scheduling strategies in shared-memory
implementations.

5. Experimental Method

In common with other highly evolved message-passing programs, the simulator is
implemented with one simulation process per multicomputer node (or, in the Cosmic
Environment, with one simulation process per host computer or per processor in
a multiprocessor). The instrumented simulator is actually a simulator within a
simulator.

Basis of comparison: Although real-time execution speed is one of the most
natural bases of comparison between any two programs that perform the same

4

function, real-time speed and speedup curves are not themselves particularly
revealing when there are so many parameters involved.

In order to unmask the behavioral differences of the simulators, we normalize the
measured execution speeds to a common unit, called a sweep [5, 6]. Here we will
let a sweep be a fixed time required to process one message, whether a single event,
null message, or demand message. The number of sweeps required for a sequential
simulator to complete a simulation is simply the number of events generated during
the simulation.

Instrumentation: The simulator is a reactive program written in C, and is
instrumented to function in two operational modes. In the emulation mode, a
multicomputer emulation program runs a simulation of a multicomputer; this in
turn runs the reactive simulators. Speed is measured in sweep units. On each
sweep, each node is allowed to get one message from its receive queue (if not empty)
and process it. In the real mode, the simulator runs directly on the multicomputer.
There is one copy of the simulator process in each node, and each simulator process
runs a subset of the elements as embedded reactive processes. Each node runs at
its own pace, and speed is measured with UNIX’s real-time clock.

6. Experimental Results

We have performed these studies using logic circuits, because it is easy to construct
examples with a diversity of behaviors, and because logic simulation is.itself of
practical interest. Performance measurements have been made on a variety of logic
circuits, including those that are representative of circuits found in computers and
VLSI chips, and those that are designed specifically to test or to stress the simulator.
Six different network types, each in several sizes up to 4000 logic gates, have been the
principal vehicles for these experiments. A larger range in performance is observed
among circuits with different characteristics than between algorithm variants.

Multiplier example: The parallel multiplier is a good example of an ordinary logic
circuit. It contains only limited concurrency: An n-bit multiplier has an average
concurrency of 2n due to the sequential dependency in the paths for carry and sum.
It does not contain tight loops that give the simulator artificial boosts or troubles,
depending on element distribution and loop stability. It also contains moderately
high fanout in the multiplier and multiplicand lines, which puts pressure on the
message system. In all fairness, the distributed simulation of this multiplier circuit
is not expected to do too badly or too well on a multicomputer.

For the simulation, the most-significant bit of the product is connected back to
the multiplier input via an inverting delay. The delay is such that the multiplier
reaches a stable state before the multiplier input changes. The multiplicand input
is set to a value that causes the circuit to oscillate. A trace of the product outputs
shows that the simulator and the circuit are running correctly.

Measurements in the emulation mode: In the emulation mode, a 14-bit multiplier
is used. Each full adder is composed of seven logic gates, and the 14x14 structure
contains a total of 1376 logic gates. The average number of concurrent events

5

is about 28. The plot in Figure 1 portrays in a log-log format the sweep count
versus the number of nodes, N. The heavy horizontal line represents the number
of sweeps a sequential simulator requires. The first remarkable characteristic of
these performance measures is that they are so similar across this class of variant
algorithms.

logs(sweeps)
20
19 _
18 \.\\:\\ —— Eager message sending ‘
17 | N ——— Eager events, lazy null messages
ig = \\ Indefinite lazy, single event

N Indefinite lazy, multiple event

14 \\\\
13 - i;\\ o o s SRR EEE R L Demand driven
ﬁ A I Demand driven, adaptive
10 _—— logs(nodes)

0123456789101

Fig 1: A 1376-gate multiplier, emulation mode

At N=2°=1 node, we can compare the CMB variants with the sequential event-
driven simulator. The concurrent simulators produce 4-10 times as many null or
demand messages as event-containing messages, which is consistent with the 2-3
octave increase in sweep count over that of the sequential simulator. The speedup
is close to linear in N for 5-8 octaves. The concurrent simulators do not become
competitive with the sequential simulator until about N=8, but continue to nearly
halve the sweep count with each doubling of resources until limiting effects are
reached.

The demand-driven simulation modes E-F begin to perform poorly due to an
increase in the volume of demand messages when the available concurrency of 28
(~2°) in the system being simulated is exhausted. In the adaptive form, demand
messages are meant to make small-delay circuits more eager by reducing their
queueing threshold. However, because the multiplier does not contain any small-
delay circuits, demand messages drive the queueing threshold too low, and cause
an excessive volume of null messages.

The source-driven variants extend the linear speedup for about 3 more octaves
until the extra concurrency introduced by the null messages is also exhausted. These
simulators reach asymptotic minimal time at 5 octaves below that of the sequential
simulator, with only 3—-6 elements per node. At this point the available concurrency
is exhausted, and the number of elements per node is too small for the weak law of
large numbers to assure load balance. The placement of elements in nodes for these
trials is balanced but random.

Additional statistics have been collected to measure other effects. For example,
when there are many circuit elements per node, the simulators are quite insensitive

6

to latency. When there are few elements per node, the performance begins to
deterioriate as message latency is increased, particularly for the variants that
perform well.

A second example for comparison: Figure 2 shows the sweep count versus NN for
a 3400-gate clock network. This asynchronous sequential circuit has many small-
delay closed signal paths and a high activity level, resulting in an average event
concurrency of 256.

logs(sweeps)
21
20 \\ .
19 e —————Fager message sending
18 PR
17 \\‘\\\\\ —————— Eager events, lazy null messages
NN
12 NN - [ndefinite lazy, single event
Lo N
14 3 ‘Q\ Indefinite lazy, multiple event
13 AN
12 \\rg}:}\ --------------- Demand driven
11 > \‘,\\i\ ——————————— Demand driven, adaptive
10 e
9 logs(nodes
6125156 T8 0101112 oer(nedes)

Fig 2: A 3400-gate clock network, emulation mode

Measurements on a real multicomputer: The results of simulating a scaled-down,
4-bit multiplier with 116 logic gates on an Intel iPSC/1 is shown in Figure 3.
Simulation of larger circuits gives excellent but uninteresting results, with linear
speedup over the entire range of 1 < N < 64. (Due to limitations of the iPSC /1
message system, neither of the demand-driven simulation modes will run.) The
timing results show that the reactive simulators require about twice as many calls
to element simulators than a sequential simulator. The one-octave overhead is less
than that of the 14-bit multiplier because a larger fraction of the elements are active.
Since the average concurrency of the circuit is around eight, concurrency introduced
by the circuit and by the null messages is expected to be exhausted when N > 16
nodes. Although the elapsed time plot shows that the time starts to level off when
there are more than 16 nodes, it is somewhat less than linear in the range from
1-16 nodes, and is still decreasing slowly out to 64 nodes. The sublinear speedup
is due to message latency in inter-node communications, increased null messages as
the simulation is increasingly distributed, and load imbalance.

7

loga(seconds)

10 \ -———— Eager message sending
9 \ ----------------- Indefinite lazy, multiple event
8 Ny
\ ————— Eager events, lazy null messages
7 \\
6 logs(nodes)

01 2 3 4 5 6

Fig 3: A 116-gate multiplier on an iPSC/1 for a 100us period

7. Conclusions

Logic simulation, which involves simulating the behavior of relatively simple
elements that have a high degree of connectivity, would be expected to be a difficult
case for distributed simulation. Indeed, the simulations presented here have been
much more revealing of the limitations of multicomputers and of the distributed
discrete-event simulation algorithms than earlier simulations that we performed of
systems such as multicomputer message networks.

For small N, neither the basic CMB algorithm nor the variants that we have tried
are nearly as efficient for logic simulation as the sequential event-driven simulator.
The null message is simply not as powerful a synchronization mechanism as the
global ordered event list. However, for large logic circuits, these conservative
variants on CMB produce excellent performance on multicomputers with large N
and small message latency.

Our current efforts are to implement what we believe will be an entirely practical
logic simulator for multicomputers and multiprocessors. It will employ a sequential
event-driven simulator with an ordered event list in each node, and these simulators
will be tied together using variants B, C, or D. Instead of random element
placement, we will compute a placement that localizes small-delay circuits.

8. Acknowledgment

We very much appreciate the constructive suggestions, ideas, and encouragement
that we have received from K. Mani Chandy.

9. References

(1] K.Mani Chandy and Jayadev Misra, “Asynchronous Distributed Simulation Via
a Sequence of Parallel Computations,” CACM 24(4), pp 198-205, April 1981.

[2] Randal E. Bryant, “Simulation of Packet Communication Architecture Com-
puter Systems,” MIT-LCS-TR-188, Massachusetts Institute of Technology, 1977.

[3] Jayadev Misra, “Distributed Discrete-Event Simulation,” Computing Surveys
18(1), pp 39-65, March 1986.

[4] “Submicron Systems Architecture,” Semiannual reports to DARPA, Caltech
Computer Science Technical Reports [5220:TR:86] and [5235:TR:86|, 1986.

[5] William C. Athas and Charles L. Seitz, “Multicomputers: Message-Passing
Concurrent Computers,” IEEE Computer 21(8), pp 9-24, August 1988.

[6] William C. Athas, “Fine Grain Concurrent Computation,” Caltech Computer
Science Technical Report (PhD thesis) [5242:TR:87], May 1987.

[7] William J. Dally, A VLSI Architecture for Concurrent Data Structures, Kluwer
Academic Publishers, 1987.

[8] Charles L. Seitz, Jakov Seizovic, and Wen-King Su, “The C Programmer’s
Abbreviated Guide to Multicomputer Programming,” Caltech-CS-TR-88-1,
January 1988.

Adaptive Routing in Multicomputer Networks

John Y. Ngai
Charles L. Seitz
California Institute of Technology*

Multicomputer Networks. Message-passing
concurrent computers, more commonly known as
maulticomputers, such as the Caltech Cosmic Cube
[1] and its commercial descendents, consist of many
computing nodes that interact with each other by
sending and receiving messages over communication
channels between the nodes [2]. The existing com-
munication networks of the second-generation ma-
chines such as the Ametek 2010 employ an oblivious
wormhole routing technique [6,7] which guarantees
deadlock freedom. The message latency of these
highly evolved oblivious technique have reached a
limit of being as fast as physically possible while ca-
pable of delivering, under random traffic, a stable
maximum substained throughput of s 45 to 50% of
the limit set by the network bisection bandwidth.
Any further improvements on these networks will
require an adaptive utilization of available network
bandwidth to diffuse local congestions.

In an adaptive multi-path routing scheme, message
routes are no longer deterministic, but are con-
tinuously perturbed by local message loading. It
is expected that such an adaptive control can in-
crease the throughput capability towards the bisec-
tion bandwidth limit, while maintaining a reason-
able network latency. While the potential gain in
throughput is at most only a factor of 2 under ran-
dom traffic, the adaptive approach offers additional
advantages such as the ability to diffuse local conges-
tions in unbalanced traffic, and the potential to ex-
ploit inherent path redundancy in these richly con-
nected networks to perform fault-tolerant routing.
The rest of this paper consists of a brief outline of
the various issues and results concerning the adap-
tive approach studied by the authors. A much more
detailed exposition can be found in [3].

*The research described in this report was sponsored in
part by the Defense Advanced Research Projects Agency,
ARPA Order number 3771, and monitored by the Office of
Naval Research under contract number N00014-79-C-0697,
and in part by grants from Intel Scientific Computers and
Ametek Computer Research Division.

Adaptive Cut-through Routing. In any adap-
tive routing scheme which allows arbitrary multi-
path routing, it is necessary to assure communica-
tion deadlock freedom. A very simple technique
that is sndependent of network size and topology,
is through voluntary misrouting as suggested in [4]
for networks that employ data ezchange operations,
and more generally in store-and-forward networks.
It was clear from the beginning that in order for the
adaptive multi-path scheme to compete favorably
with the existing oblivious wormhole technique, it
must employ a switching technique akin to virtual
cut-through [5]. In cut-through switching, and its
blocking variant used in oblivious wormhole rout-
ing, a packet is forwarded immediately upon re-
ceiving enough header information to make a rout-
ing decision. The result is a dramatic reduction in
the network latency over the conventional store-and-
forward switching technique under light to moder-
ate traffic. Voluntary misrouting can be applied to
assure deadlock freedom in cut-through switching
networks, provided the input and output data rates
across the channels at each node are tightly matched.
A simple way is to have all bidirectional channels of
the same node operate coherently. Observe that in
the extreme, packets coming in can always be either
forwarded or misrouted, even if the router has no in-
ternal buffer storage. In practice, buffers are needed
to allow packets to be injected into the network, and
to increase the performance of the adaptive control.

Network Progress Assurance. The adoption of
voluntary misrouting renders communication dead-
lock a non-issue. However, misrouting also creates
the burden to demonstrate progress in the form of
message delivery assurance. An effective scheme
that is independent of any particular network topol-
ogy is to resolve channel access conflicts according
to a priority assignment. A particularly simple pri-
ority scheme assigns higher priorities to packets that
are closer to their destinations. Provided that each
node has enough buffer storage, this priority assign-
ment is sufficient to assure progress, te., delivery

16 X 16 2D Mesh

Adaptive

Oblivious

0.0 0.2 0.4 0.6 0.8 1.0
Applied Load

Figure 1: Throughput versus Applied Load.

of packets in the network. A more complex prior-
ity scheme that assures delivery of every packet can
be obtained by augmenting the above simple scheme
with age information, with higher priorities assigned
to older packets. Empirical simulation results indi-
cate that the simple distance assignment scheme is
sufficient for almost all situations, except under ex-
tremely heavy applied load.

Fairness in Network Access. A different kind
of progress assurance that requires demonstration
under our adaptive formulation is the ability of a
node to inject packets eventually. Because of the
requirement to maintain strict balance of input and
output data rates, a node located in the center of
heavy traffic might be denied access to network in-
definitely. One possible way to assure network ac-
cess is to have each router set aside a fraction of
its internal buffer storage exclusively for injection.
Receivers of packets are then required to return the
packets back to the senders, which in turn reclaim
the private buffers enabling further injections. In
essence, the private buffers act as permits to inject,
which unfortunately have to be returned back to
the original senders, thereby wasting network band-
width. A different scheme that does not incur this
overhead is to have the nodes maintain a bounded
synchrony with neighbors on the total number of
injections. Nodes that fall behind will, in effect,
prohibit others from injecting until they catch up.
With idle nodes handled appropriately, the imposed
synchrony assures eventual network access at each
node having packets queued for injection.

Performance Comparisons. An extensive set
of simulations were conducted to obtain informa-
tion concerning the potential gain in performance
by switching from the oblivious wormhole to the
adaptive cut-through technique. Among the various
statistics collected, the two most important perfor-
mance metrics in communication networks are net-

16 X 16 2D Mesh

400

300

Oblivious

200 1

100t

0

0.1 0.2 03 0.4 056 0.6 0.7 0.8
Throughput

Figure 2: Message Latency versus Throughput.

work throughput and message latency. Figure 1 plots
the substained normalized network throughput ver-
sus the normalized applied load of the oblivious and
adaptive schemes for a 16 X 16 2D mesh network,
under random traffic. The normalization is per-
formed with respect to the network bisection band-
width limit. Starting at very low applied load, the
throughput curves of both schemes rise along a unit
slope line. The oblivious wormhole curve levels off at
=3 45 to 50% of normalized throughput but remains
stable even under increasingly heavy applied load.
In contrast, the adaptive cut-through curve keeps
rising along the unit slope line until it is out of the
range of collected data. It should be pointed out,
however, that the increase in throughput obtained
is also partly due to the extra silicon area invested
in buffer storage, which makes available adaptive
choices. Figure 2 plots the message latency versus
normalized throughput for the same 2D mesh net-
work for a typical message length of 32 flits. The
curves shown are typical of latency curves obtained
in virtual cut-through switching. Both curves start
with latency values close to the ideal at very low
throughput, and remain relatively flat until they
hit their respective transition points, after which
both rise rapidly. The transition points are ~ 40%
and 70%, respectively for the oblivious and adap-
tive schemes. In essence, the adaptive routing con-
trol increases the quantity of routing service, te., the
network throughput, without sacrificing the quality
of the provided service, te., the message latency, at
the expense of requiring more silicon area.

Fault-tolerant Routing. Another area where
adaptive multi-path routing holds promise is in
fault-tolerant routing. The opportunity here stems
from the fact that, as we continue to build larger
machines, we expect faults to be increasingly prob-
able. However, for performance reasons, the net-
works popular in multicomputers are already very
rich in connectivity. It is conceivable that a multi-

1024 Nodes

1.00 F
0.95
0.90
0.85
0.80 Binary-10-Cub
0.75
0.70
0.65

Octagonal Mesh

0 2 4 6 8 10 12 14
Percentage of Faults

Figure 3: Reclamation Ratio for Node Faults

path control can perform fault-tolerant routing sim-
ply by exploiting the inherent path redundancy in
these networks. Fault-tolerant routing has been
intensively studied in the network research com-
munity. However, multicomputer networks impose
stringent restrictions, not present in traditional net-
works, that require a new approach. In particular,
observe that the popular connection topologies of
multicomputer networks such as k-ary n-cubes or
meshs are highly regular, which allow for simple al-
gorithmic routing procedures based entirely on local
information. Such capability is particularly impor-
tant in fine-grain multicomputers where resources at
each node are scarce. Equally important, the sim-
ple algorithmic routing procedures in these regular
topologies allow direct hardware realization of the
routing functions, which is absolutely essential in
high performance systems.

As nodes and channels fail, the regularity of these
networks is destroyed and the algorithmic routing
procedures are no longer applicable. Routing in
irregular networks can be achieved by storing and
consulting routing tables at each node of the net-
work. However, such a scheme demands excessive
resources at each node and becomes unacceptable
as the networks grow in size. A different and more
satisfactory approach exploits the regularity of the
original non-faulty network. An interesting example
of such an approach can be found in [8]. In this pa-
per, we suggest an alternate approach based on our
adaptive routing formulation. Instead of devising
ways to route messages in these semi-irregular net-
works, we seek ways to restore the original regularity
of the survival networks. This approach allows us to
continue to use the original algorithmic routing pro-
cedure. One immediate advantage is that the faulty
network can continue to use the original hardware
router with very little change. Another advantage of
this approach is that we can obtain a prior: bounds
on the length of routes joining pairs of sources and

1024 Nodes
W
0.8k Octagonal Mesh
0.6

Binary-10-Cube
047
0.2

0 2 4 6 8 10 12
Percentage of Faults

Figure 4: Reclamation Ratio for Edge Faults
destinations in the faulty network.

Regularization Procedures. An immediate re-
sult of having only local information to guide rout-
ing is that, pairs of survived nodes may not be able
to communicate with each other even if they remain
connected. In order to communicate, each pair must
have at least one unbroken route joining them, which
belongs to the set of original routes generated algo-
rithmically in the non-faulty network. Because of
its resemblance to the notion of convezity, we re-
fer to them as convez networks. Starting with an
irregular survived network, one way to restore reg-
ularity is to selectively discard a subset of the sur-
vived nodes, so that the remaining subset becomes
convez, and hence can still communicate with each
other according to the original algorithmic proce-
dure. In essence, nodes which become difficult to
reach without global information are abandoned as
a result of our insistence on using only local routing
information. Another technique that can be em-
ployed to restore regularity is to selectively restrain
a subset of the survived nodes to operate purely as
routing switches, ze., they are not allowed to source
or consume messages. The rationale is that some
survived nodes which are difficult to reach from ev-
erywhere, and hence should be discarded, may be in
positions which enable other pairs to commumcate,
and hence should be retained.

Some Reclamation Results. It is clear that the
effectiveness of this regularization approach will ul-
timately depend on the connection topology and the
routing relations defined by the algorithmic routing
procedure. High-dimensional networks such as the
binary n-cube are expected to deliver good results,
whereas low-dimensional ones such as the 2D meshes
generally do not. One possible way to improve the
reclamation yield of these low-dimensional networks
is to augment them with extra channels, eg., adding
diagonal connected channels to a 2D mesh results in

an octagonal mesh. The additional connectivity in
the octagonal mesh generates a much richer set of
paths, and hence delivers much better reclamation
yield. Figures 3 and 4 plot the reclamation ratio for
the 32 x 32 octagonal mesh and Binary-10-cube ver-
sus the fraction of node faults, and channel faults re-
spectively. The faults were generated independently
and uniformly over the specific networks.

Future Challenge. Many aspects and problems
have been addressed in the course of this research,
and a number of solutions have been found. Clearly,
more work remains to be done. Perhaps the most
challenging of all is to realize on silicon, the set of
ideas outlined in this study.

References.

[1] Charles L. Seitz, “The Cosmic Cube”, CACM,
28(1), January 1985, pp. 22-33.

[2] William C. Athas, Charles L. Seitz., “Multi-
computers: Message-Passing Concurrent Com-
puters”, IJEEE Computer, August 1988, pp. 9-
24.

[3] John Y. Ngai, Adaptive Routing in Multicom-
puter Networks. Ph.D. Thesis, Computer Sci-
ence Department, Caltech. To be published.

[4] Borodin, A. and Hopcroft, J., “Routing, Merg-
ing, and Sorting on Parallel Models of Compu-
tation”, Journal of Computer and System Sci-
ences, 30, pp. 130-145 (1985).

[6] P. Kermani and L. Kleinrock, “Virtual Cut-
Through : A New Computer Communica-
tion Switching Technique”, Computer Net-
works 3(4) pp. 267-286, Sept. 1979.

[6] William J. Dally and Charles L. Seitz, “The
torus routing chip”, Distributed Computing,
1986(1), pp. 187-196.

[7] Charles M. Flaig, VLSI Mesh Routing Systems.
Caltech Computer Science Department Techni-
cal Report, 5241: TR:87.

(8] J. Hastad, T. Leighton, M. Newman, “Recon-
figuring a Hypercube in the Presense of Faults.”
Proceedings of the 19th Annual ACM Sympo-
sium on Theory of Computing. May, 1987.

