A Caltech Library Service

Visualizing Early Frog Development with Motion-Sensitive 3-D Optical Coherence Microscopy

Haskell, R. C. and Williams, M. E. and Petersen, D. C. and Hoeling, B. M. and Schile, A. J. and Pennington, J. D. and Seetin, M. G. and Castelaz, J. M. and Fraser, S. E. and Papan, C. and Ren, H. and de Boer, J. F. and Chen, Z. (2004) Visualizing Early Frog Development with Motion-Sensitive 3-D Optical Coherence Microscopy. In: EMBC 2004 : 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Proceedings of the Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society. IEEE , Piscataway, N.J., pp. 5296-5299. ISBN 0-7803-8439-3.

PDF - Published Version
See Usage Policy.


Use this Persistent URL to link to this item:


A motion-sensitive en-face-scanning 3-D optical coherence microscope (OCM) has been designed and constructed to study critical events in the early development of plants and animals. We describe the OCM instrument and present time-lapse movies of frog gastrulation, an early developmental event in which three distinct tissue layers are established that later give rise to all major organ systems. OCM images constructed with fringe-amplitude data show the mesendoderm migrating up along the blastocoel roof, thus forming the inner two tissue layers. Motion-sigma data, measuring the random motion of scatterers, is used to construct complementary images that indicate the presence of Brownian motion in the yolk cells of the endoderm. This random motion provides additional intrinsic contrast that helps to distinguish different tissue types. Depth penetration at 850 nm is sufficient for studies of the outer ectoderm layer, but is not quite adequate for detailed study of the blastocoel floor, about 500 to 800 μm deep into the embryo. However, we measure the optical attenuation of these embryos to be about 35% less at 1310 nm. 2-D OCT images at 1310 nm are presented that promise sufficient depth penetration to test current models of cell movement near the blastocoel floor during gastrulation.

Item Type:Book Section
Related URLs:
URLURL TypeDescription
Fraser, S. E.0000-0002-5377-0223
Additional Information:© 2004 IEEE. Issue Date: 1-5 Sept. 2004. Date of Current Version: 14 March 2005. This work was supported by NSF grants DBI-0137973 and BES-0086924. AJS was supported by a Beckman Scholarship. We thank Alejandro Enriquez for making gels to hold the frog embryos, and Scott Kibler for help with image acquisition.
Funding AgencyGrant Number
Arnold and Mabel Beckman FoundationUNSPECIFIED
Subject Keywords:Developmental biology , frog gastrulation , optical coherence microscopy , optical coherence tomography
Other Numbering System:
Other Numbering System NameOther Numbering System ID
INSPEC Accession Number8255486
Series Name:Proceedings of the Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society
Record Number:CaltechAUTHORS:20111013-113442313
Persistent URL:
Official Citation:Haskell, R.C.; Williams, M.E.; Petersen, D.C.; Hoeling, B.M.; Schile, A.J.; Pennington, J.D.; Seetin, M.G.; Castelaz, J.M.; Fraser, S.E.; Papan, C.; Ren, H.; de Boer, J.F.; Chen, Z.; , "Visualizing early frog development with motion-sensitive 3-D optical coherence microscopy," Engineering in Medicine and Biology Society, 2004. IEMBS '04. 26th Annual International Conference of the IEEE , vol.2, no., pp.5296-5299, 1-5 Sept. 2004 doi: 10.1109/IEMBS.2004.1404479 URL:
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:27209
Deposited By: Ruth Sustaita
Deposited On:13 Oct 2011 20:28
Last Modified:03 Oct 2019 03:21

Repository Staff Only: item control page