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I. Materials and Methods: 

All reactions unless otherwise specified were carried out in a Vacuum Atmospheres 
Glovebox under a nitrogen atmosphere. All substrates were passed through a column of basic 
alumina prior to usage except for 1-octene, which was distilled over CaH2 before being passed 
through a column of basic alumina under a nitrogen atmosphere. PdCl2(MeCN)2 was prepared 
following literature procedures(34). Benzoquinone was recrystallized from i-PrOH prior to usage. 
Shvo’s catalyst [1-Hydroxytetraphenyl-cyclopentadienyl(tetraphenyl-2,4-cyclopentadien-1-one)-
μ-hydrotetracarbonyldiruthenium(II)] was purchased from Strem and CuCl2 was from Aldrich. 
Both were used as received. H2O was distilled under argon. Anhydrous i-PrOH from Aldrich was 
freeze-pump-thawed three times under argon and anhydrous t-BuOH also from Aldrich, was 
degassed, before use. 1H and 13C NMR spectra were recorded on a Varian 500 Mhz, Varian 400 
Mhz or a Varian 300 Mhz spectrometer. High resolution mass spectra were provided by the 
California Institute of Technology Mass Spectrometry Facility using JEOL JMS-600H High 
Resolution Mass Spectrometer. GC-MS data was also provided through the California Institute of 
Technology Mass Spectrometry Facility using HP 5970 series MSD with HP 5890 GC.  

Gas chromatography data was obtained using an Agilent 6850 FID gas chromatograph 
equipped with a HP-5 (5%-phenyl)-methylpolysiloxane capillary column (Agilent). Instrument 
conditions-inlet temperature: 250 oC; detector temperature: 250 oC; hydrogen flow: 30 ml/min; air 
flow: 400 ml/min; constant col + makeup flow: 25 ml/min. Method: 50oC for 2 min., followed by 
a temperature increase of 10 oC/min to 115oC, hold for 0.5 min., another temperature increase of 
1oC/min. to 125 oC, hold for 0.5 min., then a temperature increase of 5 oC/min to 140 oC, hold 0.5 
min. and a final temperature increase of 60 oC/min to 300 oC and hold at 300 oC for 5 min. (total 
run time = 30.67 min). Response factors were collected for styrene (1a), 2-phenylethanol (2a), 
ethylbenzene (3a), 1-phenylethanol (4a), phenylacetaldehyde (5a) and acetophenone (6a) 
following literature procedures(35).  

Condition A: Procedure for hydration of styrene (for [styrene] = 0.25 M): PdCl2(MeCN)2 
(0.01 mmol, 0.0026 g), Shvo’s catalyst (0.01 mmol, 0.0109 g), CuCl2 (0.02 mmol, 0.0027 g) and 



S2 

 

benzoquinone (0.08 mmol, 0.0088 g) were weighed into a 1 dram vial in the glovebox, followed 
by the addition of i-PrOH (0.2 ml) and t-BuOH (0.2 ml). Styrene (0.1 mmol, 11.5μl) was added to 
the mixture followed by addition of H2O (0.11 mmol, 2 μl). The resulting mixture was stirred in 
the glovebox at 85 oC for 6 h.  

GC sample preparation: Tridecane (0.00123 mmol, 3 μl) was added to the reaction mixture as 
an internal standard. The mixture was then diluted with diethylether (3 ml) and ca. 0.5 ml of the 
resultant mixture was filtered through a plug of silica gel followed by flushing with ethyl acetate 
(ca. 1 ml). GC retention times (min) were as follows: ethylbenzene 3a (5.31), styrene 1a (5.80), 
phenylacetaldehyde 5a (8.37), 1-phenylethanol 4a (8.67), acetophenone 6a (8.75), 2-
phenylethanol 2a (9.62) and tridecane (14.35).  

Condition B: Procedure for hydration of other substrates (for [substrate] = 0.125 M): 
PdCl2(MeCN)2 (0.04 mmol, 0.0104 g), Shvo’s catalyst (0.04 mmol, 0.0436 g), CuCl2 (0.08 mmol, 
0.0108 g) and benzoquinone (0.32 mmol, 0.0352 g) were weighed into a 20 ml vial in the 
glovebox, followed by the addition of i-PrOH (1.1 ml) and t-BuOH (2.2 ml). The substrate (0.4 
mmol) was added to the mixture followed by addition of H2O (0.4 mmol, 8.1 μl). After the 
resulting mixture was stirred in the glovebox at 85 oC for 6 h, it was diluted with pentane (6 ml) 
and filtered through a plug of silica gel followed by flushing with ethyl acetate (6 ml). The 
solvent was removed under vacuum, and the desired primary alcohol product was purified via a 
standard silica gel flash chromatography. 

Condition C: Procedure for hydration of other substrates (for [substrate] = 0.067 M): 
PdCl2(MeCN)2 (0.04 mmol, 0.0104 g), Shvo’s catalyst (0.04 mmol, 0.0436 g), CuCl2 (0.08 mmol, 
0.0108 g) and benzoquinone (0.4 mmol, 0.0432 g) were weighed into a 20 ml vial in the glovebox, 
followed by the addition of i-PrOH (2 ml) and t-BuOH (4 ml). The substrate (0.4 mmol) was 
added to the mixture followed by addition of H2O (0.4 mmol, 8.1 μl). After the resulting mixture 
was stirred in the glovebox at 85 oC for 6 h, it was diluted with pentane (6 ml) and filtered 
through a plug of silica gel followed by flushing with ethyl acetate (6 ml). The solvent was 
removed under vacuum, and the desired primary alcohol product was purified via a standard 
silica gel flash chromatography. 

Condition D: Procedure for hydration of 1-octene (for [1-octene] = 0.067 M): PdCl2(MeCN)2 
(0.04 mmol, 0.0104g), Shvo’s catalyst (0.04 mmol, 0.0436 g), CuCl2 (0.08 mmol, 0.0108 g) and 
benzoquinone (0.4 mmol, 0.432 g) were weighed into a 20 ml vial in the glovebox, followed by 
the addition of i-PrOH (3 ml) and t-BuOH (3 ml). 1-octene (0.4 mmol, 62.8 μl) was added to the 
mixture followed by addition of H2O (0.4 mmol, 8.1 μl). After the resulting mixture was stirred in 
the glovebox at 85 oC for 6 h, it was diluted with pentane (6 ml) and filtered through a plug of 
silica gel followed by flushing with ethyl acetate (6 ml). The solvent was removed under vacuum, 
and purification of the alcohol products were attempted via a standard silica gel flash 
chromatography. 

II. Characterization Data 

Except 2-(3,5-bis(trifluoromethyl)phenyl)ethanol (2j), all the alcohols products are either 
known compounds or commercially available. 1H NMR and HRMS data were provided for all 
the primary alcohol compounds. We further checked the 13C NMR data of known compounds 2a, 
2b, 2c, 2e and 2g. Full characterization data was provided for compound 2j.  

2-phenethanol (2a) (36): 41 mg, 84% yield. 1H NMR (500 MHz, CDCl3) δ 7.35 – 7.29 (m, 2H), 
7.27 – 7.21 (m, 3H), 3.86 (t, J = 6.6 Hz, 2H), 2.88 (t, J = 6.6 Hz, 2H); 13C NMR (126 MHz, 
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CDCl3) δ 138.46, 129.02, 128.58, 126.47, 63.67, 39.20; HRMS (EI+) calcd for C8H10O 122.0732, 
found 122.0730. 

2-(4-(tert-butyl)phenyl)ethanol (2b) (36): 30 mg, 42% yield. 1H NMR (400 MHz, CDCl3) δ 
7.35 (d, J = 8.1 Hz, 2H), 7.17 (d, J = 8.1 Hz, 2H), 3.86 (t, J = 6.4 Hz, 2H), 2.85 (t, J = 6.5 Hz, 
2H), 1.32 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 149.30, 135.27, 128.66, 125.47, 63.66, 38.61, 
34.38, 31.34; HRMS (EI+) calcd for C12H18O 178.1361, found 178.1358. 
 
2-(4-methylpehenyl)ethanol (2c) (36): 33 mg, 61% yield. 1H NMR (400 MHz, CDCl3) δ 7.13 
(s, 2H), 3.84 (t, J = 6.5 Hz, 2H), 2.84 (t, J = 6.6 Hz, 2H), 2.33 (s, 2H); 13C NMR (101 MHz, 
CDCl3) δ 136.18, 135.41, 129.44, 129.05, 63.94, 38.91, 21.17; HRMS (EI+) calcd for C9H12O 
136.0886, found 136.0888 

2-(2-Naphthyl)ethanol (2d) (37): 41 mg, 60% yield. 1H NMR (300 MHz, CDCl3 7.84 – 7.76 (m, 
3H), 7.69 (s, 1H), 7.51 – 7.41 (m, 2H), 7.37 (d, J = 8.3 Hz, 1H), 3.96 (brs, 2H), 3.05 (t, J = 6.5 
Hz, 2H), 1.42 (s, 1H); HRMS (EI+) calcd for C12H12O 172.0888, found 172.0892. 

2-(2-methylpehenyl)ethanol (2e) (38): 39 mg, 72% yield. 1H NMR (300 MHz, CDCl3) δ 7.21 – 
7.09 (m, 4H), 3.85 (t, J = 6.6 Hz, 2H), 2.90 (t, J = 6.9 Hz, 2H), 2.34 (s, 3H), 1.49 – 1.35 (m, 1H); 
13C NMR (126 MHz, CDCl3) δ 136.65, 136.56, 130.57, 129.75, 126.74, 126.19, 62.78, 36.53, 
29.84, 19.58; HRMS (EI+) calcd for C9H12O 136.0888, found 138.0888. 

2-(4-chlorophenyl)ethanol (2f) (39): 46.3 mg, 60% yield. 1H NMR (300 MHz, CDCl3) δ 7.31 – 
7.26 (m, 2H), 7.20 – 7.14 (m, 2H), 3.85 (q, J = 6.3 Hz, 2H), 2.84 (t, J = 6.5 Hz, 2H), 1.36 (t, J = 
5.6 Hz, 1H); HRMS (EI+) calcd for C8H9ClO 156.0342, found 156.0340. 

2-(4-bromophenyl)ethanol (2g) (40): 58 mg, 72% yield. 1H NMR (300 MHz, CDCl3) δ 7.43 (d, 
J = 8.3 Hz, 2H), 7.11 (d, J = 8.4 Hz, 2H), 3.83 (t, J = 6.5 Hz, 2H), 2.82 (t, J = 6.5 Hz, 2H); 13C 
NMR (126 MHz, CDCl3) δ 137.69, 131.74, 130.89, 120.44, 63.50, 38.66; HRMS (EI+) calcd for 
C8H9BrO 199.9839, found 199.9837. 

2-(4-fluorophenyl)ethanol (2h) (38): 47 mg, 84% yield. 1H NMR (300 MHz, CDCl3) δ 7.23 – 
7.15 (m, 2H), 7.05 – 6.95 (m, 2H), 3.85 (t, 6.3 Hz, 2H), 2.85 (t, J = 6.5 Hz, 2H); HRMS (EI+) 
calcd for C8H9FO 140.0638, found 140.0637. 

2-(4-nitrophenyl)ethanol (2i) (41): 55.4 mg, 83% yield. 1H NMR (300 MHz, CDCl3) δ 8.15 (d, 
J = 8.7 Hz, 2H), 7.38 (d, J = 8.7 Hz, 2H), 3.90 (dd, J = 6.5, 4.8 Hz, 2H), 2.95 (t, J = 6.4 Hz, 2H), 
1.40 (t, J = 4.7 Hz, 1H); HRMS (EI+) calcd for C8H9NO3 167.0582, found 167.0590. 

2-(3,5-bis(trifluoromethyl)phenyl)ethanol (2j): 87 mg, 84% yield. Rf: 0.3 (30% ethyl acetate in 
hexane); 1H NMR (300 MHz, CDCl3) δ 7.76 (d, J = 8.4 Hz, 1H), 7.71 (s, 2H), 3.94 (t, J = 6.3 Hz, 
2H), 3.00 (t, J = 6.3 Hz, 2H); 13C NMR (126 MHz, CDCl3) δ 141.54, 131.80 (q, J = 33.2 Hz), 
129.35, 123.50 (q, J = 272.7 Hz), 120.72 – 120.54 (m), 62.90, 38.71; 19F NMR (282 MHz, 
CDCl3) δ -62.87; IR (NaCl plate) 3382 (br), 2919, 2849, 1995, 1624, 1461, 1278, 1137 cm-1; 
HRMS (EI+) calcd for C10H8F3O 258.0479, found 258.0487. 

1-octanol (2k) and 2-octanol (4k): The yield of compounds 2k and 4k was determined via crude 
1H NMR using mesitylene as an internal standard by comparing the integration of the α protons 
of the alcohols with the methyl peaks of mestylene. Purification of compounds 2k and 4k was 
attempted via silica gel flash chromatography, and a mixture of compounds 2k and 4k with an 
unknown aromatic impurity was isolated. 1H NMR (500 MHz, CDCl3) δ 3.79 (m, 1H, compound 
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4k) 3.64 (t, J = 7.0 Hz, 2H, compound 2k), 1.56 (m, 2H, compound 2k), 1.45-1.28 (CH2 protons 
for both 2k and 4k), 1.18 (d, J = 6.5 Hz, 3H, compound 4k), 0.88 (t, J = 6.5 Hz, 3H, for both 
compounds 2k and 4k); HRMS (M-H) calcd for C8H17O 129.1279, found 129.1276. The identity 
of compound 4m was further confirmed by GC-MS, in which the synthetic sample gave an 
identical retention time (8.6 min for 4k and 9.9 min for 2k) and mass spec as the authentic sample: 
for 2k, m/z 129 (M-1), 112, 97, 84, 69, 56, 41; for 2k, m/z 129 (M-1), 115, 97, 84, 69, 55, 45, 41. 

3-phenylpropan-1-ol (2m): 6.4 mg, 12% yield. 1H NMR (300 MHz, CDCl3) δ 7.33 – 7.26 (m, 
2H), 7.24 – 7.16 (m, 3H), 3.69 (q, J = 6.3 Hz, 2H), 2.72 (t, 6.3 2H), 1.97 – 1.85 (m, 2H), 1.25 (t, J 
= 5.3 Hz, 1H). HRMS (EI+) calcd for C9H12O 136.0888, found 136.0884. The ratio between 
compounds 2m and 4m was determined via crude 1H NMR by comparing the integration of the α 
protons of the alcohols. Isolation of pure compound 4m was unsuccessful due to contamination of 
an unknown impurity. The identity of compound 4m was further confirmed by GC-MS, in which 
the synthetic sample gave an identical retention time (11.1 min) and mass spec as the authentic 
sample: m/z 136 (M), 121, 117, 103, 92, 91, 77, 65, 51, 45, 39. 

Recovery of hydroquinone: 

PdCl2(MeCN)2 (0.04 mmol, 0.0104g), Shvo’s catalyst (0.04 mmol, 0.0436 g), CuCl2 (0.08 mmol, 
0.0108 g) and benzoquinone (0.37 mmol, 0.040 g) were weighed into a 20 ml vial in the glovebox, 
followed by the addition of i-PrOH (2 ml) and t-BuOH (4 ml). Styrene (46 μL, 0.4 mmol) was 
added to the mixture followed by addition of H2O (0.4 mmol, 8.1 μl). The resulting mixture was 
stirred in the glovebox at 85 oC for 6 h. Crude reaction mixture was washed three times with 
toluene (2 ml) and filtered through a celite plug. The celite plug was subsequently washed with 
ethyl acetate (ca 5 ml). The ethyl acetate fraction was recombined with the remaining material 
after the toluene wash. After removal of the solvent, pure hydroquinone was obtained as a white 
crystal (30mg, 74% yield). 1H NMR (300 MHz, CD3CN) δ 6.64; HRMS (EI+) calcd for C6H6O2 
110.0368, found 110.0390. 

Synthesis and characterization of vinyl enol ether: 

PdCl2(MeCN)2 (0.04 mmol, 0.0104 g), CuCl2 (0.08 mmol, 0.0108 g) and benzoquinone (0.4 
mmol, 0.432 g) were weighed into a 20 ml vial in the glovebox, followed by the addition of t-
BuOH (6 ml). Styrene (46 μl, 0.4 mmol) was added to the mixture and the resulting mixture was 
stirred in the glovebox at 85 oC for 6 h. Yield was determined via crude NMR using mesitylene as 
an internal standard. The olefin peaks for the cis and trans isomers were both observed by crude 
NMR: 1H NMR (300 MHz, CDCl3) trans isomer: δ 7.02 (d, J = 12.4 Hz, 1H), 5.99 (d, J = 12.4 
Hz, 1H); cis isomer 6.45 (d, J = 7.1 Hz, 1H), 6.45 (d, J = 5.24 Hz, 1H). The ratio between trans 
and cis isomers is 1.5:1. This data fits with previously reported values for these vinyl enol ethers 
(42). GC/HRMS was additionally employed to characterize the compounds ([C12H16O] cald 
176.1201, found 176.1216).  

Labeling studies: 

Synthesis of deuterated products 9 and 10: General procedure (styrene as the substrate, Condition 
C) was followed using i-C3H7OD and t-butanol-OD. Deuterated 2-phenylethanol products were 
isolated by silica gel chromatography as an inseparable mixture of 9 and 10. The yield (77%) was 
determined via GC using response factors calculated for 2a relative to tridecane. 1H NMR (300 
MHz, CDCl3) δ 7.35 – 7.29 (m, 2H), 7.27 – 7.21 (m, 3H), (m, J = 6.6 Hz, 2H), 2.88 (m, 0.68H). 
HRMS HRMS (EI+) calcd for C8H8OD2 124.0857, found 124.0860; calcd for C8H9OD 123.0794, 
found 123.0796. Integration analysis indicates the β-position incorporated one deuterium in 69% 
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of the product and two deuterium atoms in 31% of the product. This calculation approximates that 
no 2a was formed.  
 
Synthesis of deuterated products 11 and 12: General procedure (styrene as the substrate, 
Condition C) was following using i-propanol-d8 and t-butanol-OD. Deuterated 2-phenylethanol 
products were isolated by silica gel chromatography as an inseparable mixture. The yield (67%) 
was determined via GC using response factors calculated for 2a relative to tridecane. 1H NMR 
(300 MHz, CDCl3) δ 7.35 – 7.29 (m, 2H), 7.27 – 7.21 (m, 3H), (m, J = 6.6 Hz, 1.13H), 2.88 (m, 
0.65H). Integration analysis indicates the α position incorporated one deuterium in 87% of the 
product and the β position incorporated one deuterium in 65% of the product and two deuterium 
atoms in 35% of the product. These calculation approximates that no 2a was formed. Both 
compounds 11 and 12 do not get ionized on HRMS (EI+). GC-MS spectrum indicates a single 
peak matched the retention time with compound 2a, but shows a mass of m/z 124 and 125 along 
with m/z 123 as a minor peak (the m/z 122 peak was only observed marginally).   
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III. Supporting Table 

Table 1S. Studies with styrene as the substrate. The Reaction concentration is 0.25M. Yields and 
conversions were determined by GC analysis, using tridecane as the internal standard. (BQ: 1,4-
Benzoquinone; MS: Molecular sieves)*,† 

 
*The loss of mass balance in entry 5 is unclear but presumably caused by either styrene 
oligomerization or complexation with metal catalysts. † The loss of mass balance in entry 6 (57% 
vs 88%) is presumably caused by the lability of the benzylic α proton and the reactivity of the 
aldehyde to form oligomers and aldol condensation products.    

 

 IV. NMR Spectra 
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