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Optical fiber-based measurement of ultra-small mode volume
and a high quality factor in a photonic crystal microcavity
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Abstract: Using an optical fiber taper that simultancously probes the spectral and spatial properties
of resonant cavity modes, fwo-dimensional Si photonic ¢rystal microcavities with a quality factor Q
40,000 and modal volume Fgr  0.9(A/n)® are éxperimentally demonstrated.
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One important application of an optical microcavity is in cavity quantum electrodynamics (¢QED)[1] where strongly
coupled atom-photon systems have been proposed for use in quantum computing[2). Here, we report a semiconductor-
based photonic crystal (PC) microcavity[3] that simultaneously éxhibits a quality factor (O) 40,000 and an in-plane
localization consistent with a modal volume Ve 0.9(A/n)*, values that could enable chip-based strong coupling[4]
to both atomic (cesium) and InAs quantum dot systems. These PC microcavities are studied using a novel optical
fiber-based measurement that characterizes their spatial and spectral properties.

)]

Fig. 1. (a) Scanning electron microscope micrographs of a fully fabricated PC microcavity. (a) Cross-sectional, top, and
angled views of the cavity. Total cavity dimensions are ~ 13um x 16um. (b) Schematic illustrating the fiber taper probe
measurement setup.

Microcavities are fabricated in silicon-on-insulator wafers (Figure 1(a)) and consist of a graded square Jattice of
air holes in a high-index slab waveguide[5]. They are probed by a single-mode optical fiber that has been tapered 1o
adiameterof 1 ym, producing an evanescent field in the surrounding air that can be used as a near-field excitation
source (as previously reported for microsphere whispering-gallery-mode excitation{6]). The taper is mounted above
and parailel to an array of PC microcavities (Fig. 1(b)), and when brought close ( 1 zm) to the cavity, is used to
both source and out-couple the cavity modes. The wavelength-dependent transmission through the taper when it is
positioned 500 nm over a cavity is given in Fig. 2(a), and shows a number of resonances. By studying spectral shifts
in their positions between devices with a varying average hole radius, we identify the mode of interest (labeled 49),
the fundamental resonance within the in-plane bandgap.

A wavelength scan of the taper transmission for the A} mode in a device with a=425 nm is given in Fig. 2(b) (inset),
and a linewidthy  0.047 nm is measured. This linewidth is a maximum estimate for the cold-cavity linewidth yo, due
to loading effects of the taper. Reducing these loading effects by increasing the taper-cavity separation (Fig. 2(b)) gives
an asymptotic value of ¥5=0.041 nm, corresponding to a cold-cavity 0 39, 500. Three-dimensional finite-difference
time-domain simulations for this cavity predict ¢ 56,000 and a/A,  0.266 (consistent with the measurements),
and predict Vr = 0.88(A./n)>.

The same taper used to source the cavity modes is used as a near-field probe to map their in-plane spatial local-
ization, by measuring the strength of coupling as a function of lateral taper displacement (microsphere studies[7] have
used a related method where a second probe, different from the excitation source, was used to map the spatial profiles).
For the taper aligned along the long () and short (%) axes of the cavity, the depth of the resonant dip for the desired
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Fig. 2. (a) Normalized taper transmission for a cavity with lattice spacing a=409 nm, highlighting the mode of interest. (b)
Measured linewidth (blue dots) vs. taper-PC gap for the mode of interest in a sample with a=425 nm. The red curve is a fit to
the experimental data. (Inset) Normalized taper transmission for this device when the taper-PC gap i 650 nm (c) Measured
normalized taper transmission (dots) as a function of taper displacement along the (c) £ and (d) § axes of the cavity. The
dashed lines are Gaussian fits to the data and the solid lines are numerically calculated coupling curves based on the FDTD-
generated cavity field and analytically determined fiber taper field. The insets in (c)-(d) are optical micrographs of the taper

aligned along the y and x axes of the cavily, respectively. The cavity is the central reddish-brown rectangular region.

cavity mode versus taper displacement is shown in Fig. 2(c)-(d), respectively. Calculations based upon a simple picture
of the taper-PC cavity coupling are performed (solid lines in Fig. 2(c)-(d)), and are consistent with the experimental
data. From these measurements, it is confirmed that the mode of interest is indeed both high-Q and small Veg.

In addition to applications in strongly-coupled systems in ¢cQED, these semiconductor-based microcavities have
potential for enhanced light-emitters (an extremely high maxinmm Purcell factor of 3500 is predicted from the meas-
ured Q and I'uy), single-photon sources, and microcavity-enhanced devices in nonlinear optics and sensing.
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