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ABSTRACT.  We propose a new machine architecture for high performance execution of late binding object
oriented languages. The two principal mechanisms for attaining this goal are a fast context allocation/access
scheme and an instruction translation lookaside buffer. New ideas in this paper include the concept and
implementation of abstract instructions, using floating point addresses to solve the small object problem, and a
novel context allocation/access mechanism.

KEYWORDS: computer architecture, object oriented languages, Smalltalk.
CR CATEGORIES: B.3.2, C.1.1, C.1.3, D.3.3, D.4.2.

§1 Introduction

The power of object oriented languages derives from a few simple ideas that combine to make a large
execution overhead on conventional v.Neumann processors. The purpose of this paper is to describe a
number of proposed hardware mechanisms which go some way toward eliminating this overhead.

1.1 Summary

A major execution overhead is method lookup. That is, during execution, every single procedure call is
made to an abstract procedure. An abstract procedure simply consists of a name, the message name
that must be combined with runtime information to resolve,the message name to an actual piece of
code, known as a method. The method to be executed is found by associating the message name in a
hash table for the data type = or class — of a sclected operand. This association mechanism is quite
costly in comparison to the typical overhead for procedure calling in conventional languages. But it
has enormous advantages which we outline below. The architectural mechanism which we propose is
one which has been used with some success in software implementations. We cache associations into a
translation lookaside buffer. We have found through simulations that a rather modest cache results in
very high hit ratios. These results indicate that method lookup overhead may be effectively eliminated.

The need to access both great numbers of small objects and a lesser number of large objects is problem-
atical for conventional segmentation schemes. This dilemma is known as the small object problem. We
propose the use of floating point addresses to solve this dilemma.

A major execution overhead is context allocation. Each time a message is sent, a general context must be

allocated from the heap and have several fields initialized. We propose a novel mechanism for allocating
and accessing such contexts.



1.2 Background -

To test the architectural features described above we are developing the Caltech Object Machine (COM).
The COM draws upon many sources for the ideas in its implementation. Because the cost of context
allocation and access for more ordinary languages is not insignificant, a considerable body of work
attacking this problem has appeared. [8,3,17] Recently, a number of researchers have undertaken a
number Smalltalk software implementation experiments. [14,7]

COM is not the first machine to address the execution of Smalltalk with hardware. There are two
notable precursors to COM. The first is the Xerox Dorado [6]. While there were no features included in
this machine specifically for Smalltalk, considerable attention was given to context allocation. Their
microcode kernel Smalltalk implementation is the fastest implementation to date. They have also
implemented a method cache in microcode.

The second project is Berkeley’s Smalltalk on a RISC (SOAR) project. [16] Several interesting ideas
were included in this machine. Words are tagged so that integers may be distinguished from pointers
and to support a generation scavenging garbage collector. Contexts are allocated via the RISC register
window scheme with a trap for non-LIFO contexts.

Of the software techniques for speeding Smalltalk implementations, the original Smalltalk implementer’s
guide suggests caching of message hashes. Their caching strategy is direct mapping. The Hewlett-
Packard implementation uses a two way set association to great advantage. [5,10]

1.3 Paper Outline

The next section introduces new architectural features for supporting object oriented languages. Section
3 describes the Caltech Object Machine (COM). Section 4 discusses the mapping of the Smalltalk virtual
machine onto COM. Section 5 outlines the results of simulation experiments. The last section closes with
a summary and current status of the project.

§2 Architectural Features

2.1 Abstract Instructions

We propose a novel method for interpreting machine instructions. In this scheme a given CPU instruction
is, like a virtual address, abstract. The meaning of a particular op code depends upon the type or Class of
the operand objects of the instruction. Opcode and Class together determine the name of an instruction
descriptor, which holds information indicating whether the instruction is primitve or defined.

Since the advantages of this mode of execution are less well known to architecture community than
the advantages of the analogous mechanism of virtual addressing, we will briefly outline them here.
Instruction safety (run time type checking), a late binding abstraction mechanism (which facilitates
the factoring of code), and smooth extensibility (lack of distinction between primitive and nonprimitive
code), all stem from an execution mechanism which is essentially equivalent to the Smalltalk message
passing paradigm.

The first advantage is ¢nstruction safety which prevents the all too common occurrence of applying an
instruction to the wrong datatype, or attempting to execute data. On a higher level, errors which result
from attempting to apply a method to some data structure of inappropriate form can be checked at
runtime with no extra execution penalty. The kind of instruction safety built into abstract instructions,
however, is more than one that merely checks types and signals errors, but one in which it is impossible
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to express an erroneous operation: We cannot perform an integer add on a floating number because there
is only one token for ADD. The meaning depends on the datatype. In high level languages, this kind
of type checking can easily be the principal cost of interpretive overhead. For example, APL spends a
great deal of its time simply performing run time typechecks.

The second advantage is late binding, an abstraction mechanism key to effective reusability of code. The
primary reason that algorithms are written and rewritten over and over again is that no one writes
general code. Everyone who tries to write general code runs up against an efficiency barrier which forces
implementation of less general code than is desirable for reusability. One avenue to generality is late
binding. It holds great promise, for, when the execution penalty for writing general code can be collected
in one uniform mechanism, it becomes feasible to eliminate the overhead with hardware.

Late binding tries to postpone association (or binding) of a construct and its definition to as late a time as
possible: just before execution. Binding meanings to objects as early as possible is more efficient but less
flexible. For example, compiling is more efficient than interpreting, but everyone who has worked under
both environments would, if given a choice, always opt for interpretation were it not so slow. In Pascal,
the quintessential early binding language, almost everything—even array bounds—must be declared at
compile time. This is the primary reason that Pascal feels so rigid and inflexible. It is difficult to write
a general sort routine which works on arbitrary length lists of arbitrary types. Early binding forces the
code to be so specialized that hope of obtaining a general, reusable code is very slim. In fact, it is not all
unusual in Pascal to see multiple versions of codes which save for different type declarations are identical.
On the other hand, in Smalitalk, the quintessential late binding language, it is easy to define a general
sort routine—one which will even work for lists of datatypes which are not yet. defined. Because of this,
large databases of reusable code, called toolkits in Smalltalk, appear quite commonly. In fact, it is the
rule rather than an exception that code is reused—oftentimes in unexpected ways. Unfortunately, wider
adoption of late binding is prevented by a severe execution penalty for binding late. Our architecture
proposal seeks to eliminate this efficiency barrier. As such, this machine, with only minor differences,
would be useful for other languages in which late binding is a prominent feature, most notably APL,
Lisp, and Flavors.

The third advantage is, smooth extensibility of the architecture. Since each instruction is a token whose
meaning is determined in conjunction with the Class of the instruction operand, the exact same opcode
may actually reference a set of microcode bits (a primitive machine instruction), a user defined procedure,
or a system defined routine. The meaning depends upon the datatype and instruction descriptor for that
datatype. Thus if at some time, it is decided to change the implementation of a routine, or to extend
the meaning of the instruction to additional datatypes; no object code need ever be modified. One can
even decide to migrate a routine into firmware without modifying any instance of its use. Because of
this extensibility, the machine essentially interprets Smalltalk making compilation a simple matter of
assembling opcodes. With a different set of instruction definitions it could easily be made to directly
interpret APL, Prolog, SNOBOL, LISP, Backus FP, or FBAPP as well.

Abstract instruction decoding, although slow in software can be mitigated by the use of a associative
mechanism in the instruction translation step which bears remarkable similarity to virtual address
translation. This is an instruction translation lookaside buffer (ITLB), in which an opcode and the set
of operand object dataypes are associated to a method.

Each ITLB corresponds to a unique method and contains three fields: 1) A key, containing an opcode
and a set of operand classes; 2) A primitive bit describing whether the method is primitive or defined;
and 3) A method field indicating how the method is to be accomplished. For example, if the primitive
bit is on, the method field selects the result of a function unit. Otherwise the method field points to a
piece of code defining the method.

The instruction decoding is broken down into three generic steps.



omewmp 1. | CRRAND L | Opcope
CAss CiAss
y
Key, E METHOD,
ES
ITLB KEY, ‘E’_ METHID
ol
\ i
METHOD
AVDRESS

Figure 1. Instruction decoding

First, an opcode and a set of class descriptors form a key into the ITLB. An associative memory attempts
to find an ITLB entry with this key. If an ITLB entry is found then the decoding proceeds. Otherwise,
an instruction descriptor must be pulled in from the appropriate message dictionary, via the standard
technique of method lookup (a step which always occurs in the execution of Smalltalk). Now, if the
primitive bit of this entry is set then the method field sets up hardware data paths. Otherwise a
procedure call is performed to an address held by the method field.

This association mechanism is pipelined with the operation of the rest of the machine. In contrast, in
ordinary v.Neumann machines the association is wedged in the execution cycle, incurring an overhead
on each access.

2.2 Floating Point Addresses

For an object oriented machine it is natural for an object to correspond to a single memory segment.
The need to access both great numbers of small segments and a lesser number of large segments is
problematical for conventional segmentation schemes. Conventional segmentation schemes divide the
memory address into two fixed length fields, one of which is the segment descriptor number and the other
the segment offset. The need for large numbers of segments {on the order of say a billion), demands
that the segment descriptor field be much larger than is usual. On the other hand, the need for possibly
large segment lengths (say a billion words), requires that the offset field also be relatively large. Current
segmentation schemes choose a medium size for segments (typically 1-64K). This incurs tremendous
addressing overheads for applications requiring large objects, such as image processing. On the other
hand, there are far too few segments to allow allocating one per object. This dilemma is known as the
small object problem.

We propose a floating point address shown as follows.
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Figure 2. Floating point address

An address is given as an m bit mantissa and and e bit exponent (where ¢ = [lgm]). The exponent
encodes the size of the segment field, shifting the binary point of the mantissa to give a real address.
The fractional part of the real address forms the offset within the segment. The integer part of the real
address when combined with the exponent names the segment descriptor.

Consider a comparison of floating point addressing with a typical fixed point addressing scheme: the
MULTICS virtual address format. In MULTICS a 36 bit address is partitioned into two 18 bit fields.
This allows 256K segments each of which may have a maximum size of 256K words. Both these limits are
too restrictive for general use. This forces inappropriate grouping of small objects as well as complicated
schemes to split large objects into several segments. In contrast, a 36 bit floating point address, consisting
of a 5 bit exponent and 31 bit mantissa, accommodates 8 billion segments and supports segments of up
to 2 billion words long.

Floating point virtual addresses must be aliased when the size of an object grows out of the range of
its pointer’s exponents. In this event a new segment is allocated to the object and a new floating point
address with a larger range than the old is allocated to the object. The segment descriptors of both the
old and the new pointers are set to point to the new segment. Accesses to the object through the old
segment number are allowed as long as they do not exceed the bounds set by the old exponent. When

these bounds are exceeded a system trap routine replaces the old segment number with the new segment
number.

When an object is freed, both the absolute address space associated with this object and all virtual
addresses used to refer to the object must be returned to free resource pools. We use an incremental
garbage collection scheme for virtual addresses. Each time an object is freed its absolute address is
added to a collection list. The segment descriptor table is periodically scanned to check for references
to the objects in the collection list. After an object in the list has been through a complete scan it is
removed from the list. To maintain consistency of the segment table, the absolute address space for an
object cannot be reallocated until all names referring to this object have been collected. This approach
can be made incremental by scanning a few segment descriptors each time a new segment descriptor is
allocated as is donc in an incremental garbage collector.

2.3 Context Allocation

Contexts are allocated and accessed frequently: their implementation is critical to the performance of
any machine. Measurements on the Smalltalk-80 system indicate that 85% of all object allocations and
deallocations involve contexts. [18, 1] Thus the allocation and recycling of contexts must be made very
fast while preserving the generality of possibly non-LIFO contexts. Most references are made to contexts.
Measurements also show that over 91% of all memory references are to contexts.[1]

We propose hardware support for allocation, deallocation, and accessing of contexts. To simplify
management of the pool of free contexts, we require all contexts to be a fixed size so that a single
free list can be used. Using a hardware register to point to the beginning of the free list, contexts can
be allocated or freed with one memory reference.

How do we choose the length of contexts? In the COM, we chose a size of 32 words. Procedures requiring
more than 32 words can allocate additional space off a heap. For C, 90% of all procedures require a



frame size of fewer than 32 words . (8] Smalltalk methods tend to be much smaller than C procedures.
Because of this, we believe that an overwhelming proportion of Smalltalk contexts will fit into 32 words.

Because of the generality of the Smalltalk context mechanism, strict stack based allocation and dealloca-
tion is not possible. For non-LIFO contexts, the context must be freed by a garbage collector. In current
Smalltalk implementations garbage collecting consumes approximately one third of the execution time.
Of this time, 82% of all allocations and deallocations occur for contexts. [1] However, 85% of contexts
allocated in Smalltalk are indeed LIFO contexts and can be easily recognized.[7] These LIFO contexts
are explicitly freed upon procedure exit, eliminating much of the garbage collection overhead.

Fast access to contexts is provided by a context cache: a set associative cache with block size equal to
the context size. When a new context is allocated, it can be immediately placed in a block of the context
cache and that block can be cleared. With this approach a new context does not have to be faulted in,
and a free context does not have to be cleaned before it is reused.

Measurements indicate that most programs rarely exceed a stack depth of 1024 words or 32 contexts.
[8] Thus a context cache of this modest size would almost never miss. Since the block size is large and
the cache can be fairly small it is feasible to dual-port the cache by duplicating the cache directory.
A dual-ported context cache can be used in place of a register file to fetch two instruction operands in
parallel.

To handle larger nesting depths, a copy back mechanism could be employed to keep part of the cache
free at all times. For example, when only two blocks are free in the context cache the cache begins
copying the LRU context back to free additional blocks. When more than half of the cache becomes

free, contexts are copied back into the cache. This copying is performed concurrently with program
execution.

The context cache proposed here is very similar to the register windows used in SOAR [3] and to the
stack cache proposed for the C Machine [8]. However a context cache has three significant advantages
over these designs. 1) Unlike windows or stack cache, blocks in the context cache need not be contiguous.
The ability to cache non-contiguous contexts is very important for non-LIFO contexts, which render the
free list non-contiguous. 2) Since it associates on absolute addresses the context cache need not be
invalidated on a process switch. 3) The context cache provides a mechanism to automatically initialize
a new context; thus no time is wasted cleaning contexts.

§3 The Object Machine

The Caltech Object Machine (COM) is being designed as a vehicle to test the architectural features
described above. The COM is designed to accelerate the execution of late binding object oriented
languages.

In defining the architecture of the COM our philosophy has been to make the machine object oriented,
fast, simple and flexible. The COM uses floating point addresses to give a name space which is adequate
to handle many small objects and a few large objects. The memory is tagged to identify different types
of objects and to allow object pointers to be used as capabilities.

Hardware support for the translation from message name to method pointer allows the COM to efficiently
execute late binding object oriented languages. Speed in the COM is achieved both through the hardware
method lookup and by providing hardware support for the access and allocation of contexts.

The COM is simple. All instructions are of the same length and follow the same interpretation sequence.
There are no registers, all accesses are to one name space. Supporting fast access to contexts provides

most of the advantages of registers without partitioning the name space or increasing the size of the
processor state.

The COM achieves flexibility by providing only primitives. Higher level operating system functions such
as garbage collection, process representation, and cache miss resolution are not tied down in hardware.
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3.1 Addressing

The addressing mechanism of the COM is designed to separate the issue of naming from the issue of
resource allocation and to provide capability based protection for access to objects. There are three
address spaces in the COM: wirtual space, absolute space, and physical space. The issue of naming is
resolved in the translation from virtual space to absolute space. The resource allocation problem is
handled in the translation from absolute space to physical space.

Virtual space is a name space local to a team of processes.[4] A name within this space is a capability [9]
to access an object. Virtual addresses are floating point. They may be aliased to allow teams to share
objects or to allow processes within a team to access an object with different capabilities. Absolute space
is the global name space. Each absolute address is a unique name identifying a particular object. All
object management, for example garbage collection, is performed in absolute space. Physical space is an
implementation dependent collection of storage devices each containing a number of storage locations.
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Figure 8. Address translation

The address translation mechanism of the COM is shown in figure 3 . First we translate virtual to
absolute addresses to resolve names. The segment field and exponent field of the virtual address are
concatenated to generate an index into a segment descriptor table. Each team space has its own segment
descriptor table. Each entry in the segment descriptor table consists of three fields: base address, length
and object class. The offset field of the virtual address is compared to the segment length field of the
segment descriptor to check if the access is in bounds. If the bounds condition is met, the offset is
added to the base address of the segment to generate the absolute address. All segments are aligned on
absolute addresses which are multiples of their sizes so no add is required.

The COM’s absolute to physical translation mechanism supports memory resource allocation. To
translate an absolute address to a physical address the absolute address is offered to the each level of the
memory hierarchy in turn. Each storage device is treated as a cache in which frequently accessed portions
of absolute space may be stored. This approach to resource allocation differs from the traditional use of
segmentation and paging in two respects. First, absolute addresses are completely independent of the
memory hierarchy. As in MULTICS [2] the same name space is used across the memory hierarchy rather
than having a separate file system name space to handle slower storage devices. Also, if the mapping
from absolute to physical space is performed by hashing as in a conventional set associative cache, the
size of the page table is a only function of the size of physical memory and does not place a limit on the
size of absolute space.



Throughout the COM, caching is used to achieve performance by accelerating frequently used trans-
lations. Because virtual addresses may be aliased and objects may move in physical memory, it is
prohibitively expensive to directly cache the translation from virtual to physical space. For this reason,
the translation proceeds in two steps. A virtual address is translated to an absolute address aided by
an address translation lookaside buffer (ATLB). Conventional caching techniques are then used at each
stage of the memory hierarchy to access physical data using an absolute address.

Virtual to absolute translations are also cached by storing directly the segment descriptors for a few

frequently accessed objects. Specifically, accesses to the current method, current context, next context,
and receiver are pretranslated.

3.2 Machine State

The state of the COM can be divided into a memory state and a processor state. In keeping with the
goal of simplicity the processor state of the COM consists of only six registers: the context pointer (CP),
the next context pointer (NCP), the free context pointer (FP), the instruction pointer (IP), the team
space number (SN), and process status (PS). Only the CP needs to be saved on a method call. The CP,
SN, and PS registers must be saved on a process switch. .

The context pointer (CP) is a virtual address for the current context. Four locations within the context
are reserved to hold the remainder of the process state: the return instruction pointer (RIP), the return
context pointer (RCP), and two general purpose object pointers (P1, P2). The RIP is a virtual address
which holds a continuation point in order to restart execution of a method. The IP is saved in the RIP
when a method is called. Arguments are passed to a method by copying each argument into the next
context before and then calling the method. When the method is called the next context becomes the
current context and the method accesses its arguments as offsets from the CP. The RCP is a virtual
address which points to the calling method’s context. A method returns control by reactivating this
calling context. P1 and P2 are general purpose object pointers. An addressing mode in the COM allows
fast access to the fields of the objects referenced by these pointers.

The COM uses a tagged memory. Every word of memory has a four bit tag which is used to identify
primitive types: uninitialized, small integer, floating point number, atom, instruction and object pointer.
When a word is cached in the context cache, a 16-bit tag identifying the class of the object is cached
with it. For primitives, this 16-bit tag is the four bit tag zero extended. For object pointers, this 16-bit
tag identifies the object class and is used in the method lookup to convert an abstract instruction to a
method pointer.

3.3 Instruction Set

The COM instruction set is designed to be regular so that instruction execution can be efficiently
pipelined. All instructions are 32 bits in length and contain zero to three operands. Each operand is
referenced using one of four addressing modes. The use of three address instructions results in improved
performance as the expense of larger code size. A single COM three address instruction replaces about
two zero address instructions such as those used in the Smalltalk-80 Virtual Machine {11].

The four formats for COM instructions are shown below.

IRl 0<6> | A<?> | B<T> | c<it> |
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IRl 0<®> | A<T> | B<18> |
IR] 0<®> | A<25> |
IR| 0<31> |

Figure 4. COM Instruction Formats.

Each instruction consists of a return bit, an opcode, and from zero to three operands. The return bit if
set indicates that the current method should return control to its calling context following the current
instruction. If the return bit is set in an instruction which results in a method call, tail recursion will be
employed with the new method claiming the context allocated by the old method. The opcode selects
which message will be performed or initiated by the instruction. The actual operation performed depends
on the types of the operands. If the operands arc of a type for which the machine supports a primitive
method for the opcode the method will be performed directly. If no primitive operation is supported a
method call will result with control being transferred to a method to perform the operation. Operands
specify the data on which the instruction operates according to the addressing modes described below.

Primitive methods in the COM include:

» Arithmetic instructions: (+,-,*,/, Modulo,Negate) These instructions are defined for small integer and
except for modulo for floating point. Some mixed mode instructions are primitive.

» Multiple precision arithmetic support: (Carry, Multl, Mult2) These instructions, defined for small
integer, allow multiple precision integer arithmetic to be implemented without flags.

» Logical and bit field instructions: (shift,arithmetic shift, rotate, mask, and, or, not, xor) Defined on
small integers, these instructions treat the integers as bit fields.

» Comparisons: (<,—,—0,—=) All comparisons are defined for small integer and floating point. The
=== (same object) comparison is defined for all types.

» Move instructions (move, movea, at:, at:put:) Move is defined for all types.

» Tag access: (as, tag) The as instruction is conditionally priviledged to prevent the forging of virtual
addresses.

» Control: (fimp,rjmp,xfer) The jump instructions jump within a method and are defined for integers
objects. The xfer instruction transfers to the next context.

3.4 Addressing Modes

Four addressing modes can be used in the operand descriptors of COM instructions. One mode, pointer
relative, is used to access objects. The other three modes, short integer, bit field and half word, are used
to generate constants. The pointer relative mode uses two bits of the operand descriptor to select one
of four object pointers: CP, NCP, P1 and P2. The remaining bits are used as a positive offset from the
selected pointer to generate the virtual address. The immediate addressing modes can only be used in
the last operand descriptor of an instruction. The short integer mode uses the available bits to represent
a two’s complement integer which is sign extended to 32-bits. The bit field mode uses two five bit fields
to specify the start bit and stop bit of a bit-field. The half word addressing mode can only be uscd in
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two operand instructions. This mode specifies a 16-bit constant which is interpreted as either the low
half or the high half of a word. Thus, a 32-bit constant can be generated in two instructions.

3.5 Method Call

When an instruction with an unimplemented opcode is executed or when an instruction is executed

on operands which are not the type for which the instruction is implemented (or mixed), control is
transferred to the method which implements the proper operation.

The method to be executed is determined from the opcode and operands types by a lookup in the
ITLB described above. For the zero operand instruction, zero, one or two locals in the next context are
considered as operands depending on the high order bits of the instruction. A new 32-word context is
allocated for each method call. This context is allocated in advance so that arguments can be passed
to a method by copying them into the new context before performing the method call. This argument
passing is performed automatically for non-primitive methods which are formatted as one two or three
operand instructions. For these instructions the processor expands the operands into words and copies
them to the new context. For methods which do not include operands in their instruction formats, the
programmer must place arguments in the next context. Note that copying arguments is not in general
required. A three address instruction can place the result of an operation directly into the next context.
When a method completes it is expected to place its result (if any) at the address specified by the first
operand and to return control to the calling method by executing an instruction with the return bit set.

3.6 Implementation
Caching and pipelining are used to achieve performance in the design of the COM. A block diagram of
a proposed COM design in shown in figure 5 . Caching is used in four places in the processor.

» The CP, NCP, IP, P1 and P2 pointers are pre-translated to absolute addresses and are cached in
special hardware registers.

» An instruction cache holds the instructions of frequently accessed methods.

> An instruction translation lookaside buffer (ITLB) holds associations from message name and argument
type to method pointer.

» Finally a context cache is used to cache recently accessed contexts. This cache makes context accesses
as fast as register accesses. We describe the context cache below.

Instruction interpretation proceeds in five steps. Each block and signal in the block diagram is labeled
with the step during which it is active.

1. The instruction pointer is used to lookup the next instruction in the instruction cache.

2. The operands and their tags are fetched. Most operand fetches will be from the context cache.
Immediate addressing modes require that a constant be generated and P1 or P2 relative addressing
modes require a memory fetch to be performed.

3. The opcode of the instruction and the types of the operands are translated by the ITLB into either
a bit vector describing a primitive operation or a method pointer to be used in a method call.

4. For primitive methods, the operation is performed. Note that since the operands were available at
the end of step 2, a dedicated function unit has two steps to compute a result.

5. The results of the operation are stored and the IP is incremented.
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Figure 5. COM Block Diagram.

This instruction interpretation sequence can be pipelined as shown below so that a new instruction is
started every two clock cycles. This instruction rate is limited by the context cache. It is assumed
that the cache can perform two reads or one writc cach cycle, but cannot perform reads and writes
simultaneously. This pipelining is shown below. Since the 7 + 1°* instruction reads its operands before
the i* instruction has written its result, an interlock is required. Also, the pipeline may be stalled
by a miss in any cache, or by a fetch which is not to a context. A branch instruction is delayed one
clock cycle as in the MIPS processor [12] and does not interfere with operation of the pipeline. A non
primitive method is detected in step three, flushes the next instruction which has already been fetched
and initiates the method call sequence described below.

1: | Fetch | Read | ITLB | Op | Write |
2: | Fetch | Reed | ITLB | Op | Write |
3: | Fetch | Read | ITLB | Op | Vrite |

Figure 6. Instruction Pipelining.

Detection of a method call during step three causes the following operations to be performed. Except for
the copying of operands into the new context, all of these operations can be performed in one clock cycle.
Only the IP needs to be saved in the current context. The current CP was saved in the next context
when it was created. Thus, a method call with no operands only delays execution four clock cycles: two
to execute the instruction which caused the call, one for flushing the instruction in the pipeline, and one

for performing the operations listed below. An additional cycle is required for each operand copied to
the next context.

» Flush pipeline of next instruction and roll back IP to instruction following call.

» Store IP into the context.
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v

CP «— NCP. Note that CP is already stored as RCP in the next context.

v

Initiate the allocation of a new context. Any NCP relative accesses will be held up until the new
context is available.

» Set IP to point to the first instruction of the new method.
> If not a zero operand instruction copy operands into new context.

An instruction with the return bit set reverses these operations by setting the CP + RCP, and restoring
the IP from the caller’s context. The return sequence also requires four clock cycles.

A critical component of the architecture is the context cache. Like register windows in RISC and SOAR
(3] and the C machine stack cache [8], we take advantage of the fact that caches can be made to operate
as fast as registers. A block diagram of an implementation of the context cache is shown below:
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Figure 7. Context Cache Block Diagram.

The Context Cache consists of two parts: the directory and the data memory. Our scheme achieves speed
by bypassing the directory on accesses to the current or next context. The directory is an associative
memory with an entry for each block of the context cache. Each entry holds the absolute address of
the context cached in the corresponding block. The data memory consists of four 32 bit access vectors
and a dual port memory array consisting of 32 blocks of 32 words each (each block holds one context).
Special circuitry in the memory array permits an entire block to be cleared in a single operation. The
access vectors facilitate fast access to and allocation of the memory array. Each access vector is a bit
vector specifying a set of blocks in the cache.

The four vectors are:

1. The current vector specifies a singleton set containing the current context.
2. The next vector specifies a singleton set containing the next context.

3. The free vector encodes the set of blocks which are currently unused.

4. The match vector specifies a singleton set containing the context associated with an absolute address
match in the directory.

There are two methods for accessing the cache. The current and next access vectors are used to provide
fast access the current and next context by immediately selecting the correct block. A five bit address
is used to select the word within the block to be read or written. To access a context using an absolute
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address, the address is input to the cache directory. If it matches a directory entry, the corresponding
bit in the match vector is set. The match vector is then used to access the memory array.

To allocate a new context as the next context, the first free bit of the free vector is set to zero and the
corresponding bit of the next vector is set to one. The new context is then cleared, and the absolute
address is written into the directory.

On a method call, the next vector is moved to the current vector and a new next context is allocated as
described above. On return from a method, the current vector is moved back to the next vector and an
association in the directory is used to set the current vector.

§4 The Smalltalk Execution model

In this section we discuss how the Smalltalk execution model is adapted to our architecture. The
Smalltalk virtual machine is considerably different from our proposal. It is a zero instruction stack
machine. Its context is a small fixed length object which has links to a variable length expression stack
as well as a number of other links to contexts and objects. COM has no expression stack and uses three
address instructions.

Of the four objects that can be directly addressed through “registers”, three are used by the Smalltalk
compiler. They are the self object, the current context object , and the next context object. The receiver
object allows quick access to the fields of the object which is the receiver of the current message. The
current context holds all the information needed for executing the current method. The nezt context is
used to set up procedure linkage and argument transmission for a message to be called.

Methods are of two types: primitive methods, and defined methods. A primitive method takes its
arguments and results directly from a machine instruction, so it doesn’t need a context. Nonprimitive
methods need to be able to bind their arguments and results so a context must be set up for them.

For a nonprimitive message send we first set up the context. Which appears in figure 8.

Context :
RCP (link to sending context).
RIP (encodes the method and offset).
arg0 (where to store the result).
argl (receiver of message).
arg2

argh
templ

tempN

Figure 8. A Smalltalk context.

The first field of a context is a link to the sending context. This link is filled in when a context immediately
upon creation by the procedure linkage sequence. The next field is the RIP. This field holds a pointer
into the method being executed by this context. Note that the pointer encodes both the method object
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and the offset within the method. The RIP field is initialized at context creation and is updated each
time the context transfers control to another context.

Argument 0 points to a location to store the returned value of a method. The receiver of the message
is argument 1. And further arguments of the method are stored in successive locations, determined at
compile time. All temporaries are then stored in the remaining locations. A temporary may be a local
variable for the method or may arise from expression evaluation, since we forego the use of an expression
stack.

To call a method the compiler generates code to load arguments in the next context, to fill in the result
pointer and to transfer to the next context. Because the method indirects through the result pointer,
argument transmission is quite flexible. Here is an example:

foo | | “self * (self-1) bar.

ni=ci-1 » self-1

nO=&c2 ; move effective address of ¢2 into nO.
bar ; Call bar.

c2=c1%c2 . Compute the product.

%c0=c2 (return) ; Return the result

Figure 9. Example of compiled code.

§6 Experimental Results

This section presents the results of experiments run to test the utility of hardware support for method
lookup. These experiments were run on an simulator of an early version of the COM called the Fith
Machine. The Fith Machine was motivated by the Fith programming language.[13] The Fith language
combines the syntax of Forth with the semantics of smalltalk. Since Fith is a stack based language,
the Fith Machine was a stack machine and had an instruction set very different from the three address
instruction set of the COM; however the instruction translation mechanisms of the two machines are
identical so the results presented here should apply to the COM as well.

The experiments were run on the Fith Machine simulator, a suite of C programs including a Fith
interpreter and a cache simulator which processed address traces to produce cache statistics. Traces of
large Fith programs were produced by instrumenting the Fith interpreter on an IBM 4341 to record for
each instruction interpreted: the address of the instruction, the opcode, and the type of object on the
top of the stack. Several traces were produced, the longest of which was about 20,000 instructions in
length. For each trace, the instruction cache hit ratio and ITLB hit ratio was recorded for several cache
sizes and associativities. A warmup trace was run before the measurement trace to avoid biasing the
results by the initial faulting in of data into the caches.

The results of these simulations are shown in figures 10 and 11. The hit ratio in the ITLB for cache sizes
varying from 8 to 4096 is shown in figure 10. The data indicate that a 99% hit ratio can be realized
with a 512 entry 2-way associative cache. It is interesting to note that the data for one-way associative
or direct mapped caches in figure 10 agree within a few percent with data published on the performance
of a direct mapped software cache in the Berkeley Smalltalk system. [5] It is clear from the figure that

a great deal can be gained by having at least a 2-way associative cache. It is not clear that adding more
associativity improves the hit ratio much.
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Figure 10. ITLB Hit Ratio vs. Cache Size

The hit ratio in the instruction cache is shown in figure 11 for cache sizes varying from 8 to 4096. In

this case it appears that a 2 or 4-way associative cache with 4096 entries is required to achieve a 99%
hit ratio.
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Figure 11. Instruction Cache Hit Ratio vs. Cache Size

These experiments verified the validity of using an ITLB to support run time binding of methods to
messages. A modest size I'TLB results in an acceptable hit ratio of 99% . If this hit ratio is insufficient, a
larger second level ITLB can be implemented in main memory and accessed by miss processing hardware.
Only a miss in both caches would result in a trap.

It was during the course of these experiments that the architecture of the Fith Machine was dropped and
the COM architecture was defined. Stack machines while offering small code size require almost twice
as many instructions to implement a given source language program than a three address machine. Our
initial design studies indicated that executing a stack machine instruction would take about the same
amount, of time as executing a three address instruction. From this analysis, the three address COM
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should offer a significant performance improvement over a stack machine.

Another decision which came out of these experiments was to abandon the stack based control structure
of the Fith Machine in favor of the more general contexts of the COM. The contexts in COM support a
general control transfer similar to Lampson’s XFER instruction.[15] This control transfer supports block
contexts in Smalltalk, process switch, and interrupts.

§6 Conclusion

Late binding object oriented languages need not be slow; the inclusion of a modest amount of hardware
support can improve the performance of these languages making them competitive with conventional
languages. In the past, the well known software engineering advantages of object oriented languages
have been restricted to applications for which speed is not an issue. With the improved performance

provided by our proposed hardware features these languages may be employed in a wider range of real
world applications.

We have proposed the following novel concepts: abstract instructions, floating point addresses, three
level addressing and hardware support for contexts. Abstract instructions with translation lookaside
buffering efficiently implement the semantics of method lookup. Floating point addresses solve the small
object problem. Three level addressing separates the issue of naming from that of resource allocation
in a memory hierarchy. Providing fast access to contexts combines the speed advantages of registers
without sacrificing the simplicity of a single virtual name space. Accelerating allocation of arbitrary
non-LIFO contexts reduces the burden of storage management.

We have done the following: A simulator has been written to test the use of lookaside buffering in
accelerating interpretation of abstract instructions. Based on the results of these experiments we have
defined the architecture of the Caltech Object Machine embodying the above ideas. A Smalltalk-80
compiler has been written which generates code for the COM. A function block level simulator of the
COM is under construction. We plan to build a prototype COM using both catalog parts and custom
integrated circuits.
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