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We derive self-similar solutions for ultrarelativistic shock waves propagating into cold material of
power law density profile in radius ��r−k. We treat both implosions and explosions in three
geometries: planar, cylindrical, and spherical. For spherical explosions these are the first type
solutions of Blandford and McKee for k�4; they are the second type solutions found by Best and
Sari for k�5−�3/4. In addition we find new, hollow �with evacuated interior�, first type solutions
that may be applicable for 4�k�17/4. This “sequence” with increasing k of first type solutions,
hollow first type solutions, and then second type solutions is reminiscent of the nonrelativistic
sequence. However, although in the nonrelativistic case there is a range of k which corresponds to
a “gap”—a range in k with neither first nor second type solution which separates the hollow first
type solutions and the second type solutions, here there is an “overlap”: a range of k for which
current considerations allow for both hollow first and second type solutions. Further understanding
is needed to determine which of the two solutions apply in this overlap regime. We provide similar
exploration for the other geometries and for imploding configurations. Interestingly, we find a gap
for imploding spherical shocks and exploding planar shocks and an overlap for imploding planar
solutions. Cylindrical configurations have no hollow solutions and exhibit a direct transition from
first type to second type solutions, without a gap or an overlap region. © 2006 American Institute
of Physics. �DOI: 10.1063/1.2174567�
I. INTRODUCTION

Self-similar solutions provide some of the greatest sim-
plifications to one-dimensional flows. Self-similarity allows
the reduction of the partial differential equations, which con-
tain two independent variables �space and time�, into a set of
ordinary differential equations �ODEs�, where the single in-
dependent variable is a combination of space and time. The
ODEs are then relatively easy to solve numerically or even
analytically in some cases. They describe the asymptotic be-
havior of one-dimensional flows in a variety of circum-
stances, typically far away from the initial conditions and
provided that the boundary conditions contain no spatial
scale. �Some exceptions apply. For example, self-similarity
can prevail in exponential density gradient in planar geom-
etry.�

Perhaps the most famous hydrodynamic self-similar so-
lution is that due to Taylor,1 Von Neumann,2 and Sedov,3

known as the Sedov-Taylor solution. It describes an explo-
sion in which a strong shock wave propagates into cold sur-
roundings whose density profile decreases as ��r−k �in the
nonrelativistic literature, the density power law index is usu-
ally denoted by � whereas in the relativistic literature the
letter k is used. Here we use the letter k for both, as our focus
is the relativistic regime�. They used conservation of energy
to obtain the scaling of the shock radius as a function of
time. Such solutions are called first type solutions. Guderley4

�also see the discussion in Zeldovich and Raizer5� found a
self-similar solution describing imploding shock waves in a
constant density environment. In contrast to the strong ex-

plosion problem, energy considerations cannot be used to
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deduce the scaling of the shock radius as a function of time.
Instead the scaling of the radius as a function of time must be
found by demanding that the solution pass through a singular
point of the equation. Such solutions are called self-similar
solutions of the second type. More recently, Waxman and
Shvarts6 showed that if the density falls fast enough �k�3�,
energy considerations give the wrong scaling. They also
showed that the solution should be of the second type for k
�3.26.

Recent astrophysical discoveries, mostly the afterglows
of gamma ray bursts, led to an increased interest in the rela-
tivistic analogs of these solutions. We find that there is a
considerable similarity between the relativistic and the non-
relativistic regimes. The relativistic version of the Sedov-
Taylor solution was found by Blandford and McKee in 1976
�hereafter referred to as BM7�. They provide the solution to
the ultrarelativistic strong explosion problem in spherical ge-
ometry for density profiles with k�4. Best and Sari8 have
found solutions of the second type for k�5−�3/4. Perna
and Vietri9 found relativistic solutions for shock waves
propagating in an exponential density gradient. These are the
relativistic analogs of the nonrelativistic solutions first found
by Raizer.10 As this work was prepared, self-similar implod-
ing relativistic shock waves for spherical geometry with con-
stant density where numerically treated by Hidalgo and
Mendoza.11

In this article, we provide a more complete exploration
of the possible self-similar solutions in the ultrarelativistic
case. We provide solutions in three geometries: planar, cylin-

drical, and spherical for both imploding and exploding shock
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waves. Our investigation reveals some unexpected puzzles.
For example, for spherical explosions, we find a range of
density profiles 5−�3/4�k�17/4 for which current con-
siderations allow for both first and second type solutions.
Understanding which of these solutions will apply is left for
later research. Fortunately, all our solutions are analytic. This
is an advantage over the nonrelativistic case where the self-
similar solutions are either implicit �first type� or numerical
�second type�. This property may facilitate the understanding
of the interplay between first and second type solutions.

The plan of this article is as follows. We begin in Sec. II
by writing down the one-dimensional flow equations in pla-
nar, cylindrical, and spherical symmetries. We then take the
ultrarelativistic limit and assume self-similarity so the partial
differential equations are reduced into ordinary differential
equations. In Sec. III we explore the range in density power
law index for which first type solutions, which obey global
conservation law, apply and contain a finite energy. In Sec.
IV we find second type solutions and explore the regimes
where those are valid. The transition between first and sec-
ond type solutions is explored in Sec. V.

II. THE SELF-SIMILAR EQUATIONS IN ARBITRARY
DIMENSIONS

The flow equations are given by the conservation of en-
ergy, momentum, and particle number. Since in the relativis-
tic case the particle number density does not play a role in
the dynamics of the system, the conservation of particles
equation is decoupled from the other two equations. Energy
and momentum conservation yield

�

�t
�2�e + �2p� +

1

r�

�

�r
r��2��e + p� = 0, �1�

�

�t
�2��e + p� +

1

r�

�

�r
r��2�2�e + p� +

�

�r
p = 0, �2�

and the particle conservation equation is

�

�t
�n +

1

r�

�

�r
r���n = 0, �3�

where �=0, 1 , and 2 for planar, cylindrical, and spherical
symmetries, respectively. Here, � is the fluid Lorentz factor,
� is its velocity as a fraction of the speed of light, n is the
particle density, and e is the rest frame energy density �see
Ref. 12 for the derivation of similar equations�.

We now assume that the flow has a characteristic Lor-
entz factor 	 and a related characteristic position R. R
evolves with time in a way that describes motion with a
Lorentz factor 	. In the extreme relativistic case this implies

Ṙ=�1−1/	2�1− �1/2�	2. For the problem of interest here,
it is natural to choose the position of the shock, and its Lor-
entz factor as R and 	. The characteristic length scale of the
flow behind the shock must be R /	2, so the similarity vari-

able is
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 =
R − r

R/	2 = 	2�1 − r/R� . �4�

BM doubted the use of Eq. �4� for k�4; however, Best and
Sari8 demonstrated that this definition of the self-similar
variable is applicable in general.

Note that in our notation Ṙ and R−r are always positive.
For converging solutions, this implies that R is negative,
growing toward zero. In our notation, therefore, converging
solutions have a negative 
. This choice avoids the need to

keep a positive or negative sign in the expression of Ṙ for
imploding and exploding solutions.

The self-similar solution exhibits time dependent charac-
teristic pressure and density, which we denote as P�t� and
N�t�. For consistency with the BM notation we define the
self-similar variables as

�2�r,t� =
1

2
	2�t�g�
� , �5�

p�r,t� = P�t�f�
� , �6�

n�r,t� = N�t�h�
�/g1/2�
� , �7�

where g, f , and h are functions of the self-similar variable 

and respectively describe the spatial profiles of the Lorentz
factor, pressure, and density.

In terms of the self-similar variables we have

�

�t
= 	̇

�

�	
+ �2
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+ �	2 − 1/2�
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R2� �

�

+ Ṗ

�

�P
+ Ṅ

�

�N

�8�

and

�

�r
= − 	2 1

R

�

�

. �9�

The energy conservation equation now becomes

0 = 2�− 2m + � − k�gf − �1 + 2�m + 1�
��gf�� + f�. �10�

As in the work of BM, we are motivated by this equation to
define

� = 1 + 2�m + 1�
 , �11�

to obtain

0 = �− 2m + � − k�gf − �m + 1���
d

d�
�gf� −

d

d�
f� . �12�

Here we have used the notation t	̇ � 	 =−m /2, tṖ� P =−m

−k, and tṄ�N =−m /2−k. The relation between the time de-
rivatives of N, P, and 	 follows from the boundary condi-
tions of strong relativistic shocks which imply P�	N. Since
we set �=1 at the shock, those boundary conditions also
imply g�1�= f�1�=h�1�=1 �see BM�. Equation �12� shows
that m and k must be constant to allow for a self-similar flow.

Repeating the same procedure for the momentum equa-
tion will again result in Eq. �12�. This is because the energy
and momentum equations are identical to the lowest order in

1/	 and our expansion discards any higher order terms. For
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this reason BM kept higher order terms. Instead, we find it
simpler to use the difference equation between the energy
and momentum conservation equations:

�

�t
	2 +

1

�2
p +
1

r�

�

�r
r�	4 −

1

�2
p − 2
�

�r
p = 0. �13�

Keeping only lowest order terms is again sufficient here.
With the self-similar variables Eq. �13� reads:

0 = �m + 1��− �g2 df

d�
+ 4	 df

d�
g −

dg

d�
f
�

+ �− m − k + 2��g2f . �14�

Similarly, for the particle conservation equation we have
0���1 and �4k−7−5�� / �3�2+�−k���0.
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d log h

d�
= 	− kg2 − mg2 + �g2 − 2�m + 1�

dg

d�

� ��g2

− 2g�/�m + 1� . �15�

We now solve Eqs. �12�, �14�, and �15� as a set of linear
equations to get df /d�, dg /d�, and dh /d� and obtain:

1

g�

d log g

d log �
=

�7m + 3k − 2�� − �m + ��g�

�m + 1��g2�2 − 8g� + 4�
, �16�

1

g�

d log f

d log �
=

4�2m − � + k� − �m + k − 2��g�

�m + 1��g2�2 − 8g� + 4�
, �17�
1

g�

d log h

d log �
=

2�9m + 5k − 4�� − 2�5m + 4k − 3��g� + �m + k − ��g2�2

�m + 1��2 − g���g2�2 − 8g� + 4�
. �18�
For the case �=2 these reduce to the equations given in BM.

III. FIRST TYPE SOLUTIONS

The parameter m in the previous equations must be
found in an independent way. As is well known in the non-
relativistic case, there are two types of self-similar solutions.
In the first type, m is found by global conservation laws. For
arbitrary geometry, �, in the ultrarelativistic regime this re-
quirement reads

E � �2R−kR1+� � R−m−k+1+� � const. �19�

Therefore first type solutions have

m = 1 + � − k . �20�

Substituting this into the self-similar equations and using the
boundary conditions g�1�= f�1�=h�1�=1 we obtain the very
simple solution:

g = �−1, �21�

f = ��4k−7−5��/�3�2+�−k��, �22�

and

h = ��2k−3−2��/�2+�−k�. �23�

This is a generalized form of the BM solution, and reduces to
the BM solution in spherical geometry where �=2.

First type solutions can be valid only if they contain a
finite amount of energy. The energy in the solution is propor-
tional to the integral

 fgd� � ��4k−7−5��/�3�2+�−k��. �24�

This is finite if 1�� and �4k−7−5�� / �3�2+�−k���0 or if
1�� if R�m+1�=R�2+�−k� is positive. So the combi-
nation of the two previous possibilities requires �4k−7
−5��R�0. Therefore, explosions diverging to infinite dis-
tances �R is positive� can be of first type if k� �7+5�� /4.
Converging solutions �where R is negative approaching zero�
are of first type only for k� �7+5�� /4.

For ��1 these solutions are hollow and end at �=0.
The Lorentz factor diverges at �=0, and it takes infinite time
for a fluid element to arrive from the shock ��=1� to �=0.
Hollow solutions exist for diverging shocks in spherical sym-
metry with 4�k�17/4 and for converging shocks in planar
symmetry with 2�k�7/4.

IV. SECOND TYPE SOLUTIONS

Second type solutions do not obey global conservation
laws. The true problem, therefore, cannot be completely de-
scribed by a second type self-similar solution. Those de-
scribe only part of the flow, in some region of interest
whereas other regions deviate from the solutions. In order
not to influence the self-similar part, the non-self-similar
parts must be separated from it by a sonic point, where the
equations are singular. This requirement replaces the energy
conservation as means of deducing the scaling of Lorentz
factor with radius, i.e., finding m �see Ref. 6 for a discussion
of the nonrelativistic case and Ref. 8 for the relativistic case�.

To find m in second type solutions, we notice that the
denominators of Eqs. �16�–�18� are independent of �, there-
fore the sonic line has the same value when expressed in
terms of g�. The dependence of m on k can be easily found,
using the same method as in Best and Sari.8 Looking for
roots of the denominator of our equations we find the sonic

line to be
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g� = 4 − 2�3. �25�

Although the fluid equations have other singular points,
physical considerations �see Ref. 8� show that only the one
given by �25� is the one we are looking for. This point sepa-
rates the characteristic heading to the positive direction from
the shock, which also goes in the positive direction per our
definitions. The other singular points are g�=2, which rep-
resents a fluid element maintaining a fixed �, and g�=4

�
+2 3, which corresponds to the negative characteristic hav-

3
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ing a fixed �. All those values are independent of the geom-
etry, i.e., independent of the parameter �.

Substituting Eq. �25� in the numerator of, for example,
the equation of g and demanding that it vanish, we obtain:

m = − 2��5 − 3�3� + �3 − 2�3�k . �26�

This reproduces the results of Best and Sari for �=2. The
hydrodynamic profiles can be found by substituting this
value of m in the equations for g, f , and h. The equations
become very simple for this value of m since by definition

the denominator and the numerator have a common factor.
g = K� 1 − �

− 10� + 6��3 + 3k − 2k�3 + 1
g� − 2�2 + �3���3−2�3��k−3��/��−1�

�27�

where K is an arbitrary constant. The boundary conditions g�1�=1 implies

g = �g��� − 1� + 4���3 − 1� − 2k�3 + 4 + 2�3

�� − 1� + 4���3 − 1� − 2k�3 + 4 + 2�3
��3−2�3��k−3��/��−1�

. �28�

For the pressure, we get

log f = K +
�4 − 2�3��k − 3��

� − 1
log�g��� − 1� − 4� + 4��3 − 2k�3 + 4 + 2�3 � �29�

or, with the boundary conditions f�1�=1,

f = �g��� − 1� − 4� + 4��3 − 2k�3 + 4 + 2�3

� − 1 − 4� + 4��3 − 2k�3 + 4 + 2�3
��4−2�3��k−3��/��−1�

. �30�

For the density we get

log h = K −
�2�3 − 3��2k − 1 + ��3 − 3���k − 3��

�− 1 − 2��3 + k�3 − �3 + ���1 − ��
log��1 − ��g� + 4� − 4��3 + 2k�3 − 4 − 2�3�

−
2� − k − ��3

− 1 − 2��3 + k�3 − �3 + �
log �g� − 2� . �31�

With the boundary conditions h=1 at �=1 we have

h = � �1 − ��g� + 4� − 4��3 + 2k�3 − 4 − 2�3

�1 − �� + 4� − 4��3 + 2k�3 − 4 − 2�3
���2�3−3��2k−1+��3−3��k−3���/���−1−2��3+k�3−�3���−1��

�2 − g���−2�+k+��3�/��−1−2��3+k�3−�3�. �32�
For cylindrical geometry, �=1, the above-mentioned
form is invalid and the solution �with the boundary condition
of g=1 at �=1� reads

log g =
g� − 1

2�2 + �3�
, �33�

log f =
3 − 2�3

�g� − 1� . �34�
The condition we used to demand a smooth transition
through the sonic point, which led to Eq. �26�, is necessary
but not sufficient. We still need to verify that the solution
passes through the sonic point in the relevant range of the
independent variable �. We therefore substitute g�=4−2�3
in the expression for g and find the value �sonic. This is dis-
played in Fig. 1 for the three possible values of �. We de-
mand that �sonic is within the range of values that � takes,
i.e., we require �sonic�1 for diverging solution with m�−1
or converging solutions with m�−1, and we require �sonic
�1 for diverging solutions with m�−1 or converging solu-
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tions with m�−1. The results regarding the validity range of
type-II solutions are given in Table I and shown schemati-
cally in Fig. 1.

A necessary condition for a second type solution to be
correct, is that its energy decrease with time, that is, m�1
+�−k for diverging solutions and the opposite for converg-
ing. We demonstrate this now for diverging solutions:

FIG. 1. Schematic description of the possible solutions for one-dimensiona
�middle�, and spherical geometries �bottom�. The x axis is the density inde
�4 in the spherical case�, and black stripes show where a second type solu
between the shock and some internal surface are indicated by a hollow gre
position of the sonic point, �sonic.

TABLE I. The validity range of second type solution
if a solution passes through a sonic point, the soluti
solution does in fact pass through the sonic line with

Symmetry

Diverging solutions �R→

Type-I Type-

Planar k�7/4 k�2

Cylindrical k�3 k�3

Spherical k�17/4 k�5−�3/4
Downloaded 11 Mar 2006 to 131.215.240.9. Redistribution subject to 
mII = − 2��5 − 3�3� + �3 − 2�3�k � 1 + � − k = mI �35�

or

k � �1 + 11� − 6��3�/�4 − 2�3� . �36�

This gives k�1+�3/4 for planar symmetry, k�3 for cylin-
drical symmetry and k�5−�3/4 for the spherical case. This

ng relativistic explosions. The three panels are for planar �top�, cylindrical
��r−k�. Gray stripes indicate the region where first type solutions exist �k
xists. Hollow first type solutions, in which all the shocked fluid is confined
ipe. The y axis of gray and black stripes is arbitrary. The solid line is the

e choice of m according to Eq. �26� guarantees that
smooth there. The conditions listed verify that the

e physically relevant range of �.

Converging solutions �R→0�

Type-I Type-II

k�7/4 k�1+�3/4�1.87

k�3 k�3

13 k�17/4 k�4
l stro
x k �
tion e
y str
s. Th
on is
in th

� �

II

�4.
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is completely consistent with the above-mentioned require-
ments. Indeed the requirement of decreasing energy follows
from the condition that the solution passes through the sonic
point: if the flow behind the sonic point cannot influence the
flow ahead of the sonic point, energy cannot flow from be-
hind the sonic point.

V. THE TYPE-I TO TYPE-II TRANSITION

Note, that when mI=mII the two solutions listed previ-
ously are the same, despite their seemingly different expres-
sions. Clearly this must be the case since for a given m the
solution to the self-similar equations with the shock bound-
ary conditions is unique. Nevertheless, it is instructive to
verify this from the two explicit expressions given in the
previous sections �e.g., Eqs. �21� and �28��. Let us consider
the spherical case where mI=mII at k=5−�3/4, and start by
examining the second type solution. For k�5−�3/4, the
denominator of Eq. �28� is close to zero. This means than g�
has to be close to unity to make the numerator close to zero
as well. This agrees with the expression for g in the first type

−1

FIG. 2. First and second type solutions for k=5−�3/4+0.01 plotted as a
bottom plot the pressure profile, f . The two solutions are very similar close
and � diverges at some finite distance from the shock 
=−1/ �2m+2��2+�
drop around the same distance.
solution g=� .
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Where is the sonic point in type-II solutions for k close
to k=5−�3/4? Expanding Eq. �28� we obtain

gsonic → � 1 − �3/4

k − �5 − �3/4�
��3/4

�37�

So that gsonic diverges when k is close to k=5−�3/4. Since at
the sonic point gsonic�sonic=4−2�3 is finite, �sonic approaches
zero. This is very similar to the behavior of type-I solutions
as those end at �=0 with divergence of g. Nevertheless,
type-II solutions continue past �=0 into negative � and they
are not hollow. A plot of first and second type solutions near
the transition is given in Fig. 2.

An unfortunate property of the solutions around k=4
�for the diverging case in spherical geometry� is that the
profile approaches nonrelativistic temperatures very quickly
as a function of the distance from the shock. We define non-

on of 
. The top plot shows the Lorentz factor squared profile, g, and the
e shock �
=0�. The type-I solution is hollow, so the pressure drops to zero
e second type solution continues smoothly but does show a relatively sharp
functi
to th

3. Th
relativistic temperatures to occur where p /n�1. We have
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p

n
� 	

f�g

h
� 	�1 + 2�4 − k�
��k+4�/�6�k−4��

� � exp�− 8
/3� . �38�

So the temperature becomes nonrelativistic at


NR �
3

8
ln 	 .

This is just a few times R /	2 behind the shock, even for
quite large 	. For k�4 the solution extends many times
R /�2 behind the shock. We therefore expect that for moder-
ate values of 	, the ultra relativistic self-similar solution
gives an approximate rather than an accurate description of
the flow.

Clearly it is of importance to understand which of the
two solutions apply. In principle, one can attempt this with

FIG. 3. Comparison of numerical integration of the time dependent hydrody
bottom, are the Lorentz factor, the pressure and density relative to that just
density: �=2 and k=0.
numerical simulations. However, the problem of nonrelativ-
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istic temperatures noted previously makes numerical investi-
gation difficult as it requires extremely large Lorentz factors
which are hard to achieve.

VI. DISCUSSION

We have explored the possible ultrarelativistic self-
similar solutions in planar, cylindrical, and spherical geom-
etries, containing diverging or converging shocks, and allow-
ing for a general power law density profile ��r−k.
Relativistic implosions in all three geometries and with a
general power law density profile are treated here for the first
time �imploding relativistic shock waves for spherical geom-
etry with constant density where treated numerically by Ref.
11�. The hydrodynamic profiles of such a self-similar implo-
sion are compared with numerical integration of the time
dependent equations in Fig. 3.

We show that as a function of the density power law

ical equations and the prediction of the self-similar solution. Plotted, top to
d the shock, for an imploding spherical shockwave into matter of constant
nam
behin
index k, there is a sequence of self-similar solutions. In the
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explosive scenarios, the sequence is from first type solutions
to hollow first type solutions and then second type solutions
as k increases. The sequence is reversed for imploding solu-
tions. Those are of second type for low k and first type for
large k. In both cases, explosions and implosions, the solu-
tion is of second type if the density ahead of the shock de-
creases sufficiently fast and of first type if it increases suffi-
ciently fast. The physical interpretation of this is clear. A
shock wave that propagates into a density profile that de-
creases sufficiently fast will accelerate and “run away” from
the fluid behind it. The shock becomes “causally discon-
nected” from the downstream fluid, i.e., a second type solu-
tion. On the other hand, if the shock wave does not acceler-
ate enough, sound waves from behind it will be able to catch
up and the whole flow is causally connected, i.e., a first type
solution. In some of the geometries �converging planar case
and diverging spherical case� first type solutions become hol-
low before they turn into second type solutions. This se-
quence of self-similar solutions and its physical origin apply
to the nonrelativistic case as well.

Our analysis raises some interesting riddles. In some
cases �planar diverging shocks or spherical converging
shocks� this sequence has a gap between the first and second
type solutions. In other cases �planar converging shocks and
spherical diverging shocks� there seems to be an overlap in
the sequence between first and second type solutions: current
considerations allow for the existence of both self-similar
solutions for the same value of k.

Recently, Gruzinov13 suggested a solution in the gap re-
gion in the nonrelativistic case which he called a “third type”
self-similar solution. In his third type solution, the infinite
mass located at the origin acts like a piston moving at con-
stant velocity. Preliminary investigation seems to support a
Downloaded 11 Mar 2006 to 131.215.240.9. Redistribution subject to 
relativistic analog of Gruzinov’s analysis. In the relativistic
case, however, the solutions are more interesting since the
piston with large inertia does not move at a constant speed
but accelerates. Further research is needed to establish this
connection.
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