Combining Graphics and a Layout Language in a

Single Interactive System

by

Stephen Trimberger

Technical Report #4281
May 1981
Computer Science Department
California Institute of Technology

Pasadena, California 91125

Silicon Structures Project
sponsored by
Burroughs Corporation, Digital Equipment Corporation,
Heﬁlett-Packard Company, Honeywell Incorporated,
International Business Machines Corporation,
Intel Corporation, Xerox Corporation,
and the National Science Foundation

The material in this report is the property of Caltech, and is

subject to patent and license agreements between Caltech and
its sponsors.

Copyright, California Institute of Technology, 1981

COMBINING GRAPHICS AND A LAYOUT LANGUAGE IN A SINGLE INTERACTIVE SYSTEM

Stephen Trimberger

California institute of Technology, Computer Science Department, Silicon Structures Project
Pasadena, California

XEROX Palo Alto Research Center
Palo Altg, California

ABSTRACT

Layout languages provide users with the capability to
algorithmically define cells. But the specification
language is so non-intuitive that it is impossible to debug
a design in that language, one must plot it. Interactive
graphics systems, on the. other hand, allow the user to
debug in the form (n which he sees the design, but
severely restrict the language he may use to express the
graphics. For example, he cannot express loops or
conditionals. What is really needed is a single interactive
system that combines layout language and graphic
modifications to the data. This paper describes just such
a system.

INTRODUCTION

Two primary methods for generating integrated circuit
mask layout data are interactive graphics and layout
languages. Each has tasks which it does well and those
which it does not. The result is that users of both kinds of
systems are dissatisfied.

When dealing with graphic data, such as intcgratcd
circuits, it is necessary to view the data graphically.
Often the limiting factor in the speed of design is the time
it takes to plot the data. Interactive graphics systems
provide "instant plotting", enabling the designer to iterate
extremely quickly on the design.

Interactive graphics systems also provide a powerfu!
"language” for handiing the data. For example, the user
may point to the object of his attention or to a desired
position, rather "than search for certain numbers in a
program printout or type numbers in & program oriented
system. But interactive graphics systems do not allow
graphic objects to be positioned with respect to other
objects, except occasionally, in & most rudimentary
adjacency manner. Positions are given in some absolute
coordinate space and are independent of one another.
Many systems give the abillty to replicate a piece of
geometry. This is a looping construct, but it is severely
limited by the capabilities of the graphics system.
Graphics systems do not allow the expression of
conditional geometry or relative positioning. Much more
powerful language-style operations are needed.

Layout languages attempt to resolve these problems.
Layout languages usually fall into the "plotter driver"
category. Features are described by & sequence of
commands to draw geometry at absolute coordinates.
More advanced languages, usually embedded in an
existing programming language, have all the powerful
control structures that such ianguages provide, such as

loops and conditionals. The power gained by the addition
of true programming language facilities to the layout
language provides the designer with the ability to
algorithmically define a circuit or a piece thereof.

Algorithmic definition is the specification of a piece of a
layout with an algorithm. The algorithm that generates the
layout can be parameterized, glving the ability to define,
for example, an n-input NAND gate, a line drivcr with
exactly the required power, a Programmed Llogic Array
(PLA), or even an n-bit processor. Such cells are much
more versatile than typical "hard" standard cells. This
algorithmic design is not possible with current interactive
graphic design aids.

Unfortunately, languages specify graphic positions in an
awkward fashion, by numbers. A user of a layout language
system has a separation between the graphics
specification and the graphics viewing. Current languages
force the user to go through a tedious and time consuming
edit-compile-plot cycle. Interpreted languages get rid of
the explicit compilation, but have a corresponding lengthy
program execution and evaluation cycle, which achieves
the same effect, that of slowing down the design cycle.
Interactive techniques have attempted to get rid of this
lengthy cycle, but have bean usually aimed only at the
graphic form and not at the language form.

The major disadvantages of each kind of system
correspond to the strong points of the other. Graphics
systems are easy to use, but severely limited in their
expressability, language systems are versatile but tedious
to use. Therefore an attractive idea is to combine both
representations in one system which allows modification of
the Iintegrated circuit data in both forms. This is called
parameterized graphics by graphics system users and
instant plotting by language system users.

This paper deoals with the design, implementalion and
evaluation of the ideas for combining graphical and textual
data representations.

OVERVIEW OF SAM

Sam Is the name of a system which combines the two data
representations. The work on Sam was done at the Xerox
Palo Alto Research Center. Sam was written on the Alto, a
personal minicomputer, the key features of which are a
high-resoclution black and white video monitor used for both
graphics and text output, and a “mouse" pointing device
for graphic input, as well as a keyboard and facilities for
printing and file storage. Sam runs in the Smalltalk
environment, an object-oriented system with very
powerful programming and debugging aids [Ingalls 1977]).
Smalitalk is a virtual memory system with Its own memory

‘Def SRosll | ONDy | VDDy | INPy | LEFTX |
RIGHTx |
Note: aulr Note,
Box, 1S, B “6+LEFTX,124VDDy
ur: 134+RIGH x,lG#—VDQ%.
go\)I‘DDg 2. & T3,124YDDyY ur:
1,1 .
" |Box. 4. Ik "2,134VDDy ur:
o.15;°vooyw. 3. L T4Sur20, O
X, T J. K s La1ls
X, layer: 4. L 723 ur: 0,7,
Box. :2. ke T32ur 1.5,
X, layer: S, t :2:,3 ur: 12,?3
. A N < ure .
B Logeri s, u: “63LEFTx, "1 HNPy ur:
3,1 HNPY.

éaox. layer: 3. K& 5,76+GNDy ur:
7, - :

. layer: 3, I:5 +4 + 2,71 HNPy ur:
M!»GHTx +°4 + 2,1 HNPy. _
{Box. layer: 5. Il: 6+HEFTx, 6+GNDy +
2 4+ 72 ur: 134+RIGHTX, "2+GNDv.
_la . layerz 3, It 72,75+GNDy ur:
0, 3+GNDy. :
i: 0,3 ur: 11,5,

Box. Lauer: 2.
Box. Lagef- 3. L ,"‘1-HNP§ 2 13,2,
: s 13,5,

.

EEEERRE

SEORN

Pt
r

3

N\

o

Figure 1. Snapshot of the Sam Display.

manager and garbage coliector.

Sam was meant to be an experiment, a quick
implementation to test the ideas for combining graphic and
language systems. For this reason, many decisions were
made to facilitale the implementation at the cost of
execution speed and fuliness of the user interface.
Smalltalk was chosen as the implemontation languagc
because of its virtual memory, automatic garbage
coliection, excellent debugging facilities and powerful
language constructs which facilitated code sharing. These
features were necessary in order to finish the system in
the three months allotted for the project. The price of
these - features was the inability to perform low-level
hacking to improve performance. Since no such hacking
was to be done, there was essentially no cost for the
powerful language environment.

Sam provides the user with a two-part viewing window on
the display as seen in figure 1. The left side shows the
program view of the design under edit, the right side
shows the graphics view. The user may move the viewing
location in either window and may make edits to the data
in either window. When the design is changed In either
window, the change Is reflected immediately in both
windows.

The data displayed in the windows are pictures of the
data structure. The data structure is the base form, the
program view and the graphic view are merely different
ways of looking at the base form of the data. When either
the graphic bitmap form or the program character-string
form is needed for display, It is generated from the data

structure. When the user makes what appears to be a
modification of the data in either window, the commands
are translated into calls on procedures in the data
structure to carry out the action. The data structure
makes the modification and causes both displays to be
updated. The two views are kept consistent becausc
they are both refreshed from the same data in memory.

tnternaily, Sam consists of four major pieces {see figure
2). The first piece is the data structure, which is more
than a conventional design automation database,
consisting as it does of objects which have both data and
code attributes. Two more major pieces are the Graphic
Editor and the Program Editor, which display data and
convert inputs to commands to the data structure. The
fourth plece is & small coordination piece, which holds
together the two editors.

DATA STRUCTURE

The heart of the Sam system is the data structure. The
data structure Is modelicd after the parse tree of a simplc
programming language as seen in figure 3. Each node in
the data structure corresponds to one statement in the
simple programming language. For this reason, | use the:
phrase data structure language when referring o the
operation of the data structure. The parse tree form .
facllitates the viewing and editing operations. It is more |
convenient and faster to keep the data in this form than it
is to re-construct it from a character-string or
token-string base language form when it Is needed for
graphic operations.

Figure 2. Sam Block Structure.

The data stlruclure languaye includes joups, conditionals,
and variables. Procedure definition in the language
provides the cell definition facility for the integrated
circuits. Thus, cells defined in Sam can have parametlers
passed to them, just like proceduares in programming
languages.

The data structure contains elght kinds of entries: Box,
Instance, Cell Definition, Loop, If, Assignment, Block and
Note. Besides the major data structure entries, there are
entries for name, expression, and comment text. Each kind
of entry is defined as a Smalltalkk Class, which is a
construct consisting of some data and some procedures
for manipulating that data. Each statement in the data
structure is one instance of a Class, which has its own
data fields, but shares the procedure code with all other
objects of its class.

The statements below are the textl iepreseinrtativns of the
data structure entries. These correspond to the text
view of the design. The underlined portions bdf the
statements correspond to the data fields of each class of
objects. The data fields are the portions of each ohjent
which may be manipulated by the editors. Commands from
the editors to modify the design are translated into
commands to change one or more of the underlined fields
in a data structure entry.

The Box entry is the graphic primitive, and is described by
a layer, and expressions for the lower left and upper right

x~y positions of the corners of the rectangle.

Box. Layer: Polysilicon. H: 8,1 wur: 10,10.

FORi:=1t07 DO

\ FOR

Box. Layer Dif. H:3*i4+6,2 ur:3*i+8,4.

Then Box. Layer: Pol. 11:3*i+6,1 ur:3*i+8,5.
Else Note: Nothing here.

BOX
pol
3i+0

Nothing

i Hi-a
1
7
—3»| BLOCK
\F
-4
BOX
dif
3i+6
NOTE
2
3i+8 Here
4

3i+8

Figure 3. The Sam Data Structure.

The data structure contains entries for programming
language constructs. The first is an asslgnment entry with
a destinalion variable name and source expression. There
is a conditional entry with three fields: the conditional
expression and two pointers to olher Sam data structure
entrics, one for the THEN-branch and one for the
ELSE-branch. ,Sam has an entry for iteration, which
consists of loop variable name, starting and ending loop
value expressions, and the entry for the body of a loop.
The Note entry is a comment, and is used for annotation.

PlAsize = PLAdrivSize + (minterms * PLAandSize).

If firston '
Then: Box. layer: Polysilicon. Il: 8,1 ur: 10,10.
Else: Note: Don't connect the switch

For buscount = 1 to bussize do:
Note: Connect the busses
Box. Layer: Metal. ll: LeftSide.bottom + 10*buscount
ur; RightSide.bottom + 3 + 10™buscount.

Note: Tricky stulf: Be sure DEl and CES are never hoth high..

There are entries for building the cell Instantiation
hierarchy. The cell definition entry has a cell name, a list
of parameter names and an entry for the body of the cell.
The cell instance entry has the name of the cell to be
instantiated, the transformation matrix entries to specify
the position and orientation of the instance, and a list of
parameters.

Def andPlane (inputs, minterms, code)
Note: The stuff for the andplane goes_here.

inst PLAcelipair 111:1,112:0,121:0, t22:1,
tx:(14%incount), ty:-4+(14*mincount) |
Params: (code(mincount*2-1, incount)),
{code(mincount*2, incount)}.

The Block entry allows many statements to be grouped
into one for inclusion in a loop, for example. Blocks show
indented. -

Note: There is nothing in this loop.
Note: Except these comments.

The procedures recognized by the data objects define the
interface to the data structure. In particular, each class
has procedures to update each ‘of its data fields shown
underfined above. in addition, each class has procedures

to show graphically and print textuaily In the respectlive

windows. These two procedures provide the pictures of
the data structure that the user sees when he
manipulates the datla.

Commands from the two editors, one textual, onc
graphical, to aiter the data, are translated into calls to
entries in the data structure to change a certain ficld,
giving a common interface for both representations. The
calls may be passed down the tree If necessary. An
operation on an /f. statement may be one on the statement
itself, In the case of modifications to the conditional
expression, or may be passed down the THEN-branch or
ELSE-branch, In the case of a textual select vperation.

EDITING THE DESIGN

Sam provides e syntax-directed editor for the program
view. This is similar in philosaphy to interactive graphics
editors, since the user may not alter arbitrary pleces of
the picture of the data, be it individual bits in the raster of
the graphics or, in this case, individual characiers in the
text. Instead, the user may only manipulate complete
syntactic pieces of the data, such as whole Boxes or
complete expressions. Complete syntactic objects are
whole statements, expressions, and names. These are, by
definition, the data structure entries, shown underlined in
the list of data structure entries, above.

Therefore, the syntax of the program view need never be
checked. It is always correct because it is Impossible to '
make It incorrect. The editing features do not aliow the
“o" to be dcleted from the For keyword, for example.
Oniy meaningful pieces of the data can be changed. When
editing an expression, a variable name, or the comment
text in a Note statement, the user madifies the actual
text, which is re-compiled when an attempt is made to
terminate the edit. This gives full generality and ease of
expression when editing at the lowest level.

The program editor allows the user to select a statement
or subfield of a statement by pointing to it. When this is
done, the selected entry shows video inverted in the
program window, and outlined in the graphic window.
Selected items may be deleted or modified by commands
to either editor. The program editor has commands to
creale any statement, delete the selected statement,
move and copy textually, and edit expressions, names,
and comment text.

The graphic editor commands are very similar to those
available in commercial systems. In the graphic editor, the
user may selecl a box by pointing 1o 1. The seleclion
works exactly the same in the graphic editor as it does in
the program editor. The user may manipulate hoxes with
commands to create, destroy, stretch, and move and copy
graphically. The graphic modifications are interpreted as
changes in the expressions that make up the position of
the Box, for modifications of existing objects, and as
changes in the Block that contains the Box statements, for
creating and destroying elements.

The changes from both editors to entries in the datla
structura are translated inta calls an the vprocedures of
the data objects to effect the change. When a data
entry is changed, both pictures of the data are
immediately updated to reflect the new data structure.

UPDATING PROBLEMS

There are prablems that arise in a system of this sort
where changes can be made In two different forins which
must remain consistent. There are two problems of
particular importance because of their frequency:
expression update and iteration update.

-Expressions: Suppose the x-position of a Box Is given by

the equation "3*w+4" and suppose further that the Box
was moved graphically. How should the x-position be
represented now?

Let us make this an example. Assume w=2, "3*w+4" i3
10. In the graphics window, the user sees the x-position
as 10 and moves it to 13 (sce figure 4). The resulting

expression could be any of the following expressions
which evaluate 1o 13:

13 destroy the parameterization
3*w+7 add a constent (translate)
(13710)*(3*w+4) mulliply by a constant (scale)
3*w+4 {w=3} change the value of the identifier

The first choice, the most
parameterization.

simple,

understanding the design, so this may not be very wise.
The second and third choices preserve the

parameterization, but there Is no assurance that this is |

whal the user wanted, either. The last solution is fairly
tricky. Since w couid itself be defined as an expression,
we are faced with this same problem again when updating
w. The result is a constraint satisfaction problem. Small
changes in the design could have far-reaching and
non-obviocus effects on the circuit.

None of the solutions can give the correct result every
time. The program cannot know the mind of the user. One
option is to give the user several different graphic editing
modcs, one for each of the choices above. This leads to a
cluttered user interface, increasing the chance for subtle
errors if the user accidentally modifies something with the
wrong maode. Another solution could be used where
expressions of the form “aX+b" are translated, because
ihe expression already has a transiation; expressions of
the form "aX" are scaled because the variable is already
scaled and expressions of the form "“X" modify the
variable. Or the system could transiate all positions and
scale sll dimensions. But these guesses could siill be
wrong, and the user would have to remember ail the
special conditions. In general, a blatantly naive, but

consistent system is better than a clever, but inconsistent
one.

destroys the .
The parameterization may stil be '
relevant and, in any case, is useful to the user in’

Sam iransiates s!f changes. This keeps the effects of
modifications localized and preserves the
parameterization. in use, this was found to be the proper
cholce In every case. |t seems 1o be a reasonable
solution. preserving parametcerization In a simple,
straightiorward manner. ’

lteration: When one graphically edits the graphics
corresponding to one iteration of a loop, should all the
iterations be changed, or Just the one?

Typically, language systems modify all iterations, changing
the object of a step and repeat, while graphic syslems
either do the same or disallow the operation. Sam modifies
all iterations of the loop. This seems to work well, but
there are clear cases when the other choice Is preferred.
This may be a situation In which two different editing
modes would work. The iteration problem has not yet been
tully investigated.

GENERAL EVALUATION OF SAM

The individual editors used in Sam were made intentionally
weak In order to simplify the programming task so that the
project could be completed quickly. These weaknesses
were easy to identify and ignore when evaluating the new
ideas In Sam and they will not be discussed here. instead,
this section covers problems arising from combining thesec
two data representations.

The evaluation of Sam consisted of the design of cells of
varying complexity: an inverter, a totally graphical task; a
simple, parameterized stretchable shift register cell, which
could change its pitch depending on input parameters; and
a PLA, a predominantly algorithmic task. The interaction of
the two data representations indicated that even the
simple Sam system was unusually powerful. The details of
the evaluation will not be discussed, but the results are
reported here.

Box. Layer: Pol. 11:3*w+4,6 ur: 3*w+12,9.

Figure 4. Expression Update.

With the larger designs, Sam swamped the minicomputer on .

which it ran. The problem was due mostly to the limited
memory space. Since Sam was meant to be a quick and
dirty experiment, no coding tricks were used to speed the
execution. Sam ran acceptably fast on a more powarful
processor with a larger address space.

The language model used for Sam's data structure was
inadequate. There were two major problems with the
language. First, the Sam data structure language was
modelled after a very simple Algol-like language without
data scoping or type checking. This made the Interpreter
simple and obviated the need for error messages.
However, structured data types such as points, rectangles
and arrays were needed. This need was anticipated and
the problems were bypassed in the evaluation, but a real

system would have to address these data structure
issues.

The Sam data structure language could not properly handie
‘incremental data updates because the language model! did
not provide a facility for expressing dependence of
statements. A Box statement with a variable in one of its
expressions depends on the assignment statement that
sets the value of that variable. In programming languages,
independence is expressed by conhcurrency, since two
pieces of program can run concurrently If they are
independent. A piece of the design must be refreshed
only when [t is dependent on something which has
changed. Therefore, a proper language model for the Sam
data structure would have to be able to express
concurrency. This concurrency would never be seen by
the user, since is only used by the system internally.

One deoficiency of the Sam data lanauage was not a
problem. Since loop termination could not be affected
inside the loop, the language is equivalent to a finite state
machine, and less powerful than a Turing machine. During
the evaluation of Sam, this limitation was not a problem.
This would seem to imply that a finite language is
sufficient to describe a finite object, such as an
integrated circuit chip. This question is still unresolved,
however. Some evidence exists that data-dependent
recursion ur ileration is neceasary to produce some
designs.

The power of parameterization in Sam's cells was very
good. When placing an instance of a cell, one could supply
parameters to alter the internal structure of the cell as
desired. This is the same as passing parameters to a
procedure in a progremming language, and Is done for the

same reason: it allows the procedure/cell to be used in
many more situations.

A cell should have connection points on it, which could be
used as variables in expressions. These could be used in
the program view to connect wires. Attributes of Boxes
should be accessible aliso, for the same reasons. This
implies that Instances and Boxes should exhibit attributes
in the program view, like SIMULA class instances
[Birtwistle 1973].

One graphic editing feature that would have simplified
many operations is one which would position new features
relative to a point. Then, all items relative to that point
could be moved just by moving the point. This would allow
huge pieces of the design to be moved quickly and easily
by parameters in the program.

Perhaps the most powerful single feature of Sam is the
selection operation. The selection shows the relationship
between program statements and graphic elements,
enabling the designer to move quickly and easily between
representations. Not only does Sam give an instant piot,
but the plot is an active entity, telling the user where
each graphic feature comes from in the program.

CONCLUSIONS

Ssam Is fundamentally different than any commercially
available design system. The Sam system gives ihe user
the ability to pass quickly between the graphics and
tanguage worlds. The mating of graphics and language in
this fashion provides the user with a vast increase in
expressive power without losing the fast iteration of
graphic systems. The Sam sysiem was developed in a
deceptively short amount of time. A full, usable Sam
system requires a good graphics system’ and a good
language system as well as facilities relating the two.

Complex designs can be created algorithmically without
giving up the rapid feedback of graphics systems. Such a
system can be used to generate a parameterized cell
library. which could be used to design a large number of
chips. The cells in the Sam library couid be parameterized
in such a fashion that calls to them would provide a
behavioral design language. Thus, large designs could be
created from a behavioral description, and the layout could
still be optimized graphically. Work is progressing along
both these paths.

REFERENCES

[Birtwistle 1973] G. Birtwistle, O.J. Dahl, et. al., Simula
Begin, Petrocelli/Charter, 1873

[Ingalls 1977] D. Ingalls, "The Smalltalk-76 Programming
System Design and implementation®, Proceedings of the
Fifth Annual Symposium on Principles of Programming
Languages, January, 1977

