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1. INTRODUCTION

Suppose we have a system consisting of some finite number of concurrent processes. The processes
are said to be synchronized whenever the progress of some process may have to be delayed because
of conditions caused by the other processes in the collection. Whenever processes are synchronized
there exists the possibility that they may maneuver themselves into a deadlock [see, Habermann 69].
A deadlock is a st#te in which there is at least one non-terminated processes indefinitely delayed, i.e.,

such that no state can be reached from which the process can make further progress.

An iniportant class of deadlock problems arises from co:iﬂicts over shared resources, each of which
" can be used by only one process at a time. For example, one process while using resource A may require
resource B. However resource B may already be in use by a second process which, in turn requires
resource A in order to proceed. Both processes are therefore stalemated and will remain so indefinitely:

they have reached a deadlock.

The problem of deadlock arising from shared resources was first noticed in operating systems
having quasi-parallel processes [see, Dijkstra 68]. These processes, although logically parallel, are

sequcntialized when implemented by a traditional sequential machine. Thus a natural solution for
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preventing deadlock is by a global scheduler which controls the sequence of resource assignments. A
well-known scheme for deadlock prevention is the “banker’s algorithm™ [Dijkstra 68]. In this scheme .
the maximum amount of each resource each process ever requires is given. There is one scheduler for
all the resources. It keeps track of which resources each process is using, i.e., the “state” of the system. .
The banker’s algorithm entails a method of computing the “safety” of states. Each time a process
requires a resource the scheduler will allow the use of that resource only if the ensuing state is still

safe. The banker’s algorithm is an example of a global scheduler.

In this paper we look at resource sharing without a global scheduler. In fact, the only scheduling
we allow is the delaying of a process requiring a resource already in use. The acquisition of resources
is concurrent and asynchronous,_ and no global information abqui:,it‘ is available. A process is always :
allowed to free‘ a resource; the resource returned is then available for use .aga.in. Such “mutual exclusion :

scheduling” can, for example, be realized with semaphores [Dijkstra 68]. Each resource has a binar);
“ semaphore and an a.rbit.ratioﬁ mechanism. We do not assume any particular arbitration scheme. This
type of “minimal scheduling® is important, for example, in VLSI systems [Mead &Conway 80}, in which .-

the requirement to have a global scheduler would seriously degrade its computing potential.

In this paper, we prove necessary and sufficient conditions for collections of s&nchronized’ processes
to be free from deadlock. In Section 3 we prove a general theorem which characterizes those collections
which have deadlock potentié.l by applying combinatorial arguments. In Section 4 we examine the
computational complexity for testing the deadlock condition and derive a polynomial time algorithm

for the problem. Finally in Section 5 we discuss the special case that all resources are of different types.
2. RESOURCE CONTENTIONS

Definition 2-1:

A resource contention system is a quadruple (N, M, { pp } s, @) in which:
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(i) N isa set of resource types, {ro,r1,...,Tn—1}.

(i) M is a set of processes, { po,p1,-.-,Pm—11-
(iii) {pp}peas is & family of request functions pp,: N — N.
(iv) ais an availability funciion o : N — N.

(N is the set {0,1,2,...} of natural numbers.)

There are a fixed number of resources available, each one having a type. Resources of the same
type are indistinguishable in the sense that processes cannot request a particular resource; they can
only request a resource of a particular type. The availability function a gives for each resource type
the number of resources available. Each request function p, specifies how many resources of each type
process p requests to have in use simultaneously. In particular, process p requires p,(r) resourées of -
type r. A process proceeds if and only if it has acquired all the resources it requested. The process uses
_ these resources .untilﬁ it is completed, at which time the resources are returned to the system and can

be re-used by other processes.

Definition 2-2:
For T C N, let P(T) denotes the set {p € M|p,(r) > 0 for some r € T}. Thus, P(T) is just ‘

the set of processes requesting a resource of a type in T.

Definition 2-3:
For @ C M, let R(Q) denotes the set {r € N|pp(r) > 0 for some p € @ }. Similarly, R(Q)
is just the set of resource types requested by processes in @. Notice that @ C P(R(Q)) and

T C R(P(T)).

Deflnition 2-4:

Call p € M and q € M competing processes if pp(r) > 0 and p,(r) > 0 for some r € N.
3



Deflnition 2-5:
Two elements in the transitive closure of the relation “competing” are called related. This is
an equivalence relation on the set P(V). Its equivalence classes are called components. Denote the

components by Cp, Cy,...,Cc—y.

The components C; partition the set P(N). It is easy to verify that the sets R(C;), 0 < ¢ < p,

partition R(M) and that C; = P(R(C})).

Deflnition 2-8:
§ : N — N, the discrepancy function, is defined by
8(r) = max(0, Z po(r) — a(r)).
. pEP(T) '
The discrepancy function gives for each resource type the mumber of resources the system lacks in

order to accommodate all requests simultaneously. -

If for any resource type r,

Y ) —alr) <.

PEP(T)

then type r resources are abundant and thus r is irrelevant in the resource contention system. Therefore, -
without loss of generality, we assume from now on that
8r)= D pplr)—alr) > 0.
PEP(T)
In fact, it is easy to check that all the theorems that follow will still hold when these abundant resources

are taken into account. Note that this assumption implies d(r) > 1.

Definition 2-T:

A resource contention system (N, M, { pp },¢c s, @) has danger of deadlock when there exists
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aset T C N, T # ¢, and a family { g, }peP(T) of acquisition functions uy, : T — N with

Y m)= Y plr}—b(r)=cfr) forall reT, (1)
PEP(T) pEP(T)

pip(r) < pp(r) for all p € P(T),r € T and (2

for all p € P(T), there exists r € T such that up(r) < pp(r). 3

The value of y,(r) may be interpreted as the number of resources of type r € T that are in use
(or acquired) by process p € P(T). Equation (1) says that the situation we are interested in is when all
available resources in T are fully used by all processes in P(T). Inequality (2) says that the number of
resources for each type each process uses can not exceed what it requires. Condition (3) says that each .
process m ‘P(T) has acquired less than it requested. For all prucésses p € M\ P(T), the set of resource
types required by the processes in M \ P(T} is just R(M \ P(T)). Since R(M \ P(T))NT = ¢, then .
~even though some of the processes in the system may still be able to proceed, their returned resources

are not required by the processes in P(T), and we therefore have a deadlock situation.

Definition 2-8;

A resource contention system (N, M,{p, Yoem: o) is called deadiock free when there is no
danger of deadlock, i.e., for all T C N, T # ¢, and all {4 },cp(r) satisfying (1) and (2), we
have:

For some p € P(T), pip(r) = pp(r) for all r € T (4)

Condition (4) says that for all T and any distribution of the resources over the processes in which

processes together use as many resources as allowed, there will always be a process in P(T) that has all

resources it requests.



3. GENERAL THEOREM

‘We will state a theorem which characterizes deadlock situations and prove it by applying a theorem

of P. Hali, the so-called “Marriage theorem”. First we need some definitions. (see also [Mirsky 71] and

[Ryser 63])

Definition 3-1:
A family of (not necessarily distinct) subsets Sy, Sy, ..., S,, of a set S is said to have a system
of distinct representatives (SDR) if there exists a set of distinct a; such that a; € $;,1 < ¢ < m.

In this case we say a; represents S; and {ay,...,a,, } is an SDR for the family {S},...,8m }-

Theorem 3-1 (P. Hall):
A family of subsets Sj,..., Sy has an SDR if and only if for any subset V’ of the set V =

{1,2,...,m},|U;cys Si| contains at least |V'| elements, i.e., for all V! C V,

U s

> V). (5)
iev! 5

Deflnition 3-2:
We denote the §(r) “units” of discrepancy of resource type r by eso,er1,:. ., €s(s(r)—1). For
each r C 7, define

E={e)0<k<d(r), reT}
and define for each p € P(T)
Ep={exlpp(r) >0, 0<Ek<8(r), reT}.
{Ep}pe P(T) is a family of subsets of E. For a process p, any element of £, can potentially prevent

it from being able to proceed. Note that each “unit” of discrepancy e,, is an element of the set E.

For each process, the associated E,, is a subset of E.
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Theorem 3-2:
A resource contention system (N, M, { p, }pG M @) has danger of deadlock if and only if .
for some nonempty 7' C N, Z é(r) > |P(T)). ’ (6)
reT
Proof:
We first show the necessity. Assume there is danger of deadlock. Then for some { 4, }pe P(T)’

for all p € P(T), there exists r € T such that p,(r) < py(r). Therefore,

Y o= E( ) (p,,(r)—pp(r»)

r€T r€T \ pEP(T) -
= 2 (Z (Pp(f‘)--#p(r)))?_vz 1 = |P(T)|
pEP(T) \reT PEP(T)

as required."' .
Now assume that (6) holds. We show that there is danger of deadlock. Since (6) holds, we -

can cﬁoose a T which is minimal in the sense that

forall ' C T, &(r) < [P(T")}. )
reT v -

For this T,

U &= 1M 8)

pEP(T)

Note that (8) is identical to the Hall condition (5) in the case of V! = V = P(T). We prove

Y o) =

reT

that {Ep},¢ P(T) satisfles the Hall condition (5) for the existence of an SDR. For a given V7, let

G =T\ R(V'). Then P(G) N V' = ¢. Also P(G) C P(T) and V' C P(T). Therefore, we have
V'l < [P(T)|— [P(G)I. (9)

Thus, for all V! C P(T),



UEl= Y =3 61-> 4r

peV!? re(R{(VINT) reT reG
> |P(T)|— ) 6(r) (by(8))
reG
> |P(T)| — |P(G)| (by(7)
> |V'|. (oy(9))

By the Marriage theorem, { Ep }Pe P(T) has an SDR. What remains to be shown is that the
existence of such an SDR results in a deadlock, i.e., a family { 4, }oe P(T) satisfying conditions (1),
(2) and (3) can be constructed.

Let F, = { E,| for some k, e, is the representative of E, }. We have |F,| < 6(r). Now assign’ |
the value of the functions uy in {5 },¢ p(r) i the following way: For all p € P(T),if E, € F,, .
let p,(r) = pp(r) —1. r is the resource type in which process p is deficient. Let By(r) = pplr)
for all other r. Already we have (2) and (3) holding for { 4}, }oe p(r)- Foreachr € T, there are
6(r) — |F;| “units” of discrepancy left to be distributed. These can be distributed arbitrarily to-
all p € P({r}) so that (1) is satisfied. Let {p, }pep(._,.) be the set of acquisition functions after:-

this further distribution. Then

3 o= Y WO —6n—IF)

pEP(T) PEP(T)
= " (pp(r) — 1)+ D_ pplr) — (6(r) — |F;))
pEF, PEF,
= E pp(r) — 8(r).
PEP(T)

Note that since-6(r) — |P(T)| > 0, up(r) < piy(r), for all p € P(T) and r € T. Hence (2) and

(3) are unchanged. This proves the theorem. [
4, COMPLEXITY OF THE CRITERION

In Section 3, the condition for the existence of danger of deadlock in a resource contention system

was given. We can also state the theorem in the form of deadlock free contention.
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Theorem 4-1:

A resource contention system (N, M, { pp }pE M @) is deadlock free if and only if

for all nonempty T C N, |P(T)| > Y_ 6(r). (10)
reT )

To test whether a system is deadlock free, it might appear that 2!V of tests of (10) are necessary.
Fortunately, the bipartite nature of the relation between the processes and resources enables us to
formulate Theorem 4-1 in terms of an SDR of the “dual” system described by Definition 3-2. The
fact that there exist polynomial algorithms for testing the Hall condition (5) [Lawler 76] also makes it ..

possible to test the deadlock free condition in polynomial time.

Lemma 4—-2: .

Inequality (10) is equivalent to

forall z € M, for all nonempty T C N, |P(T)\{z} > Z 8(r). (11)
reT

Proof:

(10)=3(11) is clear. Assume (10) does not hold. We show that (11) also does not hold. By
hypothesis, there exists 7 C N such that |[P(T)| < 3°,c7 8(r). Since P(T) 7 4, there exists
z € P(T), such that

IP(T)\ {2} = |P(T)| —1 < )_ 6(r).

reT

This completes the proof. [

Deflnition 4-1:

Let V = {(r,k)|0 £ k < §(r), r € N} For(r,k) €V, define

D.(r,k)={plpe M\ {=z}, p,(r) >0}
9



{D.(r, k) }(,, Kev is a family of subsets of M \ {z}. Each D(r, k) has associated with it a “unit”
of discrepancy e,;. Any element p of D;(r, k) can potentially absorb this discrepancy and therefore be
unable to proceed. Note that in contrast with Definition 3-2, each process plays the role of being an

olement of the set M \ { 2}, whereas for each “unit” of discrepancy, the associated D,(r, k) is 2 subset

of M\ {z}.

Deflnition 4-2:

For T C N, define
V(T)={(r,k)0 <k <é(r), forallre T}
No‘te tha§ /V = V*(N). and .fqr all V! C V, there exists a T gugh that
VCV*T)and foral T’ C T,V’ gZ V(T

Lemma 4-3:

Inequality (11) holds if and only if for all z € M, and all V! C V,

U Du(r.B)| > v (12)
(r.k)cv!
Proof:
U bnbj=| U D,k
(r,k)EV! (r.k)eV*(T)
=[P\ {z}> D )=V >V'|. O
reT
Corollary 4-4:

A resource contention (IV, M, {pp }pe M @) is deadlock free if and only if for every z € M

the set M \ { z} and the family of subsets { D(r, k) }(J-, r)ev in Definitvion 4-1 has an SDR.
10



Corollary 4—4 says that a resource contention system is deadlock free if and only if after deleting
any one process from the system, the discrepancy family { D.(r, k) }(j.k)eV has an SDR. This means
that the discrepancies will all be absorbed by the rest of the processes, but there is at least one process
(the deleted one) that can proceed. This deadlock free condition can therefore be tested by deleting
one process at a time from M, then using the algorithm for testing the existence of an SDR. The best
algorithm known for testing for SDR’s is of order O(N?5) [Hopcroft & Karp 73], where N =m +n
(i.e., the sum of the number of processes and resource types). It follows that the deadlock free condition
can be tested in order O(N3-5) steps.

If the structure of (N, M,{pp }‘{,e M @) is such that there is more than one component, the
following theorem will occasionally enable us to reduce further the number of steps im testing the
condition.

Theorem 4-5:

A resource contention system (N, M, { g, }pe M @) With components Cy, Ca, ..., C.—;is dead-
lock free if and only if
(R(Ck), Ck,{ Pp }pec,, @ } R(C%)) are deadlock free for all K,0 <k <e. . - (13).

(2 } R(Cy) denotes the restriction of a to R(Cy).)

Proof: -

By Theorem 4-1, (13) is equivalent to:

|P(T")| > Y é(r), for all nonempty 7' C R(Ci), 0<k<c. (14)
reT!

We show the equivalence of (14) and (10). Since every subset of R(C;) is a subset of IV, (10)

obviously implies (14). Assume (14) holds. Let T C N. We show

IP(T) > Y é(r).

reT
11



Consider the sets T N R(C%),0 < k < ¢, which form a partition of the set T. Similarly, the sets
P(T N R(Cy)) are disjoint since P(T N R(C%)) C Ci and partition P(T). For sets P(T N R(Cj))

that are empty, both sides of (15) are 0. We have, because of (14),

IPTNRECN > Y. &) (15)
rE(TNR(Ck))

Since P(T) 5~ ¢, there is at least one k for which P(T N R(Cy)) is nonempty. For these sets, (15)

holds with stricf inequality (by‘ (14)). Adding (15) for all k,0 < k < ¢, yields (10). O

Theorem 4-5 shows that in order to prove a resource contention system to be free of deadlock we
do not have to check (10) for all subsets of resource types, but we may instead restrict our checking to

the subsets of all its components.
5. SIMPLE RESOURCE CONTENTION SYSTEMS
From now on we shall consider the following special case,
| alr)=1forallr €N
pp: N —{0,1}
Then

B = Y o) —1= Y ps(r)—1

pEM rEP({r})
and so,

6(r) =|P({r )l —1. (16)

Again, without loss of generality, we assume 6(r) > 0.

Lemma 5-1:

Let P(N) consist of a single component. Then for each T C N, ¢ # T £ N,

there exists an z € N \ T such that |P(T U {z})] < [P(T)| + 6(z).
12



Proof:

If P(T) = P(N) any z € N\ T will do. We consider the case P(N)\ P(T) # ¢. P(T) and ..
P(N)\ P(T) together constitute one tomponent. Therefore, there must be a g € P(T) which is
competing with some p € P(N)\ P(T), i.e., for some z € N, p,(z) > 0 and p,{z}) > 0. Since

p,(z) > 0 and p ¢ P(T), we have z € N \ T. Since g € P({z}) N P(T) we have
|P{z})\ P(T)| < |P({=z})| — 1. (17
However, by (16) and (17),
|P(T U {z})] = |P(D)| + |P({zH \ P(T)| < |P(T)| + 6(z)
which proves the lemma. [

Lemma 5-2:
A simple resource contention system (N, M, { pp Yoem: a) in which P(N) consists of a single

component is deadlock free if and only if

IP(N)| > > 5(r) (18)

rEN
Proof:
Obviously, (10) implies (18). We show that (18) implies (10). (Note that (18) is a special case
of (10) with T = N). We need to show for all other T C N, the same inequality holds. Assume

for some maximal T, T # N, (10) does not hold, i.e.,

IP(T) < Y 8(r). (19)

reT

Then by Lemma 5-1, there exists an £ € N \ T such that

|P(T U {z})| < |P(T)| + 8(2)- (20)
13



Hence by (19) and (20),

Y b@) =) 6(r)+ 8(z)

reTU{z} reT

- 2 IPM+(P(T U {z})] — |PT))) = |P(T U {=})I.

However, this contradicts the maximality assumption in the choice of T and the lemma is proved.[]

Lemma 5-3:
Let P(N) consist of a single component. Then
IP(N)| < Y 6(r) +1
rEN

Proof:

According to (16), for any y € N, |P({y})| = 6{y) + 1. For T = {y } we have proved

BT < 37 8r) + 1.

reT

For T # N there exists, by Lemma 5-1, an z € N \ T such that
|P(T U {z})| < [P(T)| + 4(z)
With (21) this yields

IPTU{z})I< D 6(r)+1

reTu{z}

By induction, (21) holds for all T C N, and in particular for T=N. [O

Corollary 5-4: [of Lemmas 5-2 and 5-3]

(21)

A simple resource contention system (N, M, { pp }pE M @) in which P(N) has one component

is deadlock free if and only if

|P(N)] =" 6(r)+1.

TEN
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Theorem 5-5:
A simple resource contention system (N, M, {p, }pe M @) in which P(N) consists of ¢ com-
ponents is deadlock free if and only if
IP(N)| =} 8(r) +e. (23)
rEN
Proof:
According to Theorem 4-5 the resource contention system is deadlock free if and only if for

each component Cx, (R(Ck), C, { pp }pecy: @ 4 Ci) is deadlock free, i.e., if and only if

forall0<i<e|Cil= Y, 68(r)+1
TER(C(,)

Since |C;} = ErER(C';)’ 6(r) +1 the resource contention system is deadlock free if and only if

c—1 c—1 '
doled=23 > 6+
=0 =0 rER(CY)
i.e., if and only if
| PN = Y 60 +e ()
rER(M)

Since we always assume 6(r) > 0, N = R(M), and therefore, (24) is equivalent to (23). [0

Example: “The Dining Chinese Philosophers”

This example of a simple resource contention system is a slight variation of Dijkstra’s well-known

problem of the five philbsophers [Dijkstra 71]. There are n (n > 2) Chinese philosophers sitting

at a round-table, each one with a plate in front of him.There are also n chopsticks, each chopstick

placed between two adjacent plates. A philosopher either thinks or eats. When eating he uses the two

chopsticks that are at the sides of his plate. In this case, the chopsticks are the shared resources. This

is an example of a simple resource contention system. Under what circumstances is it deadlock free?

15



- We first look at the case that all n philosophers are wishing to eat. N is the set of all chopsticks.

‘We have

[P(N)J=n, c=1and
forallre N, 6(r)=1.

Hence }° n 6(r) = n. Since |P(N)] # }°,en 0(r) + 1, by Theorem 5-5, the resource contention

gystem is not deadlock free.

Now assume there are only k, 0 < k < n, philosophers wishing to eat. Suppose there are !

chopsticks which are between two adjacent plates of philosophers wishing to eat (I < k). Then - .

1PN =k, D b6(r)=1 e=k—1I
‘ . reEN T ‘ .

Thus, since |P(N)| = }°,c 5 6(r) + ¢, the resource contention is deadlock free.
6. CONCLUSIONS

In this éaper we have been looking at resource contention systenis. Rather than posing the question
how the processes involved have to be scheduled in order to avoid deadlock have we postulated the
scheduling and characterized all ensembles of processes that will avoid deadlock. For the scheduling we |
have chosen the simplest scheme we could think of: scheduling by mutual exclusion on the individual

resources.

Comparing the general theorem with that for the special case of single resources we notice that
the determination of absence of deadlock is much simpler in the latter case: testing only one equality
suffices. In the general case, we have produced a polynomial algorithm of order O(n353) to determine
the absence of deadlock. The second version of the general theorem can further reduce the number of

steps to be tested if the processes can be non-trivially partitioned into disjoint components.
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