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Nanovoid nucleation by vacancy aggregation and vacancy-cluster coarsening in high-purity
metallic single crystals
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A numerical model to estimate critical times required for nanovoid nucleation in high-purity aluminum
single crystals subjected to shock loading is presented. We regard a nanovoid to be nucleated when it attains a
size sufficient for subsequent growth by dislocation-mediated plasticity. Nucleation is assumed to proceed by
means of diffusion-mediated vacancy aggregation and subsequent vacancy cluster coarsening. Nucleation times
are computed by a combination of lattice kinetic Monte Carlo simulations and simple estimates of nanovoid
cavitation pressures and vacancy concentrations. The domain of validity of the model is established by considering
rate-limiting physical processes and theoretical strength limits. The computed nucleation times are compared to
experiments suggesting that vacancy aggregation and cluster coarsening are feasible mechanisms of nanovoid
nucleation in a specific subdomain of the pressure-strain rate-temperature space.
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I. INTRODUCTION

This work is concerned with the formulation of a model
of nanovoid nucleation at extreme conditions of deformation
and temperature such as those found in materials subjected
to strong shocks. The aim is to formulate a nucleation model
that can be integrated into continuum multiscale descriptions
of ductile fracture by void growth and coalescence. Such
multiscale models often rely on porous plasticity methods to
account for the macroscopic effect of the growing voids,1–13

and on micromechanical or localization analyses in order to
describe crack growth of the formation of spall planes.5,14–18

By design, micromechanical continuum models of porous
plasticity either postulate an initial void size and density
(e.g., when voids nucleate by decoherence of second-phase
particles) or rely on a nucleation model in order to compute
the initial void size and density.19,20 In this model, nucleation
corresponds to the onset of plastic cavitation, i.e., to the
formation of voids of a size such that subsequent growth can
happen by plasticity. In metals at high tensile pressures, the
critical void size for plastic cavitation may be in the nanoscale,
in which case plastic cavitation occurs by the emission of
discrete dislocation loops.21–24

Void nucleation in metals under shock loading has been
extensively studied by means of molecular dynamics.25–30

While these studies are remarkable for the fidelity and insights
that they afford, including the role of inclusions, second-phase
particles, dislocations, grain boundaries, and other microstruc-
tural features, they often fail to supply an analytical description
of nucleation rates that can be effectively integrated into a
larger multiscale framework. The present work is primarily
concerned with that objective. We specifically consider the
homogeneous nucleation of nanovoids by vacancy genera-
tion and aggregation. While this is an accepted nucleation
mechanism in failure under creep at elevated temperatures,31

vacancy diffusion has traditionally been considered to be too
slow to operate under dynamic loading conditions. Thus,
an ancillary objective of the present work is to investigate
the feasibility of diffusion-mediated vacancy aggregation as
a nanovoid nucleation mechanism at high tensile pressures

and temperatures. Indeed, there is extensive experimental
evidence72 that, under the extreme conditions of interest
here, voids may be nucleated by mechanisms other than the
conventional ones of second-phase particle decohesion or
grain-boundary cavitation.

Numerical simulations have provided some evidence that
vacancy-mediated nanovoid nucleation may be operative
homogeneously in single crystals under extreme conditions
of tensile pressure and temperature. Strachan et al.32 have
performed molecular-dynamics simulations of small samples
of bcc tantalum and fcc nickel subjected to rapid expansion
at 300 K, at pressures in the range of 50–100 GPa induced
by impact velocities of 2–4 km/s. The calculations suggest
that large quantities of vacancies are nucleated, followed by
rapid coarsening kinetics resulting in the formation of larger
voids. As will be shown in Sec. II C, several factors contribute
to making vacancy-mediated nanovoid nucleation operative
under extreme conditions. First, at very high volumetric defor-
mation the equilibrium concentration of vacancies can be very
high, which facilitates their subsequent aggregation. Secondly,
vacancy mobility is greatly increased at high temperatures and
tensile pressures, which accelerates the aggregation kinetics.
Finally, the plastic cavitation of the nanovoids by dislocation
emission occurs at comparatively lower pressures and smaller
nanovoid sizes at high temperatures owing to the thermal
softening of the crystal, which in turn anticipates the nucleation
event.

We proceed to quantify these effects by means of several
physical models and analysis tools. We begin by estimating
typical equilibrium vacancy concentrations in aluminum over
the temperature and volumetric deformation range of interest.
The orbital-free density functional theory (OFDFT) calcula-
tions of Gavini33 show that, in this range of volumetric strains,
the vacancy-formation energies are exceedingly small or even
negative, which suggests that vacancies may be generated
nearly spontaneously. We simulate the subsequent diffusion
and aggregation of the vacancies by means of a lattice kinetic
Monte Carlo (LKMC) approach.34 The required vacancy jump
rates are computed by transition-state theory with parameters
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obtained from OFDFT calculations.33,35,36 In the LKMC
calculations, we approximate the total energy of the system by
means of an Ising Hamiltonian that considers first and second-
nearest-neighbor interactions. The vacancy-cluster kinetics are
examined in Sec. II C with particular regard for the effect of
temperature and volumetric strain. Finally, we resort to simple
continuum estimates of cavitation as a function of pressure
and temperature, calibrated to quasicontinuum calculations.21

Based on these estimates, together with the LKMC results,
we proceed to calculate the nanovoid nucleation times as a
function of temperature and volumetric strain. The results
of the analysis are discussed in detail in Sec. IV. Indirect
comparisons are performed with experimental data of spall
tests to test the validity of the model and set meaningful limits
to its applicability. The results suggest that, at sufficiently
high temperatures and tensile pressures, vacancy aggregation
occurs sufficiently fast as to supply an operative nanovoid
nucleation mechanism in aluminum over times commensurate
with typical shock pulse durations in spall tests. We conclude
in Sec. V with a time-continuous description of the nucleation
mechanism that can be integrated in a multiscale model of
ductile failure.

II. KINETIC MONTE CARLO SIMULATIONS

Vacancy diffusion can be simulated accurately by means
of molecular dynamics (MD) calculations.37 However, MD
cannot capture the time scales attendant to vacancy agglom-
eration and reorganization. A widely used methodology to
simulate post-MD diffusive processes is kinetic Monte Carlo
(KMC).38–40 In KMC, only the discrete jumps of the vacancies
are considered, but an a priori knowledge of the transition rates
is required. This is not always trivial, as demonstrated by exam-
ples found in the literature of complex nonintuitive transitions
occurring during surface and bulk diffusion.41,42 In addition,
failure to consider some physically possible transitions can
lead to erroneous kinetics. The KMC rates are commonly
obtained by recourse to transition-state theory.43 Yet another
alternative means of describing vacancy diffusion relies on
continuum models.19,44–46 Within a continuum setting, the
vacancy concentration is thought of as a function of space and
time, and evolution equations are used to describe its evolution.
Continuum models allow the study of very large systems over
long periods of time, albeit at some inevitable loss of fidelity
relative to discrete models.

LKMC schemes34,47 offer a compromise between accuracy
and size of the domain and time span that can be explored
computationally, and we have adopted them as the basis
for this study. The calculations are based on a second-
nearest-neighbor Ising Hamiltonian. The transition rates are
estimated by means of transition-state theory and all energies
and attempt frequencies are obtained from previous OFDFT
calculations.33,35,36 The resulting vacancy-cluster kinetics is
examined in Sec. II C where particular attention to the effect
of temperature and volumetric strain is paid.

A. Physical model

The model system under consideration consists of a face-
centered-cubic (fcc) aluminum crystal containing a random

distribution of vacancies at a prescribed temperature, volume,
and concentration. The system is analyzed in the canonical
nV T ensemble, where n is the number of vacancies, V is
the periodic cell volume, and T is the equilibrium absolute
temperature of the sample. The state of the system is taken to
be characterized solely by the spatial distribution of vacancies
on a “frozen” lattice. The relaxation of the atoms surrounding
the vacancies is, however, partially taken into account through
the energetics considered.

The system is assumed to evolve according to the master
equation

dpi

dt
=

∑
j �=i

[rjipj − rijpi], (1)

where pi is the probability of finding the system in state i and
rji is the transition rate from state j to i. The objective of the
simulations is to track the diffusion of the vacancies through
the lattice and the consequent formation of clusters of various
sizes.

In the calculations presented in this paper, Eq. (1) is solved
by means of LKMC considering only first-nearest-neighbor
random jumps. This is consistent with the migration energetics,
which give for an underformed crystal a migration energy
of 0.42 eV for first-nearest-neighbor jumps compared to
1.3 eV for second-nearest-neighbor jumps.35 The details of the
LKMC algorithm and the conditions under which it is valid
are well known and here we simply refer the reader to Refs. 34
and 47. However, once a significant fraction of vacancies
are in clusters, the kinetics slows down significantly due to
“flickering,” i.e., rapid transitions between two states that result
in slow time evolution but do not alter the overall state of the
system. When the system becomes numerically stiff, as in these
situations, standard KMC may not be sufficient to advance the
time scale to extents necessary to capture nucleation and coars-
ening. In this context, one must resort to accelerated KMC
methods, e.g., based on parallelization.48–51 Vacancy diffusion
is inherently sequential, and therefore difficult to parallelize.
This is because discrete event kinetics advance the time scale
independently in different spatial domains, and so reconciling
the temporal evolution across the entire subspace partition can
be challenging. Here we have opted for the scheme developed
by Martinez et al.,51 which furnishes a synchronous solution
to the problem of domain communication. This is achieved
by the introduction of the so-called null events, which keep
all subdomain internal clocks current in the global sense. In
addition, for discrete lattices boundary errors can be controlled
by using a sublattice decomposition technique. More details
can be found in Martinez et al.52

The purpose of the parallel KMC calculations is to ascertain
whether the simulation cells used in the serial calculations
are sufficiently large to be statistically representative. Several
parallel tests were performed over computational cells of
varying size, where the cluster number density and size
distributions were compared to serial simulations. It was
confirmed that, for the time scales of interest in this study,
the serial calculations do indeed provide converged statistics
and can therefore be used for production runs.
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B. Rate catalog

The requisite event rates rij in Eq. (1) are assumed to
obey harmonic transition-state theory (HTST).43 TST assumes
that there exists a critical surface between two neighboring
potential wells, with the property that if such a surface is
crossed, complete transition occurs. It fails to account for
those cases in which an atom crosses the surface and returns
before complete transition, and therefore tends to overestimate
the true rates. Although dynamical corrections exist to recover
the exact rates,53 those will not be used in this work. The
harmonic assumption, on the other hand, is based on a
second-order approximation of the potential energy landscape
at the bottom of the energy wells (equivalent to harmonic
vibration modes) and at the saddle points in between them.
Such approximations tend to be very accurate in solid-state
diffusive processes up to at least half the melting temperature,
and higher errors are incurred as the temperature increases.47

Under these assumptions, the transition rates take the form
(see Ref. 54, for instance, for a complete derivation)

rij =
{

νe−β(Em+�Eij ) if �Eij > 0
νe−β(�Em) if �Eij < 0,

(2)

where �Eij = Ej − Ei is the difference in energy between
states i and j , Em is the corresponding migration energy,
ν is the attempt frequency, and β = 1/kBT , where kB is
Boltzmann’s constant and T is the temperature. The energy of
a distribution of vacancies is assumed to be well approximated
by an Ising Hamiltonian with first- (1NN) and second-nearest-
neighbor (2NN) interactions, namely,

E = −J
∑
〈m,n〉

σmσn, J =
⎧⎨
⎩

E1 if 〈m,n〉 1NN
E2 if 〈m,n〉 2NN
0 otherwise,

(3)

where σm ∈ {0,1} is the occupation state of site m of the
lattice. The calculations presented here use the di-vacancy
binding energies E1 and E2, and the migration energy Em,
computed by Gavini33,35 using zero-temperature quasicon-
tinuum orbital-free density functional theory calculations
(QC-OFDFT). As shown in Fig. 1, the divacancy binding
energies are positive, which promotes vacancy aggregation
and subsequent cluster coarsening. The nearest-neighbor
binding energy decreases with volumetric strain, regardless
of sign, whereas the second-nearest-neighbor binding energy
decreases monotonically with increasing volumetric strain.
Therefore, nearest-neighbor binding is dominant under pos-
itive volumetric strain (expansion), whereas both nearest-
and second-nearest-neighbor interactions play a roughly equal
role under negative volumetric strain (compression). The
migration energy decreases monotonically with increasing
volumetric strain, which is expected to accelerate the kinetics.
Additionally, the preexponential factor ν calculated by Ho
et al.36 using OFDFT is used. Figure 2 shows that the jump-
attempt frequency decreases monotonically with increasing
volumetric strain, which is expected to slightly decelerate the
kinetics.

The number of possible transition rates for a given tem-
perature and volumetric deformation are finite and constitute
a rate catalog that can be tabulated and looked up during the
simulation.

(a) (b)

FIG. 1. (Color online) (a) Divacancy binding energies for first-
(E1) and second- (E2) nearest-neighbor vacancies vs macroscopic
volumetric strain. (b) Migration energy vs macroscopic volumetric
strain. Figures 6(a) and 9 of Gavini (Ref. 35) on pages 3257 and 3263,
respectively. Permission granted from the Royal Society.

C. Clustering kinetics

Of primary interest in the present study is the time
evolution of vacancy-cluster statistics by size. In particular, the
purpose is to ascertain whether nanovoids capable of cavitating
plastically can be nucleated in sufficiently short times for
the mechanism to operate under shock-loading conditions.
A vacancy cluster is defined as a connected component of
the graph defined by connecting first- and second-nearest-
neighbor vacancies. In particular, a cluster of size l is a cluster
consisting of exactly l vacancies. It is of note that this working
definition of cluster is topological in nature and does not take
the geometry of the cluster into account, e.g., whether the
cluster is globular or linear.

The time evolution of cluster-size statistics in a 118 nm
cubic periodic cell of fcc aluminum (∼108 atoms) at 0.1%
concentration (∼105 vacancies), T = 728 K, and εvv = 0 is
shown in Figs. 3 and 4. Nominally identical calculations over
larger periodic cells using the parallel LKMC algorithm of
Martinez et al.51 reveal that a periodic-cell size of 118 nm
suffices to provide converged statistics. As expected from the
attractive character of divacancy interactions, the cluster-size
evolution exhibits an overall trend toward vacancy aggregation

FIG. 2. (Color online) Jump frequency as a function of the
macroscopic volumetric deformation. Figure 9 of Ho et al. (Ref. 36)
to be supplied by the RSC on signature (Ref. 94).
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FIG. 3. (Color online) Time evolution of the concentration of
clusters larger than size l. Computations performed over a 118 nm
cubic periodic cell of fcc aluminum (∼108 atoms) containing an
initial concentration of vacancies of 0.1% (∼105 vacancies). T =
728 K and εvv= 0.

into clusters and a subsequent coarsening of the cluster
distribution. Thus, clusters of a certain size appear after an
incubation time and their densities initially grow at the expense
of smaller clusters, later decreasing as even larger clusters
become established. Predictably, the effect of increasing
vacancy concentration is to decrease incubation times and
accelerate the overall kinetics of aggregation and coarsening,
as shown in Fig. 5.

The influence of volumetric strain and temperature on the
evolution of cluster statistics up to 1 μs is shown in Fig. 6.
As expected, temperature accelerates the kinetics, resulting in

FIG. 4. (Color online) Evolution of histogram of cluster sizes with
time. Computations performed over a 118 nm cubic periodic cell of
fcc aluminum (∼108 atoms) containing an initial concentration of
vacancies of 0.1% (∼105 vacancies). T = 728 K and εvv= 0.

FIG. 5. (Color online) Influence of the concentration on the time
evolution of the density of clusters larger than size l. Computations
performed over cubic periodic cells of fcc aluminum containing 105

vacancies. T = 728K and εvv= 0.

shorter incubation times and faster cluster coarsening. The net
effect of positive volumetric strain (expansion) is also a marked
acceleration of the kinetics. Thus, at 900 K, clusters of size 10
nucleate at ∼10−2 μs for a volumetric strain of εvv = −0.13,
whereas the same clusters nucleate at around ∼10−4 μs for a
volumetric strain of εvv = 0.28, or a two order-of-magnitude
acceleration of the kinetics.

III. NANOVOID NUCLEATION TIMES

The LKMC calculations summarized in the foregoing re-
veal that nanovoid nucleation by vacancy aggregation and clus-
ter coarsening is sensitively dependent on both temperature
and volumetric deformation. In particular, both temperature
and volumetric expansion accelerate the kinetics markedly.
In this section, we take the results of preceding LKMC
calculations as a basis for estimating nanovoid nucleation
times.

We begin by estimating typical vacancy concentrations
in aluminum over the range of temperatures and volumet-
ric deformations of interest, T > 800 K and εvv > 0.075.
The calculations of Gavini33 show that, in this range, the
vacancy-formation energies are exceedingly small or even
negative, which suggests that vacancies may be generated
nearly spontaneously. This conclusion is in agreement with
the molecular dynamics calculations of Strachan et al.,32

who observed profuse cavitation in shocked metallic samples
and showed that such cavitation may be understood as a
critical phenomenon. Additionally, experimental observations
indicate that, at high pressures, the microstructure evolves
toward microtwinning55 and slip becomes a secondary mech-
anism. On the strength of these observations, we neglect the
production of vacancy by dislocation activity45 and assume
that the vacancy concentration is at or near its equilibrium
value.
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FIG. 6. (Color online) Influence of volumetric strain and temperature on the time evolution of the density of clusters larger than size l.
Computations performed over a 118 nm cubic periodic cell of fcc aluminum (∼108 atoms) containing an initial concentration of vacancies of
0.1% (∼105 vacancies).

The equilibrium vacancy concentration follows free-energy
minimization. The total free energy per atom as a function of
vacancy concentration cv may be estimated as56,57

A(cv) = cv(Ef v − T �Sv)

+ kT [cv ln cv + (1 − cv) ln(1 − cv)], (4)

where Ef v is the vacancy-formation energy and �Sv is
the change in vibrational energy. This simple form of the
free energy presumes a vacancy-formation energy that is
independent of vacancy interactions and neglects spatial
correlations in the entropic term. The resulting equilibrium
concentration of vacancies is

cv = e�Sv/kB e−(�Ef v/kBT )

1 + e�Sv/kB e−(�Ef v/kBT )
. (5)

Figure 7 shows the equilibrium vacancy concentration for Ef v

as computed by Gavini33 using OFDFT and for e�Sv/kB � 3
(see, e.g., Porter and Easterling56). As may be seen from
the figure, the equilibrium vacancy concentration exhibits
a sharp upturn at volumetric deformations of the order
0.2, beyond which the vacancy-formation energy becomes
negligibly small.

A nanovoid is said to have been nucleated when it attains the
critical size at which it can emit dislocations and subsequently
grow by dislocation-mediated plasticity. The process of dislo-
cation emission from nanovoids has been studied by Marian
et al.21,58 using quasicontinuum calculations. For purposes of
the present discussion, a simple continuum estimate of the
critical radius for plastic cavitation will suffice. To this end,
a void with inner radius a in an infinite medium expanding

under an outer tensile pressure P is considered. The material
is assumed to obey isotropic von Mises ideal elastoplasticity.
Under these assumptions, the critical radius ac for which
yielding starts at a given pressure P follows from the relation

P = 2

3
σY + 2γ

ac

, (6)

where σY is the yield stress and γ is the surface energy. A
derivation of this relation may be found in the Appendix. In

FIG. 7. (Color online) Equilibrium concentration of vacancies vs
volumetric strain at different temperatures.
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(a) (b)

FIG. 8. (Color online) (a) Heat capacity at constant pressure vs temperature. (b) 0 K equation of state computed by Gavini63extended to
positive temperatures through a Mie-Grüneisen equation of state.

order to account for the temperature dependence of the yield
stress, we assume the simple linear thermal-softening relation

σY = σ0
T − Tm

T0 − Tm

(7)

between the yield stress and the absolute temperature T , where
σ0 is the yield stress at the reference temperature T0, and Tm is
the melting temperature. Due to the small sizes of the voids at
nucleation time, the attendant dislocation activity is confined
to very small volumes. Under these conditions, the strength
of the material may be expected to be greatly in excess of
bulk macroscopic values. In order to account for this effect,
we assume hardness law of the Hall-Petch type

σ0 = C/
√

ac, (8)

where the constant C is calibrated so as to match the
critical volumetric deformation computed by Marian et al.21

Similar scaling relations have been used elsewhere to describe
nanoscopic plasticity, e.g., at the tip of a nanoindentor.59

In the calculations we take γ = 0.98 J/m2,60 T0 = 0 K,
C = 22.77 GPa

√
nm, and Tm = 933.5 K (Ref. 61) as being

representative of aluminum.
In order to relate pressure to volumetric deformation and

temperature we use the Mie-Grüneisen equation of state (e.g.,
Meyers62)

P (εvv,T ) = P0 K(εvv) − γ̄

V

∫ T

0
Cv(T ) dT . (9)

In particular, we adopt the 0 K isotherm P0 K(εvv) computed
by Gavini63 using OFDFT and set62

γ̄

V
≈ 3α

Cvκ

∣∣∣∣∣
T =298.1 K

≈ 2.232 × 10−5 ≈ constant. (10)

We additionally assume that the heat capacity Cv at constant
volume depends solely on the temperature, Fig. 8(a), and
compute it from a Cv − Cp relation64 and experimental values

of the heat capacity Cp at constant pressure (National Institute
of Standards and Technology and Giauque and Meads64).
The resulting equation of state for aluminum is shown
in Fig. 8(b).

Figure 9 shows the dependence of the critical cluster size
lc on volumetric deformation and temperature predicted by
the model just described. As may be seen from the figure, the
critical cluster sizes become very small at high temperatures
and tensile volumetric strains. A combination of the plastic
cavitation model and the LKMC simulations described in the
foregoing finally enables the calculation of the times required
for the nucleation of a critical nanovoid. The critical times thus
predicted for aluminum are shown in Fig. 10. The remarkable
conclusion afforded by the figure is that the critical nucleation
times can be exceedingly small at high temperatures and tensile
volumetric strains. In particular, such critical nucleation times
are well within pulse duration times typical of plate-impact
experiments.65 This in turn is suggestive of the feasibility

FIG. 9. (Color online) Critical cluster size in aluminum as a
function of volumetric strain and temperature. The corresponding
pressures at the different temperatures are indicated on the right
ordinate axis.
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FIG. 10. (Color online) Time required for the formation of critical
nanovoids capable of growing by dislocation-mediated plasticity as a
function of the volumetric deformation and temperature. Solid lines
represent tanh fits of the data.

of diffusion-mediated vacancy aggregation and subsequent
vacancy-cluster coarsening kinetics in high-purity metallic
single crystals under conditions typical of, e.g., spall tests.
Quantitative comparisons with experiments are performed in
the following section.

IV. COMPARISON TO EXPERIMENTS

The experimental validation of the results presented in
the foregoing is fraught with difficulty. First, the present
study specifically focuses on nanovoid nucleation times by
vacancy diffusion in high-purity single crystals under extreme
conditions. Therefore, our calculations disregard other types of
defects that may also be generated by shocks, thus compound-
ing comparison with experiment. Secondly, the experimental
observation of diffusion processes over the time and length
scales of interest here is exceedingly challenging. Direct
observations of clusters of point defects with atomic resolution
have been achieved by Kaiser et al.66 using high-angle
annular dark-field imaging in a scanning transmission electron
microscope (HAADF-STEM). However, these observations
pertain to thin films, which compounds the direct comparison
with the present analysis. Three-dimensional imaging of voids
and their evolution under quasistatic conditions is possible
with x-ray tomography.67 However, the resolution in this case
is restricted to the micrometer range, which is greatly in
excess of the length scale of interest in the present study.
Despite these difficulties, we proceed to show how the range
of validity of the model may be estimated indirectly from
the available spall-strength data. To this end, we first compile
experimental data for spallation under different conditions of
temperature, strain rate, and microstructure. This compilation
provides mechanistic understanding indicative of the regime
in which the vacancy-aggregation nucleation mechanism can
potentially be operative. This analysis is then followed by an
estimation of experimental nucleation times from the reported

FIG. 11. (Color online) Spall strength as a function of tempera-
ture for an aluminum single crystal of 99.999% purity whose plane
is parallel to the (100) crystal plane (Ref. 68) and a polycrystalline
aluminum AD1 (wt % Al: 99.3; Fe: 0.3; Si: 0.3; Cu: 0.05; Mn: 0.025;
Zn: 0.1; Ti: 0.1; Mg: 0.05) (Ref. 77). The strain rate for each case is
indicated in the legend.

spall data. The subsequent quantitative comparison to the
predictions of the present nucleation model indeed shows that
the times required for the vacancies to aggregate into clusters
of critical size are within the same order of magnitude as those
inferred from experiments under extreme conditions. Finally,
we conclude this section by critically assessing two of the
assumptions of the model with a view to further bracketing its
limits of validity.

The main property measured in spall experiments is the
maximum strength attained during the failure process, which
is referred to as spall strength. Results of these measurements
from a variety of sources are compiled in Figs. 11 and 12. The
influence of temperature, microstructure, and strain rate on
spall strength, and the corresponding underlying mechanisms,
may be summarized as follows.

Influence of the temperature. Figure 11 shows that, for
moderate strain rates (∼106 s−1), the dynamic strength is fairly
independent of temperature except close to the melting point,
at which point the spall pressure decreases dramatically.68

Similar conclusions were also obtained from semiempirical
equations of state by Moshe et al.69 This strong thermal sensi-
tivity in the high temperature range provides a strong indication
that the experimentally observed behavior is in the thermally
activated range, which is precisely the range considered in the
model. However, as will be shown subsequently, the strain rates
considered in these experiments are well below the range of
applicability of the model and therefore no direct comparison
can be performed with these data. This gap notwithstanding,
we may note that the pressure variation in the simulations for
the temperature range considered (800–900 K) is �40%, which
is not unlike the observed experimental values of �0%, 25%,
and 65% for the three samples considered in the figure.

Influence of the microstructure. At low-to-moderate strain
rates (∼104–106 s−1), the spall strength is observed to be
strongly dependent on the microstructure70 (cf. Figs. 11
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FIG. 12. (Color online) Strain rate dependence of the spall
strength for aluminum samples of different purity.68,69,74,75,77–80 The
theoretical spall strength calculated by Moshe et al.69 from the
equation of state is also represented in the figure.

and 12). In general, the spall strength increases with increasing
grain size, with the maximum spall strength being attained
for single crystals.68,71,72 This trend is owed to the ability of
grain boundaries to act as nucleation sites. In the case of single
crystals, the spall strength is also observed to be sensitive to the
crystal orientation.73 Second-phase particles are weak points
of the material that may also act as preferential locations for
void nucleation. Experiments indeed indicate that inclusions
lower the spall strength, the particle spacing being an important
parameter.72

Influence of the strain rate. Figure 12 additionally shows a
monotonic increase of the spall strength with strain rate. Two
explanations can be provided to justify this behavior. A first
plausible explanation of this trend rests on the observation
that processes of damage accumulation have more time to
operate at lower deformation rates, thereby resulting in smaller
spall strengths. The second—not unrelated-explanation of the
trend is suggested by experimental observations of a change
in initiation mechanism with strain rate.71 Thus, experiments
show that spall failure in polycrystalline materials changes
from intergranular and transgranular to purely transgranular as
the strain rate increases.72,74,75 In the limiting case of extremely
high strain rates, initial flaws and defects present in the system
do not have time to operate and nucleation is believed to
occur almost simultaneously throughout the spall plane, the
theoretical limit thus being reached.72 Such limit, known as
ultimate spall strength, can be estimated as76

Pth =
√

UcohB0

8v0
, (11)

where v0 is the specific volume at zero pressure, Ucoh is
the specific cohesive energy, and B0 is the bulk modulus at
zero pressure. For aluminum, this expression yields 17.1 GPa,
which is therefore expected to be an upper bound on the
experimentally observed spall strength.76 Moshe et al.69 have
also estimated the theoretical spall strength from equation
of states for aluminum obtaining values within the range

10.1–10.8 GPa for temperatures in the range of 300–600 K.
This range is shown in Fig. 12, labeled as “EoS,” and is close
to the value of 8 ± 1 GPa experimentally obtained by Moshe
et al.69 using a 20 ps pulse high-power laser.

We note that most of the measurements of spall strength
Pspall and strain rates alluded to in the foregoing were obtained
from back-surface measurements as

Pspall = 1
2ρc�u (12)

and

ε̇ = �u

�t

1

2c
, (13)

respectively, where ρ is the density, c is the bulk sound
speed, �u is the velocity jump, and �t is the time interval
associated with the pullback signal (see, for instance, Fig. 2
in Chen et al.73). The interval �t , referred to as critical
time of spallation by Hanim and Klepaczko,81 provides an
estimate of the time over which the material in the spall
plane is in tension before incipient spall occurs. This time
accounts for the nucleation of voids, their growth and partial
coalescence, although nucleation is thought to be the rate-
limiting mechanism controlling failure.68 On the strength of
these observations, here we take �t to be a measure of the
actual time for nucleation. However, further computational
and experimental work is required in order to validate this
assumption in the temperature and pressure range examined
in this study. The nucleation times corresponding to the
experimental data shown in Fig. 12 are thus estimated as
�t = Pspall/2ρc2ε̇ and shown in Fig. 13. For this conversion,
we use the values c = 5.4 km/s and ρ = 2.7 g/cm3 from
Brewer et al.72 Figure 13 also includes the nucleation times
predicted by the model (cf. Fig. 10), expressed as a function
of pressure.

A salient feature of the experimental data that is in contrast
to the model predictions is the presence of an asymptote at a
spall time of 10−10 s, or at a strain rate of 108 s−1 (cf. Fig. 12).
In addition, the experimental values of �t may be expected
to constitute a lower bound to the nucleation times predicted
by the model, since several other physical mechanisms may
potentially contribute to the nucleation of voids in engineering
materials. These discrepancies set limits to the applicability
of the present model, which we proceed to investigate. We
begin by noting that the equilibrium vacancy concentration
postulated by the model requires a certain time to become
established. Assuming that vacancies are created through the
formation of a stable interstitial-vacancy pair, the equilibration
time can be estimated as

tf = cv

ν0e
−(�Ef v+�Ef i)/kBT

, (14)

where ν0 = 5.16 × 1013 Hz is the Debye frequency82 and
�Ef i is the energy of formation of an interstitial atom.
This relation assumes that the energy of formation of a
vacancy-interstitial pair can be approximated as the sum of the
individual formation energies, and that the migration energy
associated with the movement of interstitials is negligible.
In order to ascertain the dependence of tf on pressure and
temperature, the corresponding dependence of �Ef i and
�Ef v needs to be known. The latter has been computed by
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FIG. 13. (Color online) Comparison between the nucleation times predicted by the model as a function of pressure and estimations of
the experimental and theoretical times of spallation. Here, we represent the computed nucleation times given in Fig. 10 as a function of pressure
instead of volumetric deformation. On the other hand, the experimental spallation times have been obtained by converting the pressure-strain-rate
data of spall (Refs. 68,69,74,75,77–81) using the formula �t = Pspall/2ρc2ε̇. The theoretical spall-strength data obtained by Moshe et al.69 are
also represented in the figure using the same conversion. Finally, two additional bounds have been included in the figure that set the limits of
applicability of the nucleation model: the twinning stress threshold as a lower pressure bound, and the time of formation of the equilibrium
concentration of vacancies as a lower bound on the nucleation times.

Gavini.33 However, the pressure and temperature dependence
of �Ef i does not appear to be available in the literature.
Assuming, for want of a better model, that �Ef i ≈ 2�Ef v ,83.
then Eq. (5) gives

tf = 1

ν0

3e2�Ef v/kBT

1 + 3e−(�Ef v/kBT )
. (15)

A dashed line joining the values obtained in this fashion for
each temperature is shown in Fig. 13. This line sets a lower
bound on the applicability of the model and lies, as expected
from the preceding arguments, above the experimental times.
Incidentally, this bound compares remarkably well with the
experimental values of spall strength for single crystals at
the lower end of the pressure range under consideration, and
with the ultimate spall strength at the upper end. Although the
highest experimental spall pressures do not correspond to high-
purity single crystals such as considered here, the spall stress
for different microstructures may be expected to converge
at very high strain rates to a common structure-independent
ultimate spall strength,32 since voids formed at existent defects
and inhomogeneities do not have time to grow and coalesce,
and homogeneous nucleation dominates.69 This is precisely

the regime where vacancy aggregation may be expected to be
the rate-limiting nucleation mechanism.

To further define the range of validity of the model, we
next establish a lower bound in terms of pressure. To this
end, we proceed to ascertain the conditions under which
vacancies are in thermodynamic equilibrium, i.e., when the
concentration of vacancies in the system can be approximated
by Eq. (5). At relatively low strain rates and moderate stresses,
plastic slip may act as a significant source of vacancies
through the jog dragging mechanism. However, studies have
shown that, under strong shocks, the dislocation microstructure
experiences a sharp increase in density, resulting in sessile
dislocation networks.84,85 Beyond this point, in most metals
plasticity is known to proceed by twinning,55,86,87 which
effectively renders dislocation movement inoperative as a
vacancy source. Indeed, there is ample experimental evidence
of twinning in nanocrystalline aluminum specimens.88 For
single crystals, the literature is more sparse, with some studies
suggesting twinning under extreme conditions.89 The transi-
tion between slip and twinning occurs when the activation
stress for twinning is lower than that needed to unlock the
dislocation microstructure. This transition is known to depend
on temperature, strain rate, and grain size.87 The twinning
stress threshold, however, is insensitive to temperature and is

104117-9



C. REINA, J. MARIAN, AND M. ORTIZ PHYSICAL REVIEW B 84, 104117 (2011)

expected to decrease with the strain rate.85 Both analytical
models and experiments are suggestive of a shear stress for
twinning smaller than 1.5 GPa.85,90 An order of magnitude
for the corresponding pressures may be obtained simply
by assuming a uniaxial-strain state of stress: σ11 = 3 1+ν

1−ν
P ,

σ22 = σ33 = 3 ν
1+ν

P . In addition, assuming impact on a (100)
crystal, the shear stress in each of the eight activated slip
systems is 3√

2
(1−2ν)

1+ν
P = 0.47P . This relation gives a pressure

threshold for twinning of about 3.2 GPa, which is indeed below
the pressure range considered in the simulations (cf. Fig. 13).

V. DISCUSSION

Figure 13, which shows the predicted time required for
the formation of critical nanovoids as a function of pressure
and temperature, may be regarded as the main outcome of the
present work. In the range of validity of the model in T -P -ε̇
parameter space, the critical nucleation times are exceedingly
small, allowing for diffusion-mediated vacancy aggregation
and subsequent vacancy cluster coarsening to be feasible
operating mechanisms of nanovoid nucleation. In addition, the
tanh fit shown in Fig. 13 matches the results of the calculations
quite closely and can, therefore, be used as an analytical model
of nanovoid nucleation for pulses consisting of ostensibly
constant temperature and tensile pressure. In particular, the
nucleation model determines the onset of porous plasticity as
described, e.g., by a continuum model, and supplies the initial
void size a0 = ac and the estimate f0 ≈ cv for the initial void
fraction. The model can be extended to transient conditions
simply by applying it in rate form. To this end, we may define
a void expansion speed as

v(p,T ) = ac(p,T )

tc(p,T )
, (16)

where ac(p,T ) and tc(p,T ) denote the critical void radius
and nucleation time at constant pressure and temperature,
respectively. For transient conditions we may then write

a(t) =
∫ t

0
v(p(τ ),T (τ ))dτ. (17)

Plastic cavitation occurs when the void sizes attain a critical
value, i.e.,

a(t) = ac(p(t),T (t)). (18)

This relation can again be used to estimate the onset of porous
plasticity, and the simple estimates a0 = ac and f0 ≈ cv again
supply the requisite initial conditions for continuum models.

In closing, we point out that kinetic Monte Carlo models
such as described in the foregoing have been extensively
used to simulate vacancy aggregation in metals.39,91 These
models suffer from several limitations, most notably, the
rigid lattice approximation, which neglects elastic interactions
between vacancies; the simplified Ising Hamiltonian, which
tends to break down for complex cluster geometries and at
void surfaces; and limitations attendant to the use of harmonic
transition-state theory. Because of these and other limitations,
the results presented in this paper cannot be considered
predictive and mainly provide a preliminary assessment as to
the feasibility of nanovoid nucleation by vacancy aggregation
at high tensile pressures and temperatures. A number of

improvements of LKMC simulations have been proposed (e.g.,
Dai et al.92) which provide avenues for further improvement
of the model.
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APPENDIX: CRITICAL PRESSURE FOR PLASTIC
VOID CAVITATION

In this Appendix, a preexistent spherical void of radius
a in an infinite medium is considered, and the required stress
applied at infinity in order for plasticity to initiate at the surface
of the cavity is computed. The theory of continuum mechanics
is used in order to obtain such an estimate.

Due to the spherical symmetry, the stresses obey the
following equilibrium and compatibility equations in spherical
coordinates:

dσrr

dr
− 2

r
(σθθ − σrr ) = 0,

(A1)
d

dr
(σrr + 2σθθ ) = 0,

which have as general solution

σrr = A + B

r3
,

(A2)

σθθ = A − B

2r3
.

A and B are constants to be determined by the boundary
conditions. The stress imposed at infinity is σrr (r → ∞) = P ,
while the effect of the surface energy γ on the inner surface is
proven in the following to be σrr (r = a) = 2γ

a
. The resulting

stresses then are

σrr = P

(
1 − a3

r3

)
+ 2γ

a

a3

r3
,

(A3)

σθθ = P

(
1 + a3

2r3

)
− γ

a

a3

r3
.

Applying the von Mises yield criterion, plasticity will occur
in the inner surface when σθθ (a) − σrr (a) = σY . Equivalently,

P = 2

3
σY + 2γ

a
, (A4)

which is the desired relation.
In order to obtain the pressure at the surface of the cavity

[σrr (r = a) = 2γ

a
], the matrix surrounding the void is first

assumed to be finite with radius b and made of isotropic
homogeneous material. The desired analytical result is then
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evaluated as the external radius and the stiffness of the material
tend to infinity. A Hookean constitutive law with parameters
λ and μ is used

σrr = λ(εrr + εθθ + εφφ) + 2μεrr , (A5)

σθθ = σφφ = λ(εrr + εθθ + εφφ) + 2μεθθ , (A6)

where εrr = du
dr

and εθθ = εφφ = u
r

under spherical symmetry;
u(r) being the radial displacement.

The potential energy of the hollow sphere, assuming a
surface energy γ at the inner surface and a pressure P on
the outer surface, is

W (u) =
∫ b

a

2π (σrrεrr + 2σθθεθθ ) r2 dr

− 4πb2Pu(b) + 4πγ [a + u(a)]2 . (A7)

By the principle of minimum potential energy, the solution
needs to satisfy dW (u+εη)

dε
|ε=0 for every admissible variation

η(r).

0 = ∂W

∂ε

∣∣∣
ε=0

(A8)

=
∫ b

a

2πr2 [σrr (u)εrr (η) + 2σθθ (u)εθθ (η)] dr

+
∫ b

a

2πr2 [σrr (η)εrr (u) + 2σθθ (η)εθθ (u)] dr

− 4πb2Pη(b) + 8πγ [a + u(a)] η(a)

=
∫ b

a

2πr2

[
2σrr (u)

dη

dr
+ 4σθθ (u)

η

r

]
dr

− 4πb2Pη(b) + 8πγ (a + u(a))η(a)

= −
∫ b

a

4πr2

[
dσrr

dr
+ 2

r
(σrr − σθθ )

]
η

+ 4πb2 [σrr (b) − P ] η(b) − 4πa2σrr (a)η(a)

+ 8πγ [a + u(a)] η(a).

(A9)

The equilibrium equation and the boundary conditions are
recovered.

dσrr

dr
+ 2

r
(σrr − σθθ ) = 0, a < r < b,

σrr (b) = P,

σrr (a) = 2γ
a + u(a)

a2
. (A10)

In the limit of a rigid material, the inner boundary condition
can be simplified to

σrr (a) = 2γ

a
, (A11)

and the sought-after result is obtained. This pressure difference
emanating from a curved surface characterized by a surface
energy is very well known in fluids and the same relation
holds for solid materials.
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