
The Impact of Asynchrony
on Computer Architecture

Rajit Manohar

Computer Science Department
California Institute of Technology

The Impact of Asynchrony
on

Computer Architecture

Thesis by

Rajit Manohar

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Inst it ute of Technology
Pasadena, California

1998
(Submitted June 25, 1998)

@ 1998

Rajit Manohar

All Rights Reserved

Acknowledgments

I thank Alain J. Martin for being my advisor, for teaching me about concurrency

and asynchronous circuit design, and for being a person with whom I could always

talk. He took me on as a graduate student on extremely short notice, and encouraged

me throughout my stay at Caltech.

I thank the members of my thesis committee: Yaser S. Abu-Mostafa, A1 Barr,

K. Mani Chandy, and Alain J. Martin.

Friday mornings were devoted to group meetings. I would like to thank Uri

Cummings, Marcel van der Goot, Peter Hofstee, Tony Lee, Andrew Lines, Mika

Nystrom, Paul Penzes, Robert Southworth, Jos6 Tierno, and other members of the

asynchronous VLSI group for all the insightful (and animated!) discussions, and what

they taught me through them.

I often spent time thinking about topics that were not directly (and sometimes

not even indirectiyj reiated to asynchronous circuit design. I thank Alain J. -Martin

for giving me this freedom, and Yaser S. Abu-Mostafa, Donald Dabdub, Boris Dim-

itrov, Robert Harley, Rohit Khare, K. Rustan M. Leino, and Paolo A.G. Sivilotti for

providing some of the distractions.

I thank Marcel van der Goot, Alain J. Martin, Eve Schooler, Paolo A.G. Sivilotti,

and Robert Southworth for their careful reading of this thesis.

I thank Tzu-Yi Chen, Donald Dabdub, Marie Johnson, Robert Harley, Ro-

hit Khare, Berna Massingill, Adam Rifkin, and Eve Schooler for conversation and

friendship.

This research was supported by the Defence and Advanced Research Projects Agency under the office

of Army Research and in part by a National Semiconductor Corporation graduate fellowship.

Abstract

The performance characteristics of asynchronous circuits are quite different from

those of their synchronous counterparts. As a result, the best asynchronous design

of a particular system does not necessarily correspond to the best synchronous de-

sign, even at the algorithmic level. The goal of this thesis is to examine certain

aspects of computer architecture and design in the context of an asynchronous VLSI

implementation.

We present necessary and sufficient conditions under which the degree of pipelin-

ing of a component can be modified without affecting the correctness of an asyn-

chronous computation.

As an instance of the improvements possible using an asynchronous architecture,

we present circuits to solve the prefix problem with average-case behavior better than

that possible by any synchronous solution in the case when the prefix operator has

a right zero. We show that our circuit impiementations are area-optimal given their

performance characteristics, and have the best possible average-case latency.

At the level of processor design, we present a mechanism for the implementation

of precise exceptions in asynchronous processors. The novel feature of this mechanism

is that it permits the presence of a data-dependent number of instructions in the

execution pipeline of the processor.

Finally, at the level of processor architecture, we present the architecture of a

processor with an independent instruction stream for branches. The instruction set

permits loops and function calls to be executed with minimal control-flow overhead.

Contents

... ACKNOWLEDGMENTS . 111

ABSTRACT . v
CONTENTS . vii

1 . INTRODUCTION . 2

. 1.1. Computer Architecture 4

. 1.2. Contributions 5

2 . SLACK ELASTICITY . 6

. 2.1. Semantic Framework 7

. 2.1.1 Synchronization 8

. 2.1.2 Computations and Behaviors 8

2.1.3 Specifications and Observability 11

2.2. Main Results . 13

2.3. Subsidiary Resuits . 14

2.4. Shared Variables . 16

2.5. Applications . 17

2.5.1 Pipelining . 17

2.5.2 Control Distribution . 17

2.5.3 General Function Decomposition 19

2.6. A Recipe for Slack Elastic Programs 21

2.7. Discussion . 21

2.8. Related Work . 22

3 . PARALLEL PREFIX . 24

3.1. Traditional Solution . 25

3.2. Pipelining . 27

3.3. Reducing the Average-Case Latency 28

3.4. Analysis of the Average Case 31

. 3.5. Reducing the Area Overhead 34

. 3.6. Application to Binary Addition 35
. 3.7. Area Optimdity 36

. 3.8. Latency Optimality 37
. 3.9. Related Work 39

. 4 . PRECISE EXCEPTIONS 40

. 4.1. An Overview of a Processor 41

. 4.2. Implementing Precise Exceptions 43
. 4.2.1 Process Decomposition 46

. 4.2.2 Evaluating a Probe 47
. 4.2.3 Slack Elasticity 49

. 4.3. Unpipelining the Processor 49
. 4.4. An Optimization 51

. 4.5. Related Work 52
. 5 . THE BRANCH PROCESSOR 54

. 5.1. Existing Instruction Sets 55
. 5.2. A New Approach 55

. 5.3. A Sample Instruction Set 57

. 5.4. Sample Branch Processor Code 60

. 5.5. Deadlock, Exceptions, and Context Switching 62
. 5.5.1 Deadlock 62

. 5.5.2 Exceptions and Context Switching 63
. 5.6. Performance Comparison 64

. 5.6.1 Program-Counter Computation 65
. 5.6.2 Memory Access 67

. 5.7. Speculation 69
. 5.8. Compilation Issues 70

. 5.9. Related Work 71
. 6 . CONCLUSION 72

. 6.1. Future Work 73

. A1 . COMMUNICATING HARDWARE PROCESSES 74
. A2 . ANALYSIS OF PARALLEL PREFIX 76

. REFERENCES 78

Chapter 1.

INTRODUCTION

"It is a little off the beaten track, isn't it?"

-Sir Arthur Conan Doyle, The Red Headed League

Asynchronous switching circuits have been used since the 1940's. The Illiac, de-

signed by the University of Illinois Digital Computer Laboratory in the late 1950's,ls

is an example of a computer that contained both synchronous and asynchronous

switching circuits. The computer had "end signals" (now called 'Lacknowledge" sig-

nals) that indicated the completion of an action.

Early concepts in the design of fundamental mode circuits were contributed by

D.A. Huffman in the 1950's.18 The circuits to be designed were specified using flow

tables from which the excitation functions for all variables in the circuit were gen-

erated. An extension of fundamental mode circuits, known as burst-mode circuits,

are still used by the asynchronous design community. Both these design styles use

feedback paths with carefully matched delays to store state information.

A theory of speed-independent asynchronous switching circuits was developed

by D.E. Muller in the early 1960's as an attempt to abstract from the difficulties of

designing circuits that depended heavily on their precise physical implementation.

His model assumed that transistor networks may have arbitrary delay, and that the

propagation delay through wires is negligible compared to the delay through the

network.

As complex asynchronous circuits became difficult to design because of the prob-

lem of hazards in switching signals, they were replaced by synchronous circuits. By

the time computers became widespread in the 1970's' synchronous switching cir-

cuits had emerged as the prevalent design style. Indeed in the proceedings of the

Caltech conference on VLSI in 1979, the chair of the session on self-timed logic,

Charles E. Molnar, noted that:
"The appearance of this session on Self-Timed Logic in a Conference on Very

Large Scale Integrated System Design may warrant some explanation."21

Modern asynchronous circuit design probably began when concerns arose re-

garding problems with the physical realization of large-scale synchronous systems. In

1979, Seitz proposed a design methodology for self-timed circuits wherein the circuit

was to be decomposed into equipotential regions-regions where delays in wires could

be considered negligible, with explicit modeling of signal propagation delay between

such regions."

The first method for the synthesis of asynchronous circuits whose correct func-

tioning did not depend on the delays of gates and which permitted multiple concur-

rent switching signals was introduced by Martin.'5 The approach is inspired by the

observation that a VLSI chip is a fine-grained concurrent computation. Computa-

tions are modeled using CHP (Communicating Hardware Processes) programs that

describe their behavior algorithmically. (Appendix 1 contains a brief description of

the notation; a detailed description of the semantics is provided by van der G ~ o t . ~)

Asynchronous quasi delay-insensitive (QDI) circuits are synthesized from these pro-

grams using semantics-preserving transformations. We apply this approach to the

design of asynchronous circuits in this thesis.

Asynchronous QDI circuits are robust to variations in temperature, voltage, and

fabrication process parameters. For example, the Caltech microprocessor fabricated

in 1.6,um CMOS technology (design voltage 5V) is functional at all voltages from

0.6 V (sub-threshold) to 12 V (punch-through). l6 More recently, an asynchronous

pipelined lattice-structure filter2 was fabricated and is functional in 0.8pm CMOS

technology (design voltage 3.3 V) from 1.1 V to 4.9 V. Both chips are also functional

at temperatures ranging from 77K to 350K.

Asynchronous implementation strategies for complex VLSI systems are interest-

ing for other reasons as well. Asynchronous circuits exhibit average-case behavior.

As a result, we can choose implementations that improve the overall performance

of the circuit even if they make the worst-case performance worse. For example, an

N-bit ripple-carry asynchronous adder has an average case latency of O(1og N), the

same order as a more complex synchronous carry-lookahead adder.'

Asynchronous implementations of a system consume less power than synchronous

implementations. If we assume that the physical implementation of a circuit dissi-

pates power when a particular signal in the circuit changes, we can show that any

computation must dissipate an amount of power that depends on the entropy of the

specification of the circuit.'5 What may not be so obvious is that we can achieve this

bound within a constant factor by using an asynchronous irn~lementation.~5

Today, the most important issue in the design of a large system is the man-

agement of complexity. Complex asynchronous circuits can be described by rela-

tively concise CHP programs that completely specify their behavior.l5 Using a formal

transformational approach, the final circuit is designed using correctness-preserving

transformations from an initial compact sequential specification-one that is easily

verified. As a result, the behavior of a circuit is understood in a modular and hier-

archical fashion-by understanding sequential programs, program transformations,

and program composition.l5

1.1. Computer Architecture

Computer architecture is the specification and algorithmic design of the hardware

in a computer system. Given the specification of a system, a designer is confronted

with a number of possible implementation strategies. The choices made by a designer

are guided by the relative merits of the different strategies. The figure of merit is

typically the performance of the resulting implementation.

Existing studies into the design of computer architecture have been made with

the assumption that the target hardware is synchronous, since almost all circuits

designed today are synchronous. However, the rationale for the design choices made

by synchronous designers need not apply when designing an asynchronous circuit to

perform the same computation.

In synchronous design, the performance of the system is determined by the clock

frequency. If any component of the system is slow, the entire system must be slowed

down to ensure the system operates correctly. This affects system throughput if

some part of it does not operate at the desired clock frequency. A well-designed

asynchronous circuit with the same properties will operate at the speed of the slow

component only when the slow component is used.

Since the clock is used to discretize the time domain, differences in performance

among components are measured in clock intervals. Asynchronous implementation

methods take advantage of subtle performance differences-differences that arise

when the number of transistors in series vary depending on the data, for instance.

Normally, this difference is too small to be utilized by a synchronous design, whereas

an asynchronous circuit will adapt its performance based on the value of its input

even in cases where such small variations occur. Therefore, asynchronous design

is the ideal vehicle to implement one of the most pervasive principles of computer

architecture: make the common case fast.

1.2. Contributions
This thesis presents original contributions to asynchronous design and architec-

ture in the following areas:

I. High-level Design [Chapter 21

We present necessary and sufficient conditions under which the slack or degree of

pipelining of a computation can be changed. The results are then used to demonstrate

the correctness of the new program transformations introduced in the design of a

high-performance asynchronous MIPS processor.l7

11. Architectural Optimizat ions for t h e Average-Case [Chapters 3, 41

We present asynchronous solutions to two problems in processor architecture:

1. We present circuits to solve the prefix problem with average-case behavior

better than that possible by any traditional synchronous solution. The problem

is used to construct an asynchronous adder with average-case latency better

than any previously known solution. Yv'e show that the resulting circuits have

optimal asymptotic average-case latency.

2. We present a distributed mechanism for the implementation of precise excep-

tions in an asynchronous processor that permits a data-dependent number of

instructions in the main execution pipeline. This mechanism was used in the

design of a high-performance asynchronous MIPS processor.l7

111. Processor Archi tec ture [Chapter 51

We present a novel processor architecture for handling the problem of control depen-

dencies introduced in an instruction stream due to the presence of branch instructions.

We show how this architecture can co-exist with existing techniques for handling this

problem.

Chapter 2.

SLACK ELASTICITY

"Yes! Another couple of weeks t o slack!"

-Robert Harley

W e present necessary and sufficient conditions under which we can modify the
slack on a channel in an asynchronous computation without changing its be-
havior. These results can be used to modify the degree o f pipelining in an
asynchronous system.

We specify a distributed computation using CHP (Appendix 1 contains a sum-

mary of the notation), and restrict our attention to systems that do not share vari-

ables among concurrent processes. The processes in the computation interact by

exchanging messages over first-in first-out channels. Each channel in the computa-

tion has a fixed amount of slack, or buffering, which specifies the maximum number

of outstanding messages on a channel.

The CHP specification of a process completely characterizes both the computa-

tion it performs as well as its synchronization behavior. For instance, we can specify

a process that performs addition with the following CHP:

* C (A?xI\B?y); C!(x + y) I

Unfortunately, for performance reasons, this specification can be very restrictive in

practice. If c X is the number of completed actions on channel X, the specification

includes the property that

O S c A - c C 5 1

In other words, the specification includes the fact that an implementation cannot

accept its next set of inputs on channel A without producing an output on channel

C. This restriction causes the throughput of an asynchronous delay-insensitive circuit

that implements the computation to degrade as I/ log N , where N is the number of

bits used to represent x. However, it is possible that this property of the specification

is not critical-namely, modifying it to the weaker

O < c A - c C < l o g N

does not affect the correctness of the computation. In that case, we can prevent the

throughput degradation by pipelining the computation-a significant improvement.

It is often necessary to adjust the amount of pipelining in an asynchronous com-

putation to optimize its performance based on the timing behavior of the components

of the system.26 Quite often, the transformation amounts to changing the slack of

various channels in the computation.ll Ideally this transformation should be applied

after the high-level design is completed, since we may not have the necessary timing

information until the physical design of the system has been simulated. Such trans-

formations, in general, involve examining the entire asynchronous system instead of

just a single process.

We address the issues raised above by examining the following question: when

can we change the slack of communication channels in the system without modifying

behaviors of the system? This single transformation can be used to show the correct-

ness (or lack thereof) of a number of different program transformations. Changing the

slack of a synchronization channel is a non-trivial operation. Consider the following

example in which channels A, X , and Y are slack-zero channels.

X ; A 1 1 A; Y 1 1 [X + X; Y; "good" O 7 + Y; X ; "bad" 1

The only possible computation is the sequence X; A; Y; "good." However, if we in-

troduce slack on channel A, we now have the possibility A; Y; X; "bad."

When we are permitted to add slack to a channel in the system, we say that the

particular channel is slack elastic. If every channel in the system is slack elastic, the

system is said to be slack elastic.

2.1. Semantic Framework
We assume that the computation of interest is described by a collection of CHP

processes communicating via first-in first-out channels. The processes do not share

any variables; all interaction is via message-passing using single-sender single-receiver

channels. Let X be a command causing an "X-action" when executed. We define

c X to be the number of completed X-actions since the beginning of a computation.

2.1.1. Synchronization

(X, Y) form a pair of synchronization primitives if the difference (cX - c Y) is

bounded.l3 Formally, there exist two integer constants k X and k Y such that at least

one of the two constants is finite, and:

-kY S c X - c Y S k X (SAFETY REQUIREMENT)

The quantity K = k X + k Y is called the synchronization slacL.l3

The probe of a synchronization primitive can be used to determine if the action

can complete. '4 Formally,
-
X + (C X - C Y < ~ X) A (c x - c Y < ~ x) + o X
-
Y + (-kY < c X - c Y) A (-kY < cX - cY) * 07

where X denotes the probe of synchronization primitive X, and O E means that

expression E becomes true eventually. Once a probe of a synchronization becomes

true, it remains true until the primitive is executed. Probes can only occur in the

guards of selection statements.

The value q X is defined as the number of X-actions currently suspended. The

progress requirement on synchronization primitives states that the set of suspended

actions is minimal, i.e., the completion of any non-empty subset of suspended actions
--.-. w u d l u 1-1 -.: violate the safety ieqiliieiiieiit.'~ Foiiiially-, if (X, El') form a pair of synchro-

nization primitives,

q X = O V q Y = O (PROGRESS REQUIREMENT)

CHP communication channels that carry data can be described using this frame-

work. A CHP channel C has two ports associated with it: C!, a sender port, and C?,

a receiver port. (C!, C?) form a pair of synchronization primitives. We define sC! to

be the sequence of data values that have been sent on the sender port, and sC? the

sequence of received values. Let Is1 be the length of sequence s. Then, Is C!(= c C!

and IsC?I = cC?.

2.1.2. Computa t ions a n d Behaviors

We restrict our attention to systems that satisfy the properties listed below; their

need will become evident in the sections that follow.

the system is closed, i.e., we have specified the CHP processes of interest and

their environment;

e the system is deadlock-free;

0 negated probes of the sender port of channels are not used in the computation;

if a sender port is probed, the probe will be true infinitely often.

An execution trace is a particular interleaving of atomic actions that can occur

during execution of the system. The system is completely characterized by the set of

possible traces that can 0ccur.~4 We only consider the complete traces of the system.8

The execution of processes is assumed to be weakly fair, and the selection statement

is assumed to be unfair. (Appendix 1 contains a more detailed description of the

model.)

Given a concurrent system, we are not interested in the possible interleavings

of actions that occur in a trace. Rather, we are interested in the sequence of data

values that are produced on certain channels of the system, given the sequence of

values being sent on other channels. For instance, in the earlier example of the

process that performs addition, we might only be interested in the fact that the data

values sent on channel C correspond to the sum of the values received on channels A
and B. To this end, we define a behavior of a system in terms of the possible traces

that can occur.

A behavior in our model is primarily characterized by the sequence of values that

are sent and received on the channels of the system. Since processes in the system

can oniy interact using communication channels, behaviors capture the data vaiues

that are exchanged by interacting processes. Therefore, behaviors can be used to

describe the input/output characteristics of processes in the system. In addition, we

would like to specify a computation without specifying the synchronization behavior

as far as possible. In our model, the only ordering between values that have been

sent on various channels that can be inferred from the behavior itself is the ordering

preserved by the FIFO nature of the individual channels.

Since the sequences of values sent and received on channels can be infinite, be-

haviors capture the notion of weakly fair execution. The notion of weak fairness

in behaviors corresponds to the next value (if any) that can be sentlreceived on a

channel being sentlreceived eventually.

The other component of a behavior is the sequence of non-deterministic choices

made by processes in the system, since these choices can affect the data values being

sent on channels. The only construct in CHP that introduces such choices is the

selection statement.

We assume that all the channels in the system are initialized empty, i.e., for all

channels c , k c ? = 0. The initialization of variables and channels is assumed to be

part of the CHP program for each process. Therefore, the actual initial values of

variables do not affect the behavior, because every variable is assigned a value before

it is used.

Given the sequence of choices made by a process and the sequence of values that

have been received by the process, we can completely determine the local state of a

process. Therefore, our model does not include the local state of the process as part

of a behavior.

Definition 2.1. (decision point)

Given a trace, a decision point for a process p is a point between two actions i n the

trace where p has selected a guard of a selection statement for execution and several

guards of the selection are true.

A decision point is characterized by a tuple (n , sel, gset, al t) , where n is the occur-

rence index of the selection statement in the execution of p , sel denotes the selection

statement, gset is the set of guards of the selection statement that are true, and alt

is the alternative chosen by p .

Decision points of the system correspond to places where a non-deterministic

choice is made. We assume we have no control over the mechanism used to implement

this choice; therefore, the choice made by the computation is assumed to be unfair.

Definition 2.2. (behavior)

Given a trace, the corresponding behavior B of a system is a function that maps each

channel c in the system to the pair of sequences of values (s c? , sc !) that occurred i n

the trace, and each process t o its set of decision points i n the trace.

Given a channel c and process p, we denote (sc?, s c !) by B.c, and the set of

decision points corresponding to p by B.p. The behavior corresponding to a trace

is unique. However, multiple traces can map onto the same behavior, since different

interleavings of actions that do not interact with one another will be reduced to the

same behavior.

Definition 2.3. (system)

A system is a closed, deadlock-free collection of CHP processes and is defined by the

set of behaviors that can occur during execution.

Any collection of deadlock-free processes will have at least one possible behavior.

Therefore, a system will be the empty set just when it does not contain any processes.

Example. Consider the system shown below, where all channels have zero slack.

* C X!O 1 1 1 * C Y!l 1 11 * [Z?w 1 1 1 p

p E * [[X + X?x; Z!x; [Y --+ Y?z; Z!x I 1 Y + skipl
-

IT ---+ Y?y; Z!y; CX ---t X?y; Z! y I 1 X ---+ skipl

I I
It has, among others, a trace that corresponds to the sequence

where the first guard X + ... is chosen for execution with 7 being true in the outer se-

lection statement, and Y -+ ... is chosen in the inner selection statement. The behav-

ior corresponding to this trace maps Y to the pair of sequences ([I, 1, . . .I, [I, 1, . . .I),
X to ([0,0,. . .], [O, 0,. . .I), Z to ([O, 1 ,0 ,1, . . .I, [O, 1 ,0 ,1, . . .I), and the process p to

((0, selout, {X, Y), X), (1, selout, {X, Y) , X) , . . .), where selout is the outer selec-

tion statement that selects between X and 7, and the labels X and Y refer to the

alternatives in the selection statement. f

2.1.3. Specifications and Observability

The specification of a closed CHP program is a set of behaviors. Usually, a

specification does not completely specify the sequence of values sent and received on

all channels of the system. Accordingly, we classify the channels of the system into

internal and external channels, depending on whether or not the data values sent

on those channels are part of the specification. All properties of interest must be

specified only using the quantities sE! and sE?, where E is an external channel.

Example. It is possible that we may not be able to observe certain properties of a

computation, since behaviors do not contain as much information as the sequence of

actions in the computation. For example, consider the two processes

* [NCSl; CSl 1
1 1 * C NCS2; CS2 1

where NCSl and NCS2 are non-critical sections, and CSl and CS2 are critical sec-

tions. We cannot directly observe the property that two processes access their critical

sections CSi in an exclusive manner, since we can only observe the sequence of values

on channels. However, we can make the mutual exclusion property visible by the

introduction of a third process and an external channel C as follows:

* [NCSl; A!1; A!1; CSl 1
1 1 * C NCS,; B!2; B!2; CS2 I
1 1 *[[';;I-+ A?X O B+ ~ ? x l ; C ! x 1

By observing the sequence of values on channel C , we can determine if mutual exclu-

sion is maintained. For instance, if sequence 1,2,1,2, . . . is possible, we have violated

the mutual exclusion requirement. f

Definition 2.4. (smaller set of decision points)

Given two sets of decision points Dl and D2 for a process p, we say that Dl L D2

iiff for every decision point (n , sel, gsetl, alt) E Dl, there exists (n , sel, gset2, alt) E D2

such that gsetl C gset2.

The relation "[II" on sets of decision points orders them in terms of the number

of non-deterministic choices that were possible.

Definition 2.5. (implementation)

W e say that a system implements a specification i f for each behavior B,,, of the

system, there exists a behavior B,,,, in the specification such that for all external

channels e , B,,, . e = Bspec.e and for all processes p, BS,,.p L B ,,,. p.

This implementation relation is different from the traditional implementation

relations used in trace theory and other models of concurrent programming because

it does not include the synchronization behavior of the computation.

Example. Consider the following two systems:

so= * [X!O 1 1 1 * C Y!O 1 1) * C X?x 1 1 1 * C Y ? y 1

Sl - * [X!O; Y!O 1 1 1 skip 1 1 * [X?x 1 11 * [Y ? y 1

The computations specified by So and Sl are indistinguishable under our model be-

cause the sequence of values sent and received on channels X and Y remain un-

changed, and both systems have no decision points. Standard concurrency models

will differentiate them because the communications on X and Y cannot be executed

in parallel in Sl, and because of the additional bound 0 5 c X - c Y 5 1 in system

$1. Under most models, Sl would be a valid implementation of So, but So would not

be a valid implementation of Sl . f

We now present the theorems that enable a large number of transformations,

including the introduction and elimination of pipelining, data-flow style process de-

composition, and pipelined control distribution.

2.2. Main Results
Throughout this section we will use S to denote the set of possible behaviors of

the system of interest, p to denote a process in the system, and c to denote a channel

in the system.

Lemma 2.6. (monotonicity)

Let S+ be the system obtained from S by increasing the slack on a particular channel.

T h e n S C_ S+.

Proof: Consider any behavior of S. This behavior corresponds to some execution

trace of system S . It suffices to show that this execution trace is possible in S+ . Let

c be the channel whose slack was increased from k c ! to k c ! + n . By definition, traces

from S satisfy cc! - cc? 5 k c ! . If all guards that are true in S are still true in S+,

then these traces still exist in S+.

Increasing slack does not change the probe of the receiver end of the channel

(by definition). The probe of a sender is monotonic with slack (by definition). Since

we disallow negated probes of sender ports, this implies that all guards of selection

statements are monotonic with slack. Hence, every trace of S occurs in S + .

A true probe on a sender port can be postponed in S+ until the point when it

becomes true in S ; we know that the probe will eventually become true in S because

we have assumed such probes will be true infinitely often. Thus the decision points

for this trace in Sf can be made identical to those in S .

Lemma 2.6 shows that the set of behaviors is monotonic with the slack on the

channels. Note that all the restrictions on computations that were mentioned in the

previous section are needed for this proof.

Theorem 2.7. (decreasing slack)

Decreasing the slack of a channel preserves the correctness of computations if and

only i f i t does not introduce deadlock.

Proof: Let S- be the system obtained from S by decreasing the slack of a channel.

If S- is deadlock-free, S- C S by lemma 2.6. By definition 2.5, S- implements S.

Definition 2.8. (extension)

A behavior B' is said t o be an extension of behavior B iff:

(Vc :: B.c = Br.c) A

(3po :: (vp : p $: Po : ~ . p = ~ 1 . p) A B . P ~ $I BI.P~ A B . P ~ L

Intuitively, the extension of a behavior corresponds to the same data behavior but

with at least one additional choice which did not exist in the original behavior.

We now show that the only way in which increasing the slack on a channel can

affect the computation is by increasing non-determinism.

Theorem 2.9. (increasing slack)

Let S+ be the system obtained from S by increasing the slack of a channel. T h e n

either S = S+, or there exists a behavior B+ E (S+ - S) that i s a n extension of a

behavior i n S .

Proof: By lemma 2.6, S E S+. Therefore, either S = S+, or there exists Bo E

S+ - S. Assume such a Bo exists. Now Bo differs from every behavior in S in either

the sequence of values sent on some channel or in the set of decision points for some

process in S . This implies that the local state of some process from S+ differs from

the local state that could occur in S. Consider the first point in execution when this

occurs. The only non-deterministic construct in CHP is the selection statement, and

therefore the only way a new local state could occur is because of a new true guard

ir, a selection statement. By the same argument as in lemma 2.6, the guards true in

S will eventually become true in S+. Therefore, we can pick an alternative of the

selection statement that is possible in S, and continue execution as in the original

system S. This new behavior is the required extension.

The strength of Theorem 2.9 lies in the fact that if we can show that we cannot

possibly introduce new decision points, this implies that adding slack does not change

the behavior of a computation.

We now present some corollaries of the results of the previous section that can

be used to reason about a large class of CHP programs.

2.3. Subsidiary Results

The monotonicity lemma coupled with Theorem 2.9 permits us to make the

following statement that is very useful in practice.

Corollary 2.10. (sandwich theorem)

If a system satisfies i ts specification when the slack o n channel c i s k and i s unchanged

when the slack o n channel c i s 1 (> k) , i t satisfies i ts specification when the slack o n

c i s s , for all s satisfying k 5 s 5 1.

Proof: The set of behaviors (and therefore the implementatiorl relation) is mono-

tonic with slack. Therefore, if the system is correct with c having slack k and the

system is unchanged by increasing the slack to 1, the system is unchanged all slack s

satisfying k 5 s 5 I , concluding the proof.

When computations are entirely deterministic, we expect we can introduce slack

on any channel without affecting correctness.

Corollary 2.11. (deterministic computations)

If the guards in selection statements are syntactically mutually exclusive and there

are n o probed channels, the system has only one behavior.

Proof: Since the computation is deterministic, the sequence of values sent on chan-

nels is always the same and there are no decision points.

A selection statement with probed channels in its guards is said to exhibit max-

imal non-determinism if all the guards can be true whenever the selection statement

is executed.

Corollary 2.12. (maximai non-determinism)

If all selection statements with probes have maximal non-determinism, the system is

slack elastic.

Proof: The set of decision points of the system cannot be increased, so by Theo-

rem 2.9 we can increase the slack on any channel without changing the behavior of

the system.

Corollary 2.12 is extremely useful in practice. The design of the MIPS R3000 pro-

cessor undertaken by our group satisfies its requirements.

Consider the problem of measuring the slack of a channel c. To be able to

measure the slack of c , we must be provided with a collection of processes to which

c is connected, and a single channel which produces one output on channel result:

t rue , if the slack of c is equal to a specified value, say k , or false otherwise. We claim

that this task is impossible under the assumptions of the model.

Corollary 2.13. (impossibility of measuring slack)

I t i s no t possible t o measure the slack of a communication channel.

Proof: Assume that a collection of deadlock-free processes can be used to answer

the question "is the slack of channel c equal to k?" Consider the closed system S
where we observe channel result, and make c have slack k . The only possible output

on result is t rue , by our assumption. Let S+ be the system, where we add slack 1

to channel c. By Theorem 2.7, S implements S+. Therefore, result can produce the

value true in S+-a contradiction.

More generally, if a system can be used to compute any relationship between the

slack of a set of channels, then the relation must be trivial-i.e., the system always

outputs true or always outputs false.

2.4. Shared Variables
When a CHP program uses shared variables, we can eliminate them by the intro-

duction of a process which controls access to the shared variable via communication

channels. Each reader and writer of the shared variable is given a separate channel

to access the particular variable. If the writes to the shared variable are not mutually

exclusive, or reads and writes are not mutually exclusive, then the violation of mutual

exclusion will be visible in a decision point in the selection statement of the process

that implements the shared variable.

A special type of shared variable that might be used is in a synchronizer. A

synchronizer is the following CHP process:

* C C XAV -+ V!true

I l x AT -+ V!false

1 I

where x is a variable which can change from true to false, or from false to true at any

instant. Since the variable is shared, it can change while being evaluated, and both

z and 1% can evaluate to true.

The synchronizer is used when we have no control over when x can change.

Therefore, the results we have presented earlier still apply, as the set of decision

points for this process is maximal. Therefore, using a synchronizer does not affect

slack elasticity.

2.5. AppIicat ions
When designing asynchronous systems, we can increase the slack on a particular

channel under the conditions outlined above. We now present some important trans-

formations that can be shown to be semantics-preserving using the results derived

above.

2.5.1. Pipelining

Pipelining is a technique whereby the computation of a function is distributed

over a number of stages so as to reduce the cycle time of the system-increasing the

throughput-at the cost of increasing the latency of the computation.

Consider the following program:

* 1 L?x; R!g(f (x)) I

We introduce pipelining when we transform it into the program shown below:

* [L?x; I!f (x) I 11 * [I?y; R!g(y) I

It should be clear that we can apply this transformation if and only if we are permitted

to increase the slack on channels L or R. Under those conditions, we can formally

pipeline a computation as follows:

* CL?x; R!g(f (x)) l

= { add slack 1 to channel R, introducing internal channel I)

* [L?x; i i g (f jxjjj i i * i l?y; Riyj

= { distribute computation)

* [L?x; I!f (x) l 11 * CI?t; R!g(t) l

2.5.2. Control Distribution

In designing a delay-insensitive system, we face a problem when attempting to

design datapaths where the quantities being manipulated are composed of a large

number of bits. The problem is illustrated by examining the circuit implementation

of the following program:

*[L?x; R!x 1

Before we send value x on channel R, we must be sure that all the bits used

to represent x have been received on channel L. The circuit that waits for all the

bits to have been received has a cycle time that is proportional to log N, where N is

the number of bits. As a result, as we increase the number of bits in x, the system

throughput will decrease.

Instead, we examine an alternative implementation strategy. We implement

channel L using an array of O(N) channels, where the individual channels have a

fixed number of bits. As a result, we transform the program shown above into:

* C (Ili :: L[i]?x[i]); (Ili :: R[i]!x[i]) I

We have moved the performance problem from the implementation of the com-

munication action on a channel to the implementation of the semicolon that separates

the L and R actions. However, we observe that there is no data-dependency between

channels L[i] and R[j] when i # j . We will attempt to remove the synchronization

between the parts of the program that are not data-dependent.

We introduce a process that enforces the sequencing specified by the program

above. The original program is equivalent to:

(Ili :: * [S[i] L[i]?x[i]; S[i] R[i]!x[i] 1)
11 * [(lli :: S[i]) I

since the S[i]-actions ensure that the actions on channels L and R are properly

sequenced.

Now, we increase the slack on channels S[i]. If we let the slack on channels S[i]

go to infinity, the program shown above is equivalent to:

(I l i :: * [L[.l']??.[-]; -R[.l']!x[j] 1)

Therefore, we can transform the original program into this one if and only if we can

add slack on channels S[i]. Observe that we now have O(N) independent processes,

and increasing N will not affect the throughput of the system.

This transformation can be generalized into a technique for control-data decom-

position. Traditional techniques for the decomposition of a process into control and

data consist of replacing actions D!x and D?x by Ds and Dr, and introducing pro-

cesses

* C Ds.D!x 1 1 1 * C Dr.D?x I

If x is an N-bit binary integer, then once again the cycle time of communication

actions on the D channels would be @(log N).

Instead, we apply the following transformation. Let Ii be the possible channels

that write to variable x, and let Oi be the possible channels that read from variable

x. We replace actions Ii?x with C!(true, i); D l , and Oi!x with C!(false, i); D l . We

introduce the following processes:

* C C?(b, k); [b -+ Ik?x O y b --+ Ok!xl; 0 2 1 11 * [0 2 ; D l 1

This transformation does not affect the correctness of the computation. By
splitting up the input and output channels into an array of O(N) channels that carry

a constant number of bits of data, we can transform the computation as follows:

(Ili :: *[C[i]?(b, k); [b -+ Ik[i]?x[i] U l b --+ Ok[i]!x[i]l; D2[i]l)

11 * [(1 1 i :: D2[i]); (11 i :: Dl[i]) I

and modify C!(b, k); D l into (Ili :: C[i]!(b, k)) ; (1 1 i :: Dl[i]).

The parallel control distribution (Ili :: C[i]!(b, k)) can be converted into a control

distribution tree, where the value (b, k) is copied from one channel to O(N) leaves.

We will call the control distribution tree copytree(R, C), where R is the root of the

tree, and C is the array of channels above. The computation is equivalent to:

(Ili :: * [C[i]?(b, k); [b -+ Ik[i]?x[i] U l b -+ Ok[i]!x[i]l ; D2[i]l)

1 1 * [(11 i :: D2[i]); (11 i :: Dl[i]) 1

I I copytree(R1 C)

where we replace (11 i :: C[i]! (b, k)) with R! (b , k). Now, we are ready to introduce

slack on channels Dl[i] and D2[i]. When we let the slack on these channels go to

infinity, we are left with:

(Ili : *[C[i]?(b, k); [b -+ Ik[i]?x[i] U i b -+ Ok[i]!x[i]l 1)
/ / copyfi-ee(R, 6)

and the main control distribution turns into R! (b , k). If we examine the net effect

of this transformation, we observe that all semicolons that wait for O(N) actions to

complete have been eliminated. Therefore, the throughput of the system no longer

depends on N-a significant improvement. We have increased the latency of control

distribution (although asymptotically the latency of the control distribution is still

@(log N) , we have increased constant factors). However, we should not fail to observe

that we have introduced communication on channel R; the number of bits sent on R

is O(log(lIl+ I OI)), where /I) is the number of channels that write to variable x, and

101 is the number of channels that read from variable x.

2.5.3. Genera l Function Decomposition

In general, if we have a computation graph which is supposed to implement

a function that has a simple sequential specification, we can show its correctness

by introducing "ghost channels" which sequence all the actions in the computation

graph. A single process that sequences all the actions in the computation is intro-

duced, so that the resulting system mimics the behavior of the sequential program.

Adding slack to the ghost channels introduced for sequencing permits the processes

in the computation graph to proceed in parallel; when we add infinite slack to the

sequencing channels, we have a computation that behaves exactly like the original

computation without the sequencer process, and the ghost channels can be deleted

without modifying the behavior of the computation. Therefore, showing the correct-

ness of the original computation can be reduced to showing whether adding slack on

the ghost channels modifies the behavior of the system.

Example. Suppose we would like to demonstrate that the following CHP program

implements a first-in first-out buffer:

*[L?x; U!x; L?x; D!x 1 1 1 * [U?y; R!y; D?y; R!y 1

We begin by closing the system with the introduction of two processes which send

data on channel L and receive data from channel R. Next, we introduce a sequencer

process which sequences the actions in the computation. The resulting system is

shown below.
i :=O;*[L!i; i : = i + l 1 11 * [R?w I

)I * [L?x Sl; U!x S2; L?x S4; D!x S5 1
1 1 * [U?y; R!y S3; D?y; R!y Sf, 1
11 * [sl; s2; s3; s4; s5; s6 1

The sequencer process restricts the computation so that only one interleaving is

possible, namely the sequence

(L!OllL?x); (U!xll U?y); (R!~llR?w); (L!lIIL?x); (D!xllD?y); (R!~llR?w);

(L!211L?x); ...

which clearly implements a first-in first-out buffer, since the sequence of values sent

on R is the same as the sequence of values received on L. We can increase the slack on

channels Si without modifying its behavior because the computation is deterministic.

In the limit of infinite slack on the channels Si for all i, the sequencer process does not

enforce any synchronization between the actions, and we can eliminate the sequencer

process entirely leaving us with the original computation. Therefore, the original

computation implements a first-in first-out buffer. f

2.6. A Recipe for Slack Elastic Programs

Corollary 2.12 can be used as a guideline for the design of programs that are

guaranteed to be slack elastic. Ensuring slack elasticity of the design is important

in order to be able to postpone decisions related to the amount of pipelining to

be used in an implementation. In the design of an asynchronous MIPS processor,

we found it necessary to adjust the slack on communication channels after most of

the physical layout was complete because we did not have accurate estimates of the

timing behavior of the processes we used until analog simulations were performed.

There are two selection statements in CHP. Selection statements that are de-

scribed using the thick bar "0" indicate that the guards are mutually exclusive. If

such selection statements do not use any probes in their guards, they cannot be the

cause of the introduction of new decision points. Selection statements that use the

thin bar " I " indicate that their guards might not be mutually exclusive. If such

selection statements are maximally non-deterministic-i.e., if the computation meets

its specification irrespective of the alternative chosen when the selection is encoun-

tered, then they will not be the cause of erroneous computations. If we follow these

two guidelines, we will be guaranteed that the computation is slack elastic. Every

process in the high-level description of the asynchronous MIPS processor we designed

satisfied these criteria.

2.7. Discussicr,

If a computation is entirely deterministic, if a computation has non-determinism

only because of local variables, or if a computation is such that its specification

permits all possible decision points that might occur in the computation to occur,

we know that the computation is slack elastic. In general, however, only some of

the channels in a computation are slack elastic. We characterize the cases when a

channel is not slack elastic in this section.

By Theorem 2.9, we are guaranteed that erroneous computations are only intro-

duced by the extension of a behavior that used to occur before slack was introduced.

This implies that we now have more true guards in a selection statement than were

possible earlier. In addition, this must be a result of the probe of a channel being

true that was not true in the original computation, since that is the only way an

external transformation can affect another process.

Consider the case when two probes are supposed to be mutually exclusive in a

computation. For simplicity, consider the case when the two probes are in the guard

of a selection statement, as shown below.
-

p l = ... [A + ... A . . . [IB --+ ... B . . . I ...

We are given that these probes are mutually exclusive. This implies that the

actions A and B on the two channels are ordered in some manner. Without loss

of generality, consider the case when A occurs before B. For this ordering to be

preserved, when B is attempted, we must be sure that action A has completed. There

are only two processes in the system which can determine that A has completed-pl

shown above, and the process that attempts action A.

If actions A and B are in a single process po, then the ordering between A and

B is guaranteed by a semi-colon in process po. If that is the only mechanism used to

enforce the ordering, channel A is not slack elastic, because adding slack on channel

A could violate mutual exclusion between the guards in p, as A could complete before

p1 selected the guarded command -+ ... A,.. for execution, permitting B and 2 to

be true simultaneously.

The actions on A and B might be ordered by a chain of synchronization actions.

The completion of A would initiate this chain, and the action B would be blocked

by a synchronization channel at the end of the chain. This chain can be initiated

by the completion of A in process pl, or in the process which attempts action A. In

the latter case, channel A is not slack elastic for the same reason as above. However,

-- if process pL initiates the chain of synchrc?nization events, channel A i slack elastic

since it is the completion of A in process pl that causes action B to be initiated.

We are guaranteed that 2 is false when the chain of events triggering B begins. In

either case, we can introduce slack in the chain of synchronization actions so long as

the action that B is waiting for cannot complete before the action initiated after the

completion of A is executed.

2.8. Related Work
To prove the results presented in this chapter, we used a new model to describe a

computation by introducing the notion of a behavior. Observe that we cannot use a

traditional trace theoretic model to describe the computation-indeed, the results of

this chapter would be false under a standard trace theoretical semantics. The reason

for this is that using trace theoretic specifications is an over-specification for the cases

in which we are interested. Trace theory captures synchronization behavior-the very

behavior we are attempting to change. Increasing the slack on a channel will increase

the set of possible traces, thus violating the traditional subset refinement relation of

trace theory. Therefore, adding slack will not be a refinement in traditional trace

theoretic models.

In van de Snepscheut's work on trace theory, slack independence is defined to be

correctness under arbitrary slack.'4 This work is closely related to delay-insensitivity

in asynchronous circuits. However, no attempt is made to determine when computa-

tions have such properties, which is one of the contributions of our work. In addition

the model only includes demonic choice, which is insufficient to model selection state-

ments with probed channels in their guards.

Misra and Chandylg describe computations using only the sequence of commu-

nication actions on channels; their model is based on Hoare's theory of traces. Their

model specifies the interleaving of actions among different channels and as a result

resembles other approaches that consider interleavings of actions among processes.

They use projection to extract the sequence of values sentlreceived on an individ-

ual channel from the trace and use relations among such sequences to express many

program properties.

Chapter 3.

PARALLEL PREFIX

"What's one and one and one and one and one and one and

one and one and one and one?" "I don't know," said Alice,

"I lost count." "She can't do Addition," the Red Queen

interrupted.

-Lewis Carroll, Through the Looking Glass

We present asynchronous circuits to solve the prefix problem with O(N log N)
circuit size, 0 (log N) worst-case latency, and 0 (1) cycle time. If the prefix
operation has a right zero, the asynchronous solution has an average-case latency
o f 0 (log log N). The construction can be used to obtain an o(1) cycle time
asynchronous adder with 0 (N log N) circuit size and 0 (log log N) average-
case latency. We prove that our circuits have optimal asymptotic average-case
latency.

Let 8 be an associative operation. The prefix problem is to compute, given

XI, x2,. . . , XN, the results yl, y z , . . . , y ~ , where yk = xl 8 x2 - @ xk, for 1 5 k 5 N.9

We construct asynchronous solutions to the prefix problem that are similar to

their synchronous counterparts. We improve the average-case performance of the

asynchronous solution by using two competing methods for solving the prefix prob-

lem and picking the one that arrives earliest to produce the output. This technique

reduces the average-case latency from 0 (log N) to 0 (log log N) when the prefix op-

erator has a right zero, a significant improvement. We show that our solutions have

optimal asymptotic average-case latency.

A number of problems can be formulated as a prefix problem. Ladner and Fisher

show how the prefix problem can be used to parallelize the computation of an arbi-

trary Mealy machine.9 Leighton discusses a number of different problems that can be

solved using prefix computation^.^^ As a concrete application, we use the construc-

tion to obtain an asynchronous adder which has O(1) cycle time, O(N log N) circuit

size, 0 (log N) worst-case latency, and 0 (log log N) average-case latency.

3.1. Traditional Solution
To formulate the prefix problem in terms of an asynchronous CHP program, we

assume that the inputs xl, x2, . . . , xN arrive on input channels XI, X2,. . . , XN respec-

tively, and that the outputs yl, y2,. . . , y~ are to be produced on output channels

Yl, Y2,. . . , YN respectively. The problem can be restated in terms of reading the

values xi from the input channels, computing the yi values, and sending these values

on the appropriate output channels. In terms of CHP, the immediate solution that

leaps to mind is the following program:

* [Xl?x1, X2?x2, . . . , XN?xN;

Y1!xl, Y2!(x1@x2), . . . , YN!(x~@x~@ . ' ' @xN)

1

This program is very inefficient for a number of reasons, the most obvious being that

there are 0 (N 2) @-operations, which correspond to 0 (N 2) circuit elements; but it

will serve as a specification for the problem.

For the purposes of this chapter, we will assume that the operation €3 has an

identity e. This is merely an aid to clarity-it does not detract from the construction

in any way.

Since we know input value x% at position i, we can solve the prefix problem if we

can determine xl @ - . . @ xZ:,_~ at position i. Assume we had a method that computed

the prefixes we needed for a problem of size n,. We will extend it to compute the

prefixes we need of size 2n as follows. We begin by using x22-1 @ x2% as the input

to the n-input prefix computation graph. The result of this operation would be to

compute values xl @ . @ x2% at output position i + 1. We can now solve the prefix

problem of size 2n by producing $1 8 . . . 8 x22, and xl @ . . . @ x2,+1. The program to

do this is described by

UP(L, R, U, V, Ld, Rd) E

* C L?x, R?y; U!(x@y); V?p; Ld!p, Rd!(p@x) 1

where the channels U and V correspond to the input and output stages of the prefix

computation graph of half the size. From the structure of the solution, it is clear that

the computation graph is a tree. Repeating this observation, all that remains is to

provide a solution to the prefix problem of size 2-the root of the tree, and to read

the inputs and produce the final outputs.

The V channel at the root of the tree requires the empty prefix-the identity e.

The output U of the root is not used by any other process. Thus, we simplify the

root process to:

ROOT(L, R, Ld, Rd) =
* C L?x, R?y; Ld!e, Rd!x I

where e is the identity of @. The leaves of the prefix computation tree read the inputs,

their prefix (from the tree), and produce the appropriate output. A leaf process is

written as:

LEAF(X, U, V, Y) =
* [X?x; U!x; V?y; Y!(y@x) 1

Part of the computation graph for the prefix problem when N = 4 is shown in

Figure 3.1.

Observe that the sequencing between U!(x@y) and V?p is enforced by the en-

vironment of the UP process. We can therefore split the process into two parts that

execute in parallel. However, the obvious split would cause variable x to be shared

L,+,.,,,, uGuwGGll tile L +.,., u w u processes. Vie introduce a !oca! channel C which is used to ~ o l ; ~

the value of x. The new UP process is:

UP(L, R, U, V, Ld, Rd) =
* C L?x, R?y; U!(x@y), C!x 1 11 * C C?c, V?p; Ld!p, Rd!(p@c) 1

These two processes are identical! Therefore, we write:

UP2(A, B, C, D) z

* [A?x,B?y; C!(x@y),D!x 1

UP(L, R, U, V, Ld, Rd) = UP2(L, R, U, C) 1 1 UP2(V, C, Rd, Ld)

Similarly, we can rewrite the LEAF process as:

Figure 3.1. Solution to the prefix problem.

Since each node in the tree contains a constant number of 8 computations and

there are O(N) bounded fan-in nodes in the tree, there are O(N) @-computation

circuits in the solution. Since the tree is of depth O(1og N), the latency and cycle

time of this solution is 0 (log N).

3.2. Pipelining
The solution presented above has a cycle time of @(log N) since the prefix com-

putation tree can only perform one prefix computation at a time. We can pipeline

the computation to permit the tree to operate simultaneously on multiple inputs and

reduce the cycle time to O(1).

Consider a single W node in the prefix computation tree. There are no pipeline

stages between the two halves of process UP, since they communicate through a slack-

zero channel C. However, the second process that is part of UP cannot complete

its computation until it receives a value on channel V. This value is computed by a

circuit which has a number of pipeline stages proportional to the depth of UP in the

tree. Therefore, even though there are O(1og N) pipeline stages on the computation

for V, we cannot have O(1og N) computations being performed by the tree since

channel C has zero slack. Therefore, we introduce buffering on C proportional to the

depth of the node in the tree. Logically, it is simpler to visualize the computation by

"unfolding" the tree into two parts-the up-going phase, and down-going phase-as

shown in Figure 3.2. The vertical arrows are the internal channels C, and two boxes

connected by vertical arrows correspond to a single node in the tree.

It is clear that one must add 2d - 1 stages of buffering on the internal channel

C for a node that is d steps away from the root for the circuit to be pipelined in

Figure 3.2. Unpipelined prefix computation.

a manner that permits 21g N + 1 prefix operations to be performed simultaneously.

Figure 3.3 shows the tree after the appropriate buffers have been introduced.

The cycle time of the pipelined prefix computation with buffers does not de-

pend on the number of inputs, but on the time it takes to perform the @ opera-

tion. The latency of the computation block is proportional to the number of stages,

and is therefore 2 lg N + 1 stages both with and without the buffers. However, we

have increased the circuit size from O(N) to O(N log N) since we have introduced

0 (N log N) buffers.

3.3. Reducing the Average-Case Latency

If the prefix computation is not used very often, the observed performance de-

pends on the latency of the prefix computation-a quantity that is not reduced by

adding buffers to the computation tree. In this section, we present a technique that

reduces the average-case latency of the prefix computation in certain cases. We begin

by considering a simple solution to the prefix problem.

The simplest way to perform the prefix computation is in a sequential fashion.

Since we have n different input channels, we use n processes, one for each input

channel, connected in a linear fashion as shown in Figure 3.4.

The stage for xk receives ykel on channel L from the previous stage and xk on

channel Xk and produces yk on channel Yk as well as channel R which connects it to

the next stage. The CHP for an intermediate stage of such a solution is given by:

However, we know that the input on channel X arrives much sooner than the input

on channei L. Given this information, is it possibie to produce the outputs on Y and

R before receiving the input on L?

Suppose we know that a is a right zero of the prefix operation, i.e., x @J a = a

for all values of x. Now, if the input on channel X is equal to a , we can produce the

output on Y and R before reading the value on L. We rewrite SERIAL as:

The time taken for this solution to produce the output is data-dependent. In the

best case (when all inputs are a), the time from receiving the inputs to producing the

output is constant-much better than the prefix computation tree, and in the worst

Figure 3.4. Serial prefix computation.

case, the time taken is O(N)-much worse than the prefix computation tree which

only takes 0 (log N) time.

The solution we adopt is to combine both the prefix computation tree and the

serial computation into a single computation. The two computations compete (in

time) against one another, and we can pick the solution that arrives first. This

technique has a worst-case latency of 0 (log N), but a best-case latency of 0 (1).

We begin with the unpipelined prefix computation corresponding to Figure 3.2.

The CHP for the LEAF process used by the prefix computation tree is:

Observe that the value received along channel V for a leaf which receives xk as input

is the same as the value received along channel L by the corresponding process in the

serial computation shown in Figure 3.4.

We introduce channels L and R from the serial computation into the prefix

computation tree. The output Y from the leaf process is simply copied on outgoing

channel E. Since the values received on i and on the corresponding V are the same,

we combine these two channels externally using a merge process that picks the first

input that arrives, as follows:

The new LEAF process is:

The compilation of SERIAL depends on the structure of 8. The compilation of the

MERGE procedure that picks the first input is given below:

* CClMal; Cv(L) V v(V)I ; M fi; (Cv(L)I; La?), (Cv(V)I; Val.);

CMal; M 6; (Cn(L)I;La$),(Cn(V)l, Va4)

1

This circuit has an efficient implementation because we know that the value being

received on both L and V will be the same.

Finally, using a similar transformation, we can replace process UP in the prefix

computation tree by one that also has a serial computation phase. The original UP

process was:

UP(L, R, U, V, Ld, Rd) =
* C L?x, R?y; U!(x@y), C!x 1 11 * C C?c, V?p; Ld!p, Rd!(p@c) 1

The value to be sent along the "right" channel for the serial computation, namely

SR, is given by p @ x @ y. We therefore introduce an additional internal channel

C', along which the value x @ y is sent. Finally, the "left" channel for the serial

computation, namely SL, is merged with V using the same MERGE process shown

above. We obtain:

UP(SL, SR, L, R, U, V, Ld, Rd) =
* C L?x, R?y; U!(x@y), C1!(x@y), C!x I

11 MERGE(SL, V, M)

[I * C C?cj - ! ? p i -Ml!,nj 1,d!,nj R d ! (P @ ~) I
11 *C C1?d; Cd = a -+ SR!a, Ml?p Od # a -+ Ml?p; SR!(p@d)] 1

Since this solution follows from the unpipelined version of the prefix computation,

its cycle time is O(1ogN). To improve its cycle time this time, we need to add

buffering to both channels C and C'. This transformation will once again increase

the circuit size from O (N) to O(N log N). For reasons to be discussed in the following

section, we use binary tree buffers to implement the buffering on channels C and C'

instead of linear buffers.

3.4. Analysis of the Average Case

The latency of the prefix computation is data-dependent. We therefore need

some information about the input distribution to determine the average-case latency.

Consider process SERIAL shown below that is part of the prefix computation.

When x # a , the output on Y and R depends on the input c. We call this the

propagate case, since the output of the process depends on the input c. Let the

probability of a particular input being a be p, and let this distribution be independent

across all the n inputs. If the inputs remain independently distributed, the analysis

below is applicable even if the probability of the input being a at input position i

might vary (as long as it remains non-zero), since we can pick p to be the smallest

value as a conservative approximation.

Theorem 3.1.

If the inputs of the prefix computation are independently distributed with non-zero

probability of a n input being a right zero, the average-case latency of the modified

asynchronous prefix computation is 0 (log log N), where N i s the input size.

Proof: Let L(N) be the latency through a prefix computation with N inputs. We

assume that the prefix computation uses a k-ary tree for the purpose of this analysis.

We can write:

/ A T \

L(N) = min (rns, L (:) + h)

where m is the length of the longest sequence of "propagate" inputs, s is the delay

through a single stage of the serial "propagate" chain at the leaves of the tree, and h

is the delay through one stage of the tree. The first part of the formula comes from

the serial computation, and the latter from the tree computation. To expand L($),

observe that at the next stage in the tree, m will be replaced by m / k since we are

considering the same input. Applying this expansion recursively, we obtain:

L(N) = min (F + i h)
m>kz

In particular, choosing m = ki we obtain:

The average latency is bounded above by:

To compute the expected value of log m, observe that

E[log m] I log E[m]

since the expected value of the logarithm of a random variable is the logarithm of

the geometric mean of the variable. Since the arithmetic mean is always at least the

geometric mean and log is increasing (m is always non-negative), the above inequality

follows. We can bound E[L(N)] from above if we determine E[m].

When p = 1/2, we know that E[m] I log, N.' A simple extension of the proof

shows that

when 0 < p < 1 (a complete proof is given in Appendix 2). Therefore, the average

latency through the prefix computation is bounded above by:

= 0 (log log N)

concluding the proof.

When the prefix computation operates with 0 (1) cycle time, the value of s given

above is a function of N. Since we add 2d - 1 stages of buffering at depth d in the

tree for the serial computation part as well, the value of s is bounded above by a

function that depends on the latency of a buffer of size O(1og N). Since we have used

a binary tree buffer to implement the slack on the internal channels, the latency of a

buffer of size 0 (log N) is 0 (log log N) . Therefore, the additional buffering required

to reduce the cycle time of the circuit does not increase the order of the average-case

latency.

3.5. Reducing the Area Overhead
The 0 (log log N) average-case latency adder has 0 (N log N) additional circuit

size because of the additional buffering required. In this section we show how the

area overhead of the prefix computation circuit can be reduced by using the fact that

the input distribution is independent.

On examination of the analysis for average-case latency, we make the following

observation. The way we achieve an average-case latency of O(1og log N) is as follows.

We traverse up the tree computation O(log1og N) steps. At this point, the average

propagate-chain length is O(l), and we use the serial part of the computation. In

another O(log1og N) steps, we propagate the results down the tree. This permits us

to complete the prefix computation with a latency of O(log1og N) steps. Therefore,

we should be able to achieve the same average-case latency with lower area overhead

by using the serial part of the computation only at one stage of the prefix computation

tree.

Assume that we add the serial phase of the computation at only one level of the

prefix computation that is d steps away from the leaves of the tree. The latency is

given by:

L(N) = min (d . h + ms/kd, h logl, N)

On average, the latency would be:

E[L(N)] 5 min (d . h + s/kd . E[m], h log, N)

= min (d . h + s/kd . 1 0 g ~ ~ (~ - ~) N , h log, N)

We attempt to determine the minimum value of this function by differentiating the

first part of the minimum expression with respect to d. We obtain:

dmin = logk (s l h . Ink log,/(,-p) N)

= 0 (log log N)

When we add a serial phase to this stage of the prefix computation tree, the average-

case latency is given by:

h
E[Lmin(N)] 5- + logk (s l h . lnklogl/(l-,) N) In k

= 0 (log log N)

Since we added a serial phase O(log1og N) steps away from the leaves, the additional

area required to permit the computation to run at full throughput is O(N) since we

have O(N/ log N) nodes, with O(log(N/ log N)) buffering required for each of them.

If we are willing to sacrifice throughput, we can reduce the area overhead even

further and still have O(1og log N) average-case latency. Observe that we no longer

need the tree computation beyond d,,,. If we simply eliminate the tree after that

depth, we still have the same average-case latency! However, we have increased the

worst-case latency to O(N/ log N) , which may or may not be acceptable in practice.

However, we have a significant savings in area-we save an additional O(N) in circuit

size, compensating for the O(N) area overhead for adding the serial phase of the

computation at depth dm,,. The actual area necessary will depend on the exact

circuit implementation used in either case.

3.6. Application to Binary Addition

The prefix computation can be used to construct a binary kpg-adder.9 To perform

binary addition at bit position i, the carry-in for that bit-position must be known.

The carry-in computation can be formulated as a prefix computation as follows.

Suppose bit i of the two inputs are both zero. Then no matter what the carry-in

is, the carry-out of the stage is zero-a kill (k). Similarly, if the two inputs are both

one, the carry-out is always one-a generate (g). Otherwise, the stage propagates

(p) the carry-in. To determine the carry-out of two adjacent stages, one can use

the following 8 operation. The vertical column represents the kpg code for the least

significant bit.

Table 4.1. Prefix operator for kpg addition

Observe that the kpg code has the property that both k and g are right zeros of

the prefix operator. Therefore, we can use the techniques discussed above to reduce

the latency of binary addition. From the previous section, we observe that the average

latency through such an adder is 0 (log log N) .

3.7. Area Optimality

We have designed a parallel prefix computation block which has O(1) cycle time

and O(1og N) worst-case latency. The circuit has O(N log N) size. In this section,

we show that we cannot do any better in the general case.

We assume that the prefix computation circuit has the following properties:

1. It can be used repeatedly;

2. I t does not store information about its history, i.e., it cannot use information

from any previous input to compute its next output;

3. Output yk cannot be generated without knowledge of xk.

Under these assumptions, we conclude:

Theorem 3.2.

Let C(N) be a family of circuits that solve an N-input prefix problem, with r (N) being

the worst-case ratio oftheir latency and cycle time over all possible input values. Then

the size of the circuits, S(N), is O(N max(1, r (N))) .

Proof: The circuit cannot have less than O(N) size since it has N inputs and N

outputs, and must store at least one bit per output.

Consider a consecutive sequence of inputs all of which have the worst-case ratio

of latency to cycle time. Let the latency for the input be 1, and the cycle time be r.

If the cycle time is r, then after r seconds, the circuit must be able to accept its next

input. Since the latency is i, the circuit must have pending prefix computations

internally. Since each prefix computation requires O(N) size to store information for

N different outputs, we conclude that the circuit must have ~ (N S) size.

Corollary 3.3.

A full-throughput N-input parallel prefix computation circuit has 8(N log N) size.

Proof: The worst-case latency of any parallel prefix computation circuit is O(1og N).

Since the cycle time is constant, r (N) = O(1og N), concluding the proof.

From these two observations, we conclude that all the circuits we presented to

solve the prefix problem have asymptotically optimal circuit size. The unpipelined

circuits have 0 (N) circuit size, and the full-throughput circuits have 0 (N log N)

circuit size.

3.8. Latency Optimality
Let V be the set of values that xi rnight take. To analyze the delay through

a prefix computation circuit, we partition V into two parts: a subset consisting

of propagate-type values, and one consisting of non-propagate values. The set P of

propagate-type values is the maximal set characterized by the property that I V @ p 1 >
1 for all p E P, i.e., x@p depends on the value x, where V@x is the set {s@x I s E V).

In the case of a binary adder, the input p is the only input of propagate type (see

Table 4.1).

Given an input vector x = (al,. . . , xn), a propagate sequence is a subvector

(xi, xi+1, . . . , xj) such that xi @ xi+l @ . . . @ xj cj P. We define m(x) to be the length of

the longest propagate sequence in x. For example, m (k, k, p , g, p, p) = 2 since there

are two consecutive p values in the vector.

Theorem 3.4.

The average-case latency through any prefix computation circuit is O(E[log m(x)]),

where m is defined as above.

Proof: Given an input vector, let the longest propagate sequence in it be at positions

i through j . This implies that the outputs at positions i through j must depend on the

input at position i. Therefore, the information content in the input at position i must

be communicated to j - i + 1 = m(x) different output positions. This information

cannot propagate faster than log m(x), concluding the proof.

By Theorem 3.4, the prefix computation circuit we have designed has asymp-

totically optimal average-case latency. Note that the result does not depend on the

input distribution.

Consider the case of binary addition. The argument used in the proof of Theo-

rem 3.4 was based on an analysis of the input to output dependencies; this analysis

holds no matter how the binary adder is constructed, and therefore the result also

applies to binary addition. In particular, this implies that an adder constructed in

this manner has the best possible asymptotic average-case latency characteristics for

any input distribution.

If the set P is closed under @ then inputs from P will result in long propagate

sequences, slowing down the prefix computation. Note that p, q E P implies p@q E P

is quite a natural property for a prefix operator to have since it is associative. Suppose

x @ a depends on x and x @ b depends on x. Then x @ (a @ b) = (x @ a) @ b. Since

x €3 a depends on x, it is natural to expect that (x €3 a) €3 b would depend on x. The

example in Table 4.2 shows that this is not true in general.

Table 4.2. P may not be closed under €3

In this case, the elements 1 and 2 are contained in the set P for this operator.

However, 1 @ 1 = 0 $ P. Since the set (2) is closed under @, the input can have long

sequences of 2's in it, which will slow down the prefix computation. We formalize

this observation below.

Let Q1, . . . , Q, be maximal subsets of P that are closed under €3. Intuitively,

the members of these Q-sets make the prefix computation slow since long sequences

of values from a fixed set Qi will result in large values of m(.). The operator in

Table 4.2 has only one such Q-set, namely (2). The fact that we may have more

than one maximal Q-set is illustrated by Table 4.3, whose prefix operator has two

such sets (1) and (2).

Table 4.3. €3 may have more than one Q-set

By the definition of Q-sets, there exists at least one such set since the trivial set

0 C P is closed under @.

Lemma 3.5.

IQlI = 0 if a n d o n l ~ i f x l e p f o r allxi ci V .

Proof: If the RHS holds, then clearly only the empty set is closed under €3. Assume

that the RHS does not hold, i.e., x1 @ @ xlpl+l E P for some xi E V. Then,

xl @ . €9 xj ~j P for all j , 1 5 j 5 (PI + 1. Since we have (PI + 1 possible values for

j , we are guaranteed that xl @ . . . @ x, €3. @ xb = x1 €3 €3 x, for some a < b. Let

x = x1 €3 . . , @ x,, and y = X,+I €3 - . . @ xb. This shows that x €3 y" x for all values

ti 2 0. Therefore, y% P for all values k 2 1, showing the existence of a set {y) P

that is closed under 8, concluding the proof.

If I Q1 1 is empty, then Lemma 3.5 shows that no matter what vector we pick from

vIPI+l, multiplying the elements from the vector results in an element that is not

in P. If this is the case, then we can solve the prefix problem in constant time by

splitting the input into blocks of size IPI + 1 and solving the problem for each block

independently. Indeed, Lemma 3.5 can be used to determine if this is the case since

the RHS of the equivalence stated in Lemma 3.5 can be easily checked.

3.9. Related Work
Asynchronous adders were originally studied by Burks et a1.l who showed that

the average-case latency through a ripple-carry binary adder (assuming that the

inputs were independently distributed and the zero-one probabilities were equal)

was bounded by log, N, where N is the number of bits being added. Winograd27

showed that a lower bound on the worst-case time complexity for binary addition

is O(log, N) , where N is the number of bits in the input. The prefix problem and

the formulation of binary addition as a prefix problem was proposed by Ladner and

Fischer.9 Gemmell and Harchols present a method for adding two binary numbers

"mostly correctly," with an error probability E. They show lower bounds on the

latency of such adders to be 0 (log log(N/~)) . Our circuits always produce the cor-

rect answer with 0 (log log N) latency. Gemmell and Harchol also claim an 0 (log N)

lower bound on the average-case latency of binary addition in their abstract, which

we have shown to be incorrect in this chapter by providing a construction for a

0 (log log N) binary adder; closer inspection reveals that their lower bound only ap-

plies to "VRTC" (variable running time correct) circuits, showing that asynchronous

circuits for addition have better latency characteristics than those constructed by

their method.

Chapter 4.

"I must go back and see after some executions I have or-

dered." -Lewis Carroll, Alice in Wonderland

The presence of precise exceptions in a processor leads to complications in its
design. Recent processor architectures have sacrificed this requirement for per-
formance reasons at the cost of software complexity. We present an implemen-
tation strategy for precise exceptions that does not block the instruction fetch
when exceptions do not occur; the cost of the exception handling mechanism
is only encountered when an exception occurs during execution-an infrequent
event.

Ordinarily, a processor executes a sequence of instructions without interruption.

Conceptually the instructions are executed one after another, with some instructions

that modify the control flow. However, this stream of execution can be interrupted in

two different ways: by interrupts-external asynchronous events that are generated

by various 110 devices, and by exceptions.

Exceptions are used for a number of reasons. They are used to enforce protection

between different address spaces so that a process that is running cannot access

memory that belongs to another process. They are used to prevent a program from

executing certain special instructions. They are used to begin the execution of special

operating system subroutines (traps). They are used when some functionality is

implemented partly in hardware and partly in software: hardware page tables (TLB),

partial implementations of IEEE 7541854 floating-point arithmetic, etc.

When an exception or interrupt is encountered, a processor aborts the normal

instruction sequence by jumping to a fixed address (or one of a fixed set of addresses)

in memory. This point in memory contains a software routine, the exception handler,

that services the exception or interrupt. The hardware is said to implement precise

exceptions just when the state of the processor seen by the exception handler is the

same as the state of the processor before execution of the instruction that caused

the exception or interrupt was attempted. As a result, after the service routine has

executed, we can restart execution of a program from the point where the exception

occurred (if appropriate) without affecting program behavior.

The implementation of such an exception mechanism is complicated by the fact

that a processor is typically heavily pipelined, and therefore even if a particular

instruction has raised an exception, a number of instructions following it may have

been partially executed. As a result, modern high-performance architectures such as

the MIPS R8000, DEC Alpha, and Power-2 do not implement precise exceptions in

hardware.

In this chapter we present a mechanism for the implementation of precise ex-

ceptions for asynchronous processors. An interesting feature of this mechanism is

that it permits the presence of a data-dependent number of instructions in the main

execution pipeline.

4.1. An Overview of a Processor
n l r n np-

b I v1 v U" y v- In this section we will provide a geceric description of an asynrErn9

cessor that does not have interrupts or exceptions. For simplicity, we assume that

we have a "Harvard architecturen-i.e., the instruction and data memories are not

synchronized.

A processor is comprised of a number of "units" (which is the traditional termi-

nology for "process") that communicate with each other. A processor conceptually

has a unit that generates the sequence of program counter values-the "IF" unit,

a unit that decodes the instruction stream-the "DE" unit, a part that executes

the decoded instructions-the "EX" units, and a place on the processor that stores

state-the "RF" unit.

The instruction fetch IF generates a program counter value which is sent to the

memory. The memory returns an instruction that is sent to the decode DE. This

unit decodes the instruction and sends the appropriate control information to all the

other units: the instruction to be executed is sent to the appropriate execution unit

channels tolfrom
data memory

Figure 4.1. Information flow in a processor without exceptions.

EXi; information about what state is needed and modified by the instruction is sent

to the register file R F ; information about control flow is sent to I F . The flow of

information is shown in Figure 4.1. The sequential CHP description of the processor

is given below:

PROC r

* C IF : pc := "nex t pc";

MEM : i := imem[pc] ;

DE : id := decode(i);

EXEC : "read operands";

"execute instruction";

"write results"

When this CHP program is decomposed using standard techniques115 the different

parts of the processor shown in Figure 4.1 can execute concurrently. l6 In particular,

the EXEC is decomposed into a number of different execution units and a register file.

Once the control information is dispatched to the execution units and the register file

by DE, the instruction can execute and asynchronously complete execution. Since we

have multiple execution units running concurrently, there can be a data-dependent

number of instructions executing at any given time. The number of instructions ex-

ecuting in parallel is limited by data-dependencies between instructions, the number

of communication channels between the register file and the execution units, and the

number of execution units.

4.2. Implementing Precise Except ions
The introduction of exceptions or external interrupts complicates the execution

of instructions in a number of ways. When an instruction raises an exception, the

exception must be detected and reported to the IF, since the processor must begin

execution of the exception handler. In addition, the R F and data memory interface

must be notified of the exception so that subsequent instructions do not modify the

state of the processor until the exception handler begins execution.

The result of each instruction is modified so that it includes whether the instruc-

tion raised an exception. This exception bit is computed by the execution units. The

simplest modification to PROC that includes a precise exception-handling mecha-

nism is shown below:

EPROCo
e := false;

*[IF: [l e - + p c : = " n e x t pc" [le-+pc:="except ion pc"1;

MEM : i := i m e m [p c] ;

DE : id := decode(i) ;

EXEC : "read operands";

" execute instruction1';

e := " exception condition";

WB : [y e -+ "wr i te results"

Oe ---+ " s e t exception flags, save pc"

1
1

A problem with this scheme is that the value of e computed by EXEC affects the

next pc value, since it is used by IF . As a result, parallelizing this program would

not introduce any concurrency between IF and EXEC because IF would have to

wait for EXEC to complete before computing the next pc, and EXEC would have to

wait for the next pc to be computed before it could receive the decoded instruction.

Since the case e = true is rare, we would like to optimize the program so that

we break the dependency between IF and EXEC when e = false. To do so, we

introduce a slack 1 channel EX that is used to notify IF of the presence of an

exception (Note: the probe is the only construct in our language which can be used

to guarantee the "execute eventually" semantics that we need for this mechanism,

since the selection statement is unfair). IF will detect the presence of an exception by

probing channel EX. A naive (and incorrect) modification of EPROCo that contains

this transformation is shown below:
*[IF : [lm -+ pc := "next pc"

I= --+ pc := "exception pc", EX

1 ;
MEM : (...)

EXEC : (...)
W B : [~ e -+ "write results"

O e + "se t exception flags, save pc", EX

1
1

Although this breaks the dependence between IF and EXEC, EXEC might execute

instructions that were invalid-instructions not executed by EPROCo-since the se-

quence of pc values might have changed. EXEC only executes invalid instructions

after E X has been executed by W B , and before EX is executed by IF. We introduce

variable va that is set to true when EX is executed by IF (va stands for valid-again;

the va-riable signals the trznsition from invalid to valid instructions), and variable

valid that is set to false when EX is executed by W B . This transformation is shown

below:
validj-;

* 1 IF : [lm ---+ va$, pc := "next pc"

I -+ va?, pc := "exception pc", EX

1 ;
MEM : (...)

EXEC: (...)
W B : [l e --+ "write results", valid?

O e --+ "se t exception flags, save pc", valid$, E X

1
1

The processor is executing invalid instructions whenever valid is false and va is false.

To eliminate any state change that might occur when the processor executes invalid

instructions, we modify WB to a skip when lvalid A l v a is true. This is the only

modification necessary, since all state changes are performed by WB. The resulting

program is a correct implementation of the processor, and is shown below:

EPROCl G

valid?;

*[IF:

MEM :

DE :

EXEC :

[lm ---+ va$, pc := "next pc"

I + va?, pc := "exception pc", EX

1 ;
i := imem[pc];

id := decode(i);

"read operands";

"execute instructionr';

e := "exception condition";

[valid V va -+

[l e -+ "write results", valid?

0 e -+ "set exception flags, save pc", valid$, EX

I
Olvalid A i v a -+ skip

1

The fact that exceptions are observed eventually is guaranteed by the progress con-

dition on probes. Channel EX (initially empty) must have slack 21 for this program

to be deadlock-free.

Another problem that needs to be resolved is that when exceptions do occur, the

exception flags that need to be set are typically not stored in the execution unit that

raised the exception. To avoid synchronization across execution units, we can trans-

form EPROCl into a program in which the update of exception flags is performed by

an ordinary instruction in the execution pipeline. This "fake exception instruction"

(with a pc value that is determined by inverting the "next pc" computation) corre-

sponds to the instruction which has va set to true. The information about exception

flags is once again sent to the execution unit by a special channel which has slack 21.
Therefore, when va is true, we are no longer executing an actual instruction; we only

have to execute normally when valid is true. The result of these transformations is

shown below:

EPROCz

valid?;

* C I F :

M E M :

D E :

E X E C :

Clm -+ vaJ , pc := "next pc"

I -+ v a t , pc := "before exception pc", E X

1 ;
i := imern[pc];

id := decode(i);

Clva + "read operands";

"execute instruction";

e := "exception condition";

Ova -+ EINFO?(flags, epc); "set exception flags, save epc"

1 ;
[valid -+

Cle -+ "write results", valid?

O e -+ EINFO! ("exception flags", pc), E X , valid4

1
Ulvalid -+ valid := va

I

4.2.1. Process Decomposition

When EPROC2 is decomposed into a number of concurrent processes, we have

to ensure that the sequence of va values and e values received by the part labeled

WB (for writeback) is preserved. When the E X E C is decomposed into a number

of concurrent processes, the program order of the instructions is lost and we have a

number of independent processes that will be commuriicating e-values to WB.

We keep track of the instruction order by introducing a queue which identifies

which execution unit is executing the next instruction in program order. This queue

is read by WB to determine which execution unit e-value is to be read next. This

queue is also a convenient place to store the va bit. The queue is written by DE,
since it is responsible for decoding instructions in program order. The pc value used

by the writeback is also stored in a separate queue that is connected to IF (which is

the process that computes pc values).

Figure 4.2. Information flow in a processor with exceptions.

When decomposed, the part of the processor where writes occur is distributed

among a number of concurrent processes which need to know whether the writes

are to be performed or not. Therefore, WB also needs information regarding where

the next write is scheduled to take place; this information is sent to it by the queue

connected to DE. The parts of the processor where writes occur are modified to read

a channel from the writeback that informs them as to whether writes are permitted

C- cu U ---. LLCli. F:- ...- A O "L,..,,, + L A ,,A'f: ~ g h r r ; -.A J l l U W D IrllC; L L ~ V U ~ lcations t o the processor a rch i tec t~re .

4.2.2. Evaluating a Probe
The non-standard part of the program described above is the non-deterministic

selection statement in IF. In this section we provide a circuit implementation for a

process which can be used to implement this part of the exception mechanism. We

can replace the program fragment IF by IF' by the introduction of a process that

probes channel EX.

IF' : E?x;

[l x + va$,pc := "next pc"

Ox + va?, pc := "before exception pc"

1

The process that contains the arbitrated selection statement is shown below.

* C [m + E!true, EX I -+ E!false 11

u-EiL EXo EXo- y- T$F EXi -

Ei -
$

Figure 4.3. Evaluating the probe of a channel.

,

v -

We now provide a circuit implementation for this particular process. Assuming that

channels EX and E are both passive, we can write the following handshaking expan-

sion:

* C C EXi -+ CEil ; Etof; ClE.11; EXof; EtoJ; ClEXil ; EXoJ

I Ei ---+ Efo?; ClEil ; EfoJ

1 1

We have eliminated the check for 1EXi in the handshaking expansion for the second

guarded command. The reason we can eliminate this check is that the hardware im-

plementation of a two-way arbitrated selection statement is weakly fair. Therefore, if

EX2 is true, the first alternative in the selection will execute eventually. We introduce

variables u and v to model the arbitration that is required by the above handshaking

expansion.

* C C EXi -+ u?; [ul ; [Eil ; Etof; CbEil ; EXof;

Eto& CiEXil ; uJ ; Ciul ; EXoJ

I Ei -+ v f ; Cvl ; Efof; ClEil ; v J ; Clvl ; EfoJ

1 1

We apply process factorization to obtain:

* C C EXi -+ u f ; ClEXil; U J

I Ei -+ v f ; ClE.1'1; vJ

1 1

II
* C C u ---+ CEil ; Eto?; ClEil ; EXof; EtoJ; Clul ; EX04

0 v -+ Efo?; Clvl ; EfoJ

11

The first process shown in the decomposition above is an arbiter between EXi and

Ei; the compilation of the second process results in the bubble-reshuffled production

rules shown below.

Reset- A u A EXo- A Ei -+ EtoA i u - A i E t o - A 1Ei -+ EXoT

 reset- V 1EXo- 4 Eto-T u- A Eto- -+ EXoJ,

Eto- -+ EtoJ, EX0 -+ E x 0 4

~ E t o - -+ EtoT 7 E X o -+ EXo-?

Reset- A EXo- A v -+ Efod u -+ u . J

-Reset-V l v -+ Efo-T l u -+ u-I.

Efo- -+ EfoJ,

~ E f o - -+ Efof

The CMOS implementation is shown in Figure 4.3. For clarity, the reset transistors

and staticizers are not shown.

4.2.3. Slack Elasticity

We observe that the mechanism for precise exceptions just discussed is slack elas-

tic because it exhibits the property of maximal non-determinism; the only selection

statement we have introduced that contains probed communication actions is the one

containing in IF, and the correctness of the computation does not depend on the

alternative that is chosen for execution.

4.3. Unpipelining the Processor

The scheme outlined in the previous section is used in the MiniMIPS, a stripped-

down version of a MIPS R3000 micropro~essor.~7 Observe that when the instruction

that has the valid-again bit set to true is being executed, the instructions in the

exception handler are already being processed by the DE unit and MEM unit. How-

ever, it is possible that the state changes introduced by the valid-again instruction

modify the effect of the MEM and DE unit. For instance, the exception handler

typically begins execution in kernel mode. The valid-again instruction would modify

the mode to kernel mode; however, this affects the accessible address space and the

instructions that are allowed to be executed.

To illustrate the problem, we decompose EPROCz into two processes. For the

rest of the discussion, all variables shown will be local variables unless otherwise

specified. We obtain the program shown below by process decomposition:l5

IF2 ZE

* C IF : [lm -+ vaJ , pc := "next pc"

I + v a t , pc := "before exception pc", E X

1 ;
M E M : i := imem[pc];

I ! (i , p c , va) ;

J ? control

E X E C 2 E

valid?;

* [D E : I ? (i , p c , va) ;

id := decode(i);

E X E C : Clva + "read operands";

"execute instruction";

e := " exception condition";

Ova -+ EINFO?(flags, epc); "set exception flags, save epc"

1 ;
WB : [valid -+

[l e --+ "write results", valid?

O e + EINFO!("exception Jags", pc), E X , valid4

1
Olvalid -+ valid := va

1
J!"control information"

The channels I and J are used to communicate non-shared variables between IF2

and EXEC2. Since we are assuming that the operation i := imem[pc] is complicated

by a mechanism that is affected by the state change on exceptions, we assume the

existence of a set of shared variables that are modified by the operation "set exception

flags." To preserve correctness, we are forced to ensure that IF2 cannot overlap its

execution with the rest of the processor by making J ! the last action in EXEC2-a

significant performance penalty.

We would like to complete the J! communication action just after the instruction

has been decoded, because that is when the information that it sent to IF2 is com-

puted. This would permit most of the computation in EXEC2 to overlap with IF2.

However, it would violate mutual exclusion between reading and writing the shared

variables mentioned above when an exception occurs.

Observe that we know when mutual exclusion might be violated-the bit va is

true if this might occur! We therefore introduce a new synchronization channel EX'

that is used to block IF on this condition. We can now complete J! as soon as the

instruction has been decoded; the case of shared variables that arises on the rare

occasion when exceptions occur is handled by the new synchronization introduced.

The final program is shown below. Since the modifications we have introduced are

minor, we use (...) to indicate the parts that are unchanged.

IF2 r

* c IF : (...)
MEM : (...)

J ? control;

Cva --+ EX' O i v a -+ skipl

EXEC,

validf-;

* [D E : I?(i ,pc ,va) ;

id := decode(i);

J!"control information"

EXEC : (...)
WB : (...)

Cva + EX'Oiva + skipl

I

Observe that when va is true, we effectively unpipeline the execution of instructions

since all preceding instructions are forced to complete before the first instruction of

the exception handler is dispatched.

4.4. An Optimization
In most processors, a large number of instructions are guaranteed to terminate

normally. When all instructions being executed by one execution unit are guaran-

teed to terminate normally, we can eliminate the communication between the exe-

cution unit and the writeback. This optimization permits the writeback to process

an instruction without waiting for any information from some execution units. This

optimization was used in the asynchronous MiniMIPS processor where the function

block and shifter never raise exceptions.l7

When we can quickly (relative to the time taken to execute the instruction com-

pletely) determine that an instruction will not raise an exception, reporting this value

to the writeback can improve performance of the processor. This is especially im-

portant for instructions which have high execution latency, such as those involved in

floating-point arithmetic. The MiniMIPS executes a number of different arithmetic

instructions in the adder unit. This unit can raise exceptions in rare cases (instruc-

tion traces show that the ratio of instructions that raise exceptions to those that

do not is less than The unit was optimized so that the latency of exception

reporting in the common cases was 40% of the worst-case latency.

4.5. Related Work
In synchronous processors, the clock globally synchronizes all actions, and there-

fore exception detection is implicitly synchronized with fetching instructions from

memory. As a result, synchronous processors implement precise exceptions by al-

lowing a deterministic number of instructions to execute before the exception status

of an instruction is checked. The absence of a global clock allows us to break this

synchronization.

The AMULET is a self-timed clone of the ARM processor.4 However, it does not

have multiple execution units which simplifies the design of an exception handling

mechanism. "Fred" is an asynchronous processor with multiple execution units.20

This processor does not implement precise exceptions.

Chapter 5.

"Sometimes I think the only universal in the computing field

is the fetch-execute cycle." -Alan J. Perlis

We present a novel processor architecture which uses two independent instruc-
tion streams: one for the main processor, which consists o f the instructions that
perform the actual computation, and one for the branch processor, which deter-
mines the sequence o f program counter values used to fetch instructions for the
main processor. The two instruction streams only synchronize when necessary-
in the case when the direction of a branch is known only at runtime.

A major bottleneck in the execution of instructions in modern processors is the

process of computing program counters to determine which instruction to execute

next, followed by fetching the specified instructions from memory. In traditional

architectures, each instruction contains information about the sequence of program

counters that constitute the program. As a result, one cannot compute which program

counter is to be generated next without examining the preceding instruction-since it

might be a branch. Traditionally, branch delay slots are introduced into the design to

alleviate this problem. At the hardware level, aggressive branch prediction techniques

are used to guess which instruction will be fetched next. When prediction fails, the

hardware has to cancel the result of speculative execution.

Branches in programs correspond to subroutine calls, loops, and if statements.

In the cases of fixed length loops and subroutine calls, we know how the branches

behave when the program is compiled. In this chapter we present a processor archi-

tecture that eliminates branches in these cases by providing more information to the

processor. The architecture is inspired by an asynchronous design style; however, it

can be implemented using a synchronous design style as well.

5.1. Existing Instruction Sets
Consider a traditional instruction set such as the one used by the MIPS R3000.

For simplicity of exposition, we will assume that the processor does not have a branch

delay slot. The processor has a number of different instruction types, and different

instructions are used to compute different functions. However, each instruction im-

plicitly encodes control flow information. An instruction such as

pc: addu rl,r2,r3

implicitly encodes that the next program counter is pc+4. An instruction such as

pc: bne rl,r3,L

encodes that the next program counter is either pcS.4, or L, depending on whether

or not registers r1 and r3 are equal.

A processor computes the sequence of program counter values. However, from

the point of view of the density of the encoding, existing instruction sets encode this

information very inefficiently, since most of the time one has to examine an instruction

simply to determine that the next instruction to be executed is at pc+4. Consider a

simple FORTRAN 77 loop:

do 10 i = 1, 100

c (i) = a (i) + b (i)

10 continue

This loop would be compiled into a number of instructions, with a single branch at

the end of the loop. Most of the instructions would simply correspond to "pc : =pc+4"

as far as the sequence of program counters is concerned. We can statically determine

that the sequence of instructions that implement the body of the loop will be executed

a hundred times; however, this information is not encoded in the instruction set. I t

is this deficiency in instruction sets that we will remedy in this chapter.

5.2. A New Approach
We introduce a completely separate and independent instruction sequence that

encodes the sequence of program counter values. A program is therefore compiled into

fetched but not yet executed.

synchronization channel

I r i s e r fie J

branch processor

instructions -
+

memory
interface

1 register

r

on this channel)

channels tolfrom
branch data memory

processor

L

control "']tile

Figure 5.1. Processor shown in Chapter 4 modified to the new architecture.

The instruction channel
contains buffering for the
instructions that have been

two instruction streams: one which determines the computations to be performed,

and one which determines the flow of control.

The processor that executes the first instruction stream corresponds to a tradi-

tional processor, and we will refer to it as the data processor. The second instruction

stream will be executed on a separate processor which we call the branch proces-

sor. Conceptually, we have a sequence of instructions that computes the sequence

of program counter values. The program counter sequence is used to fetch instruc-

tions !rem meEery. The data pmcesser receives this seqence of instructions. The

branch processor also needs feedback from the data processor when executing code

that has conditional branches. This feedback channel occasionally synchronizes the

two processors. Figure 5.1 shows how the processor discussed in Chapter 4 would

be modified to have such an architecture. Contrast it with the processor shown in

Figure 4.1, which corresponds to a traditional instruction set.

In Chapter 4, we broke the dependence of the instruction fetch on exception in-

formation by communicating on the exception channel only when exceptions occur.

In this chapter, we break the dependence of the instruction fetch on the instructions

being executed in the data processor except when the data values computed in the

data processor affect control flow. We expect performance improvements from the

following factors: latency tolerance for cache misses, parallel execution of branch in-

structions and ordinary instructions, and early knowledge of the sequence of program

counter values.

5.3. A Sample Instruction Set
In this section we present a sample instruction set for the branch processor. Since

control flow in programs normally follows a calllreturn pattern, we include a hardware

stack in the branch processor that is used for storing program counter values.

There are times when control flow information is only available at run time; to be

able to execute programs in which this is the case, we introduce a single instruction

in the main data processor called send!. This instruction sends a data value from

the data processor to the branch processor via the synchronization channel. I t must

be matched by a branch processor instruction that reads the data from this channel;

instructions which read values from this channel have a "?" appended to them.

In what follows, addr refers to the address of instructions to be executed on the

data processor, and braddr refers to addresses for branch processor instructions.

Block Fetch. Block fetch instructions are introduced to compress control flow in-

formation within basic blocks. Instruction

f e t c h addr,N

means L'fetch and execute N instructions that begin at address addr." If we know

statically that we have N instructions that will be executed sequentially, we can

compress this control-flow information using this single instruction.

This instruction can be used to implement straight-line microcode. A sequen-

tial stream of instructions that implements a complex task can be invoked without

increasing code size significantly by using a single f e t c h instruction. Using this in-

struction can result in a smaller instruction cache footprint for a program in the case

when common code can be shared among different parts of the program.

Loops. To permit simple looping constructs to be implemented without significant

overhead, we introduce the following two instructions:

push baddr, N
de c

The push instruction stores the pair (baddr, N) on the hardware stack. Branch

processor execution continues with the next instruction.

dec examines the pair (baddr, N) stored on the top of the stack, and decrements

N. If the result is zero (or negative), stack is popped; otherwise, the branch processor

begins execution at address baddr. For example, the code corresponding to a loop

that executes a sequence of 15 instructions 10 times would be:

push A, 10;
A: f e t ch addr, 15;

de c

The number of iterations in a loop is not always known at compile time. To per-

mit the execution of loops with iteration counts determined at run time, we introduce

the following instruction:

pushN? baddr

This instruction receives the next data value from the synchronization channel and

uses it as the loop count N (as in the normal push instruction); other than that it

behaves like a push instruction.

When breaking out of a loop, the hardware stack still has state information in

it which needs to be destroyed. The pop instruction explicitly pops the top of the

hardware stack.

Funct ion Calls. Function calls are implemented with the c a l l instruction. c a l l

baddr pushes (nextpc, 1) onto the branch processor stack (nextpc is the program

counter address immediately following the c a l l) and transfers control to baddr. Re-

turning from a function is implemented by a r e t instruction, that jumps to the

address on the top of the stack and pops the stack.

To be able to efficiently execute a function call to an address determined at run

time (this nccurs .xrhen executing 2 fEEctiQE determined hv lnnbing a filnctio~ "J '""""'

pointer stored in a table, or in the case of dynamic dispatch of methods in object-

oriented languages), we introduce the c a l l ? instruction. This instruction reads the

address to branch to from the synchronization channel, and otherwise behaves like a

c a l l .

Data-dependent Control Flow. The push and pop instructions can be used to

implement control flow in loops. To handle arbitrary branches, we introduce goto

instructions of two flavors:

goto baddr
goto?

The first instruction unconditionally changes the branch processor execution ad-

dress to baddr. The second instruction reads the address to branch to from the

synchronization channel.

Table 5.1. Instruction-set summary.

Instruction

f e t c h a d d r , N
push baddr , N
de c
pushN? baddr
POP
c a l l baddr
c a l l ?
r e t
goto baddr
goto?
i f ? baddr
f e t ch? addr , N
send! data

When control flow depends on computation in the data processor, the synchro-

nization channel is used to determine the direction of the branch. The i f ? instruction

is used for this purpose.

i f ? baddr

Stall

n
n
n
y
n
n
y
n
n
y
y
y
y

The instruction reads a value from the synchronization channel and continues exe-

cution at address baddr if the value received is non-negative. Otherwise, execution

continues with the next branch processor instruction.

Purpose

fetch and execute block of instructions
push loop counter
decrement/pop loop counter
push loop counter, value unknown a t compile time
break out of loop
function call
function call, target unknown at compile time
return from function call
arbitrary control flow
goto with target unknown at compile time
conditional branches
block predication
data processor communication

Predicated Execution. The instruction set for the branch processor will improve

the performance of execution only if matching send! are executed early in the data

processor. Programs containing short sequences of instructions interspersed with

conditional branches that depend on the computation just performed would not be

executed very efficiently. However, in such cases, predicated execution-executing in-

structions conditionally-could be used to improve performance.'' This approach has

been successfully used to efficiently execute code with frequently occurring branches.

We provide a simple mechanism for predicating a block of instructions. The

instruction f e t ch? addr , N is used for this purpose. If the value received from the

data processor is non-negative, then the block of N instructions stored at address

addr are executed; otherwise, the instruction behaves like a nop.

5.4. Sample Branch Processor Code
Table 5.1 has a summary of the new instructions we have introduced. We now

provide examples showing how code would be generated for the branch processor.

Example. Consider the following FORTRAN program fragment:

do 10 i = 1, 100

c(i) = a(i)+b(i)
10 continue

Compiling this piece of code using f 2c and the GNU C compiler for an R3000 pro-

cessor results in the following assembly code.

E: r2:=1; i:=r2;
r8:=c-4; r7:=a-4; r6:=b-4;

L: r2:=i;
r5:=r2+1; r2:=r2*4;
r3:=r2+r7; r4:=r2+r6;
r3:=mem[r3] ; r4:=memCr41 ;
r2:=r2+r8;
i:=r5;
r5 :=(r5<101) ;
r3:=r3+r4;
mem Cr21 : =r3 ;
if r5 goto L -

In a branch processor architecture, the underlined instructions shown above would

be deleted. In addition, the following branch processor code would be generated:

fetch E, 5;
push L1,lOO;

L1: fetch L, 11;
de c

In this example, the branch processor does not synchronize with the data processor

because the control flow can be determined when the program is compiled. Xc

Example. Consider the same program with a modification that permits the program

to exit the loop early.

do 10 i = 1, 100

c(i) = a(i)+b(i)
if (c(i) .ge. 0) goto 11

10 continue

11 . . .

The compiled version of this program is shown below.

E: r2:=1; i:=r2;
r8:=c-4; r7:=a-4; r6:=b-4;

L: r5:=i;
r3 : =r5*4;
r2:=r3+r7; r4:=r3+r6;
r2 : =mem [r21 ; r4 : =mem Cr41 ;
r3:=r3+r8;
r2:=r2+r4;
memCr31 : =r2 ;
if r2>=0 noto M; + send! r2

P: r2:=r5+1;
i.- . -r2;
r2:=(r2<101) ;
if r2 noto L

M: . . .
In a branch processor architecture, the underlined instructions would be deleted,

and in one case replaced by the send! instruction shown. The additional branch

processor code would be:

fetch E, 5;
push L1, 100;

L1: fetch L, 10;
if? B;
fetch P, 2;
dec;
push L1, 1;

B: pop
. . .

An examination of the code generated reveals that the send! r2 can be reordered

with two instructions to obtain:

r2:=mem[r21 ; r4:=mem[r41 ;
r2:=r2+r4; send! r2;
r3:=r3+r8;
mem Cr31 : =r2

This transformation would improve the performance because the send! action oc-

curred earlier. %

5.5. Deadlock, Exceptions, and Context Switching
The state in the branch processor architecture is distributed, since we have two

streams of instructions that are being executed concurrently. In addition, we have

instructions that synchronize the branch processor and data processor. In this section

we examine some of the consequences of such an architecture, presenting solutions to

the new issues raised in such an architecture.

5.5.1. Deadlock

Since our architecture includes explicit instructions that synchronize the data

processor and branch processor, incorrect code could deadlock the hardware. To

avoid this problem, we must be able to detect the occurrence of deadlock and correct

the problem.

Deadlock can occur in two different cases in the branch processor architecture.

A receive on the synchronization channel is blocked because there is no match-

ing send and the channel is empty;

A send on the synchronization channel is blocked because the channel is full

and there is no matching receive.

Every send! instruction must be fetched before the corresponding receive is exe-

cuted in the branch processor. Therefore, the first case can only be caused by an

incorrect program. This possibility can be prevented by using a correct compiler.

The second case could occur if multiple sends have been dispatched in advance,

causing the synchronization channei to become fuii before any receives couid be ex-

ecuted. This case could also be prevented by a compiler. The compiler must keep

track of the number of outstanding send! operations at any point in the program,

and ensure that the number of pending send operations does not exceed the hardware

limit.

Although both cases of deadlock can be prevented using appropriate compilation

techniques, we might want to be able to execute arbitrary programs on the hard-

ware without causing the processor to deadlock. We discuss some deadlock-detection

techniques below.

Deadlock can be detected by using a timing assumption or by running a deadlock

detection algorithm. Simple timing assumptions include assuming that the proces-

sor has deadlocked if instructions have not been decoded for a long interval-say

a microsecond. We could also execute a simple termination detection algorithm to

detect deadlock.3 In the latter case, we only have to involve the two ends of the

synchronization channel in the termination detection algorithm along with counters

to detect that there are no data values in transit from the branch processor to the

data processor.

If a receive action is blocked forever, this implies that the code being executed on

the branch processor is erroneous. In this case, we must be able to begin execution

of the exception handler. If a send! action is blocked forever, this could imply

that the code generated by the compiler is erroneous; however, if the compiler can

predetermine the sequence of send! actions, the processor might deadlock because

the synchronization channel is full. In this case, we should gracefully recover by

permitting the program to continue execution while draining the values stored in the

synchronization channel.

To permit program execution in the presence of blocked send! instructions, we

must be able to save (and restore) the values stored in the synchronization channel

to memory. Therefore, we must include a mechanism that will memory-map the syn-

chronization channel, and treat the hardware queue as an optimized implementation

of this queue. With such an implementation, a blocked send! action will cause ex-

ecution to fail only when a process exhausts the virtual memory on the system (or,

alternatively, exceeds its resource limits).

5.5.2. Exceptions and Context Switching

The processor architecture just proposed has state stored in both the data proces-

sor and the branch processor. The processor must include the capability of storing the

entire state to memory. The state of the data processor can be saved to and restored

from memory in the same way as in traditional processors. The state of the branch

processor is stored in the contents of the branch processor stack and the contents of

the synchronization channel between the data processor and branch processor. The

hardware stack as well as the synchronization channel is be memory-mapped; there-

fore, we can save and restore the state of these parts of the branch processor using

load and store instructions from the data processor. As we have a mechanism for

saving and restoring the state of the processor, we can implement context switching.

Exceptions can be handled using a mechanism based on the one presented in

Chapter 4. The send! instructions must be treated as instructions that modify the

state of the processor. In addition, if an exception is encountered in the middle of

a block fetch instruction, we must be able to restore execution from the middle of

the block. This implies that the branch processor should keep track of pending block

fetch instructions so that they can be restarted after an exception is handled.

Exceptions that occur in the branch processor itself (such as address translation

errors or stack underflows) can be handled by sending them to the data processor

with a special bit set indicating a branch processor exception. The instruction will

be executed as a nop in the data processor, and raise an exception in the usual way.

Making the writeback unit in the data processor handle branch processor exceptions

ensures that exceptions are handled in program order.

5.6. Performance Comparison

To be able to provide some intuition as to when the branch processor performs

well, we begin by providing a high-level description for the branch processor instruc-

tion set shown in the previous section. The interaction between the branch processor

and the data processor occurs via two channels: PC , the channel on which program

counter values are sent to the data processor, and SYNC, the channel used to read

data values from the data processor.

The program for the branch processor is shown below. Variable bpc is the pro-

gram counter for branch processor instructions, and S is a stack. A stack element

has an addr field and an N field. We use three stack operations: Top(S) is the top

element of stack S; Push(S, addr, N) pushes the pair (addr, N) onto the stack and

returns a new stack; Pop($) returns deletes the top element of stack S and returns

the r;ew stack. T?Je have omitted overflow and iinberflow detection from the program

for the sake of clarity.

bpc, S := init-bpc, E;

* C (i , addr, N), bpc := bmem[bpc], bpc + 1;

Crecv(i) -+ SYNC?x O irecv(i) -+ skip] ;

Cfetch(i) -+ * C N > 0 -+ PC!addr; addr, N := addr + 1, N - 1 1
Opush(i) -+ S := Push($, addr, N)

Odec(i) -+ C Top(S).N > 1 -+ bpc := Top(S).addr;

Top(S).N := Top(S).N - 1

O Top (8). N 5 1 -+ S := Pop (S)

1
OpushN?(i) -+ S := Push(S, addr, x)

Opop(2) ---+ S := Pop($)

Ocall(2) -+ S := Push(S, bpc, 1); bpc := addr

Ocall?(i) + S := Push(S, bpc, 1); bpc := x

Oret(i) -+ bpc := Top(S).addr; S := Pop(S)

Ogoto(i) -+ bpc := addr

Ogoto?(i) -+ bpc := x

O i f? (i) -+ [x > O + bpc:= addr 0 x <O-+skip 1
Ofetch?(i) -+ C x 2 0 -+

* C N > 0 + PC!addr; addr, N := addr + 1, N - 1 1
[I x < 0 -+ skip

1
Oelse -+ skip

I
I

Since program counter values are computed by the branch processor, the data

processor simply reads the PC channel to determine which instruction should be

executed next. The high-level CHP for the data processor is shown below.

* [I F : PC?pc;

MEM : i := imem[pc];

DE : id := decode(i);

EXEC : "read operands";

[send! (i) -+ SYNC!"data"
+" ezecwte instrxchGnr'; '/write

1

5.6.1. Program-Counter Computation

The branch processor can be compared to the instruction fetch in a standard

processor. A simplified version of the instruction fetch for the asynchronous Min-

iMIPS is shown below. The channel SYNC corresponds to the channel from the core

of the processor that is used to communicate register values and immediate values

to the instruction fetch; we have introduced an additional COND channel on which

condition codes for branches are sent to the instruction fetch.
PC!init-pc; pc := init-pc

* [I?i;pc : = p c + l

Ci =" nextpc" -+ skip

Oi = I 1 jump" + SYNC?x;pc := x

O i =" branch" -+ SYNC?$; COND?c;

Cc -+ pc := pc + x Ole -+ skip 1

3 ;
PC!pc

1

The branch processor can compute program counter values earlier than this sim-

ple instruction fetch because we have eliminated the communication I?i which syn-

chronizes the instruction fetch with the rest of the data processor on every instruction.

Instead, the branch processor only synchronizes with the data processor when neces-

sary. In the example of a simple loop, we eliminate all synchronization, permitting the

branch processor to fetch instructions without any feedback from the data processor.

The branch processor program is more complex than the simple instruction

fetch because it has more instructions to decode. This decoding overhead is quite

small when compared to the overhead in accessing branch processor memory by the

"(2, addr, N) := bmem[bpc]" statement. Accessing a large on-chip cache has a la-

tency that is approximately equal to the cycle time T of the processor. This is the

additional overhead we encounter when using a branch processor.

The slowest possible execution of the branch processor architecture corresponds

to the case when the last PC! communication in the branch processor fetched a send!

instruction, and the next branch processor instruction is either push#?, c a i i ? , goto?,

i f ? , or fetch?. In this case, the branch processor waits for the send! instruction to

be fetched, decoded, and executed. Let the time taken to fetch, decode, and execute

the send! instruction be 7-0. We analyze the branch processor overhead for each

potentially slow instruction.

pushN?. Since the value of bpc is not data-dependent on the value received on

SYNC, the branch processor can continue execution without actually having

to wait for the data on SYNC to arrive.

c a l l ? and goto?. The branch processor waits for the data on SYNC to ar-

rive before it can fetch the next branch processor instruction. The next data

processor instruction has an additional data processor latency of TO +T seconds.

if?. If the value received on SYNC is negative, the stall is TO seconds because

the next branch processor instruction can be speculatively read from branch

processor memory. If the value received is non-negative, the branch processor

0 20000 40000 60000 80000 I00000 120000 140000
#of lnstructions

Ratio of Distinct lnstructions to Total lnstructions
0.26

Figure 5.2. Ratio of distinct instructions to total instructions.

0.24

will have to read a new value from branch processor memory incurring an

additional data processor latency of r0 + r seconds.

fetch?. If the value received on SYNC is negative, the stall is r0 seconds. If

the value received on SYNC is positive, the stall is r0 seconds because the next

0
-

program counter values are available immediately.

To summarize, we expect that in the worst case the branch processor stalls for

r0 + r seconds for branches that are taken, goto? and call? instructions, and r0

seconds for branches that are not taken and fe tch? instructions.

In a non-speculative traditional microprocessor, the latency of fetching the branch

instruction and executing it (which is about the same as rO) is typically avoided by

the introduction of [rO/rl branch delay slots. If we directly translate a standard

instruction set to branch processor code by replacing branches by send! instruc-

tions, we observe that each send! instruction will be followed by rrO/r] instructions

that correspond to the branch delay slot. Therefore, the only additional stall the

branch processor encounters is r , which would be completely hidden if the original

architecture had an additional branch delay slot.

5.6.2. Memory Access

We have introduced an additional memory read for branch processor instructions.

This memory read is unsynchronized with the memory for data processor instructions

Table 5.2. Percentage of programs with 100% cache hits.

Cache Size (words)

1024
2048
4096
8192
16384

or the data memory. However, most modern processors have a single off-chip memory.

Therefore, we may have increased the instruction memory bandwidth requirements

to off-chip memory.

However, data processor instructions no longer contain information about which

instruction has to be executed next. Therefore, common code can be shared without

any code replication. All that needs to be replicated is the branch processor fetch in-

struction for the block of shared code. Therefore, the branch processor could improve

instruction cache performance by reducing cache misses in the instruction cache.

To maximize instruction sharing (and, incidentally, maximize branch processor

code size), each unique data processor opcode would be stored once. This implies

that an upper bound on the number of instructions required to be stored in the

instruction cache is given by the number of distinct instructions in the program.

We collected instruction count statistics for 267 executables that were compiled

using the GTqU C compiier for an "n3000-based DECstation. Figure 5.2 shows the

ratio of the number of distinct instruction opcodes to the total number of instruction

opcodes in executables of varying sizes. The figure illustrates that the number of

distinct opcodes grows at a rate that is less than linear in the size of the executable.

Table 5.2 shows the percentage of programs that would completely fit in an

instruction cache depending on whether we count tot a1 instructions or the number

of unique instructions in the program. In a branch processor architecture, most

programs would fit in a typical instruction cache (8K words). Therefore, we would

significantly reduce the number of instruction cache misses in the data processor.

At the same time, we would increase cache misses for the branch processor. We

can bound the number of cache misses for the branch processor by the number of

cache misses for the original instruction set, since each ordinary instruction would be

translated into at most one branch processor instruction.

Therefore, the additional memory bandwidth requirements for a branch processor

Original Instructions

0.0%
0.7%
2.3%
2.3%
50.9%

Unique Instructions

2.3%
2.3%
57.1%
78.5%
99.4%

can be reduced significantly by sharing instructions from the data processor-at

a performance cost. This conservative analysis shows that introducing a branch

processor will not have a large impact on the instruction memory bandwidth required

by the processor.

5.7. Speculation
The new architecture specified here can be used in conjunction with existing

techniques for addressing performance problems due to control-flow dependencies.

The techniques we mention here are branch prediction and prefetching. Both these

techniques attempt to improve performance by predicting what the program will

execute.

Incorporating branch prediction into this architecture corresponds to guessing

the value being sent on the feedback channel for i f ? instructions. Since simple loops

no longer contribute branch instructions, the effectiveness of branch prediction will

be decreased because the cases which can be easily predicted (loops) are no longer

present.

Prefetch instructions attempt to hide the latency of cache misses by dispatching

reads to the caches before the data value is actually needed. These prefetch instruc-

tions can be inserted into the instruction stream of both the branch processor (for

instruction cache prefetches) and the data processor (for data cache prefetches).

Instructions that support software-controlled speculation can be introduced to

improve the performance of the branch processor architecture. The instruction

s f e t c h addr,N

means "fetch and speculatively execute N instructions that begin at address addr ."
These instructions are fetched from memory and dispatched to the data processor.

The commit instruction informs the data processor if the last speculatively executed

block should be permitted to modify the state of the processor. Therefore, the se-

quence % f e t c h addr, N ; commit t rue" is equivalent to "fetch addr, N." The se-

quence "sf e t ch addr, N ; commit f a l s e" is equivalent to a skip.

Speculative execution is used to begin execution of a block of code before know-

ing whether it should be executed. The condition under which the code should

be permitted to execute is computed in the data processor, and sent back to the

branch processor via a send! instruction. Often, this information determines which

of "commit t rue" or LLcommit f a l s e" should be executed. To optimize this case,

Table 5.3. Instructions supporting speculative execution.

Instruction

s fe tch a d d r , N
sfetch? a d d r , N
commit t rue
commit f a l s e

we introduce the sf etch? instruction. "sf etch? a d d r , W' behaves like sf etch. In

addition, it receives a value from the data processor and uses this value to determine

which commit instruction should be executed. It would be equivalent to the following

branch processor code:

sf etch a d d r , N;

i f ? A ;

commit f a l s e ; goto B;

A: commit t rue

B: . . .

Stall

n
y
n
n

The instructions for supporting software-controlled speculative execution are sum-

marized in Table 5.3.

Purpose

fetch and speculatively execute instructions
optimized speculative execution
commit results of last speculative execution
discard results of last speculative execution

5.8. Compilation Issues
Existing compilation techniques can be used to generate code for the branch

processor. In the worst-case, a standard instruction set can be translated directly

into branch processor instructions by replacing conditional branches with send! and

i f ? pairs, and using fe tch instructions to dispatch instructions within a basic block.

Loop Detection. Both fixed length and variable length loops can be detected

by modern compilation systems. Most programming languages have constructs for

simple iterated loops, simplifying the problem of loop detection. Therefore, a compiler

can generate push instructions for loops. In addition, subroutine call and returns are

explicit in the language. Therefore, these instructions can be easily generated by

standard compilation systems. Indeed, the branch processor instruction set is easier

to map to because the call and return semantics are provided by the hardware directly.

Peephole Optimization. Peephole optimization can be used to move a send!

instruction before any other instructions in the data processor that it depends on.

Recall that early send! instructions will improve the performance of the branch

processor architecture.

Code Sharing. Loop unrolling and loop peeling are transformations used to improve

the performance of programs. Both transformations replicate the body of the loop

in order to statically determine the direction of some of the branches in the loop

body. Observe that such program transformations replicate code just in the branch

processor; streams of instructions in the data processor can be re-used because they

no longer encode any control flow information. This implies that we will not worsen

instruction cache performance by applying such transformations.

We can also think of f e t c h instructions as providing a simple interface for imple-

menting microcode. A sequence of instructions stored at fixed addresses in memory

can be used to create complex LLinstructions'7 of the form of f e t c h addr, N. The ef-

fect of executing these instructions would be to execute the sequence of instructions

stored a t the specified memory address, providing the same effect as an architecture

that included programmable microcode.

5.9. Related Work
There is a wealth of research in techniques for alleviating the problem of con-

trol dependencies. Smithz3 describes a number of standard approaches to predicting

control flow behavior using branch prediction. More recently, complex two-level pre-

dictors have been proposed to improve the accuracy of branch prediction.28 The

branch processor approach provides more control flow information to the processor,

permitting the processor to speculate less often. Vector architectures are used to

provide limited support for fixed length loops. However, not all fixed length loops

are vectorizable. For instance, loops that contain irregular array accesses (such as

loops containing sparse-matrix operations) cannot be vectorized even though their

control flow can be determined statically. In addition, vector architectures do not

support nested loops, nor do they support efficient call and return functionality. The

branch processor approach can be used in conjunction with existing techniques to

improve the performance of processors.

Chapter 6.

CONCLUSION

"Begin at the beginning, and go on till you come to the end;

then stop." -Lewis Carroll, Alice in Wonderland

This thesis has explored several important aspects of asynchronous architecture

and design-an exploration that has yielded promising results.

In the area of high-level design of asynchronous systems, we presented condi-

tions under which an asynchronous computation could be pipelined. The conditions

were used to show the correctness of a number of program transformations that

introduce concurrency in an asynchronous system. The conditions presented were

general enough to be satisfied by the high-level design of a complete asynchronous

microprocessor and were used to justify various program transformations used in its

design.

We presented latency optimal circuits for solving the prefix problem. The cir-

cuits have the best possible asymptotic latency given arbitrary input distributions.

Pipelined versions of the circuits were presented, showing that the improvement in

latency was not attained at the cost of decreasing the throughput of the prefix com-

putation.

We presented a mechanism for the implementation of precise exceptions in an

asynchronous microprocessor. The mechanism was used in the design of a high-

performance asynchronous microprocessor. We also presented circuits for the imple-

mentation of the non-standard component of the exception mechanism that involved

using an arbitration device.

We presented a novel processor architecture for addressing the problem of control

flow dependencies. The architecture introduced multiple unsynchronized instruction

streams for controlling the execution of a sequential program, with one instruction

stream specialized for control flow.

Throughout this thesis, we attempted to eliminate synchronization and depen-

dencies whenever possible. We presented a method to reason about transformations

that reduce synchronization between different parts of a computation. The prefix

computation circuits took advantage of the presence of input values that eliminated

data-dependencies to reduce average-case latency. The exception mechanism elimi-

nated synchronization between parts of the processor except when an exception was

encountered-which is an uncommon event. The branch processor approach elim-

inated synchronization between the control and data part of a program when the

control flow was not data-dependent.

6.1. Future Work
Can we construct efficient algorithms for determining when channels in a system

are slack elastic? Even if this problem cannot be solved in general, it would suffice

to construct sound algorithms that could analyze frequently occurring cases.

Can we use data-dependent optimizations to improve the performance of other

arithmetic units? Can we use correlations between successive inputs to improve the

performance of arithmetic units?

How does the branch processor perform on standard benchmarks? A full evalu-

ation of this processor would involve writing a compiler that would generate appro-

priate branch processor code. Unfortunately, an evaluation of the branch processor

architecture cannot be done by simply translating standard assembly code to branch

processor code in a naive manner, since information about loops that is available to

intermediate stages of a compiler is not present in the assembly code.

What instruction sets should asynchronous computers use? It should be possible

to improve the average-case performance of asynchronous systems by choosing an

instruction set that is optimized appropriately.

Appendix 1.

The notation we use to describe hardware, called "Communicating Hardware

Processes" (CHP), is based on Hoare's CSP.7 A complete formal semantics of the

language can be found in van der Goot's t h e s i ~ . ~ What follows is a short and informal

language summary.

Simple s t a t emen t s a n d expressions.

Skip: skip. This statement does nothing.

Assignment: x := E. This statement means "assign the value of E to x." When

E is t rue , we abbreviate x := E to x?, and when E is false we abbreviate x := E

to 24. Setting elements of a vector x of boolean-valued variables to t r u e in a

concurrent manner is denoted x h, while setting elements to false is denoted x 4.
Communication: X!e means send the value of e over channel X; Y?x means

receive a value over channel Y and store it in variable x. When we are not

communicating data values over a channel, the directionality of the channel may

be unimportant. In this case, the statement X denotes a synchronization action

on port X.

Probe: The boolean X is true if and only if a communication over channel X

can complete without suspending.

Compound statements .

Selection: [GI -+ Sl O ... O G, -+ S,], where Gi7s are boolean expressions

(guards) and Sils are program parts. The execution of this command corresponds

to waiting until one of the guards is true, and then executing one of the statements

with a true guard. The notation [GI is shorthand for [G + skip], and denotes

waiting for the predicate G to become true. If the guards are not mutually

exclusive, we use the vertical bar " I " instead of "0 ."
Repetition: * [GI + Sl 0 ... 0 G, + S,] . The execution of this command

corresponds to choosing one of the true guards and executing the corresponding

statement, repeating this until all guards evaluate to false. The notation * [SI

is shorthand for * [true -+ S1. If the guards are not mutually exclusive, we use

the vertical bar " I " instead of "0."
Sequential Composition: S; T . The execution of this command corresponds to

executing S followed by T . The semicolon binds tighter than the parallel com-

position operator 1 1 , but weaker than the comma or bullet.

e Parallel Composition: S (1 T or S , T . The execution of this command corre-

sponds to executing commands S and T in parallel. The 11 operator binds weaker

than the bullet or semicolon. The comma binds tighter than the semicolon but

weaker than the bullet.

Simultaneous Composition: S T (read "S bullet T ") . The execution of this

command corresponds to executing the actions S and T such that they complete

simultaneously. Typically, the two actions are communication actions only, and

the implementation of the bullet corresponds to replacing S by S ; S and T by

T ; T and then picking an interleaving of the "doubled" actions, like S ; T ; S ; T .

The concurrent execution of a collection of CHP processes is assumed to be weakly

fair-every continuously enabled action will be given a chance to execute eventually.

The selection statement is assumed to be demonic, and it therefore not fair. Consider

the following four processes:

*[X!O 1 11 * [Y!1 1
1 1 *[[x + X ? x 0 7 -+ Y ? x 1; Z ! x I
11 * [W!2 1

Since the selection statement is not fair, Z is permitted to output an infinite se-

quence of zeros. However, both Z ! x and W!2 will execute eventually, since parallel

composition is assumed to be weakly fair.

Appendix 2.

ANALYSIS OF PARALLEL PREFIX

Given an N-input prefix computation, let CN be the length of the longest sequence

of propagate inputs. We would like to determine the expected value of CN, assuming

that the n inputs are independent, identically distributed random variables and that

the probability of an input being of propagate type is (1 - p) = q. We use a simple

generalization of the reasoning presented by Burks et a1.l Clearly, the expected value

of cN is given by:

where Pr[cN 2 k] is the probability that the length of the longest sequence of prop-

agate inputs is at least k .

The probability Pr[cN > k] consists of two parts: (a) the probability that the

first (N - 1) inputs have a sequence of propagate inputs at least k; (b) the probability

that the first N - 1 don't have such a sequence but adding the nth input produces a

sequence of length 5 . We can therefore write:

The second term (which corresponds to part b) is obtained by observing that of the

n inputs, the last k inputs are of type propagate, and the input a t position N - k

is not of type propagate. We also need to take into account the fact that the first

N - k - 1 positions do not have a propagate sequence of length a t least k. Repeatedly

expanding the first term, we obtain:

To complete the proof, we note that Pr[cN 2 k] <_ 1. We split the range of the

summation (*) into two parts.

Pick K such that NqK 5 1, i.e., pick K = [log,,, N1. We obtain:

= 0 (log N)

It is clear that we can extend this proof to different values qi for the different input

positions by overestimating qi to be the largest possible value. In that case, we have:

References

I. A.W. Burks, H.H. Goldstein, and John von Neumann. Preliminary discussion of

the logical design of an electronic computing instrument. Institute for Advanced

Study, Princeton, N.J., June 1946.

2. Uri V. Cummings, Andrew M. Lines, and Alain J. Martin. An asynchronous

pipelined lattice-structure filter. In Proceedings of the First International Sympo-

sium on Advanced Research in Asynchronous Circuits and Systems, pp. 126-133,

November 1994.

3. E.W. Dijkstra and C.S. Scholten. Termination Detection for Diffusing Compu-

tations, Information Processing Letters, 11(1), August 1980.

4. S.B. Furber, P. Day, J.D. Garside, N.C. Paver, and J.V. Woods. A micropipelined

ARIvi.. Proceedings of" the V-I1 Banff workshop: Asynchronous h*ardware Design,

August 1993.

5. Peter Gemmell and Mor Harchol. Tight Bounds on Expected Time to Add

Correctly and Add Mostly Correctly. Information Processing Letters, 49:77-83,

1994. A misleading version of this paper appeared as a University of California

at Berkeley technical report CSD-93-737, 1993.

6. Marcel van der Goot. The Semantics of VLSI Synthesis. Ph.D. thesis CS-TR-

95-08, California Institute of Technology, 1996.

7. C.A.R. Hoare. Communicating Sequential Processes. Communications of the

ACM, 21(8):666-677, 1978.

8. Kevin S. van Horn. An Approach to Concurrent Semantics Using Complete

Traces. M.S. thesis 5236:TR:86, California Institute of Technology, 1986.

9. Richard E. Ladner and Michael J. Fischer. Parallel Prefix Computation. Journal

of the Association for Computing Machinery, 27(4):831-838, October 1980.

lo. F. Thomson Leighton. Introduction to Parallel Algorithms and Architectures:

Arrays, Trees, Hypercubes. Morgan-Kaufmann, 1992.

11. Andrew Matthew Lines. Pipelined Asynchronous Circuits. M.S. thesis, California

Institute of Technology, 1996.

12. Scott A. Mahlke, Richard E. Hank, James E. McCormick, David I. August,

and Wen-mei W. Hwu. A Comparison of Full and Partial Predicated Execution

Support for ILP Processors. Proceedings of the 22nd International Symposium

on Computer Architecture, June 1995.

13. Alain J. Martin. An Axiomatic definition of synchronization primitives. Acta

Informatics, 16:219-235, 1981.

14. Alain J. Martin. The Probe: An addition to communication primitives. Infor-

mation Processing Letters, 20:125-130, 1985.

1.5. Alain J. Martin. Compiling Communicating Processes into Delay-insensitive

VLSI circuits. Distributed Computing, 1(4), 1986.

16. Alain J . Martin, Steven M. Burns, Tak-Kwan Lee, Drazen Borkovic, and Pieter

J . Hazewindus. The design of an asynchronous microprocessor. In Charles L.

Seitz, editor, Advanced Research in VLSI: Proceedings of the Decennial Caltech

Conference on VLSI, pp. 351-373, MIT Press, 1991.

17. Alain J . Martin, Andrew Lines, Rajit Manohar, Mika Nystrom, Paul Penzes,

Robert Southworth, Uri V. Cummings, and Tak-Kwan Lee. The Design of an

Asynchronous MIPS R3000. Proceedings of the 17th Conference on Advanced

Research in VLSI, September 1997.

18. Raymond E. Miller. Switching Theory, Volumes 1 and 2. John Wiley and Sons,

1965.

19. Jayadev Misra and K. Mani Chandy. Proofs of Networks of Processes. IEEE

Transactions on Software Engineering, SE-7(4):417-426, July 1981.

20. William F. Richardson. Architectural Considerations in a Self-Timed Processor

Design. Ph.D. thesis, Department of Computer Science, University of Utah,

1996.

21. Charles L. Seitz (editor). Proceedings of the Caltech Conference on Very Large

Scale Integration, 1979.

22. Charles L. Seitz. System Timing. Chapter 7 in Introduction to VLSI Systems,

by Carver Mead and Lynn Conway, Addison-Wesley, 1979.

23. J.E. Smith. A study of branch prediction strategies. Proceedings of the 8th

Annual International Symposium on Computer Architecture, 1981.

24. Jan L.A. van de Snepscheut. Trace theory and VLSI design. Lecture Notes in

Computer Science 200, Springer-Verlag, 1985.

25. J O S ~ A. Tierno, Rajit Manohar, and Alain J . Martin. The Energy and Entropy

of VLSI Computations. Proceedings of the Second International Symposium on

Advanced Research in Asynchronous Circuits and Systems, March 1996.

26. Ted Eugene Williams. Self-timed Rings and their Application to Division. Ph.D.

thesis, Computer Systems Laboratory, Stanford University, May 1991.

27. S. Winograd. On the Time Required to Perform Addition. Journal of the Asso-

ciation of Computing Machinery, 12(2):277-285, April 1965.

28. T.-Y. Yeh and Y.N. Patt. Two-level adaptive branch prediction. Proceedings of

the 24th Annual ACM/IEEE Symposium on Microarchitecture, 1991.

