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ABSTRACT. In this paper we study the stabilization problem for
control systems defined on SE(3) (the special Euclidean group of
rigid-body motions) and its subgroups. Assuming one actuator is
available for each degree of freedom, we exploit geometric proper-
ties of Lie groups (and corresponding Lie algebras) to generalize the
classical proportional derivative (PD) control in a coordinate-free
way. For the SO(3) case, the compactness of the group gives rise
to a natural metric structure and to a natural choice of preferred
control direction: an optimal (in the sense of geodesic) solution
is given to the attitude control problem. In the SE(3) case, no
natural metric is uniquely defined, so that more freedom is left in
the control design. Different formulations of PD feedback can be
adopted by extending the SO(3) approach to the whole of SF(3)
or by breaking the problem into a control problem on SO(3) x R,
For the simple SF(2) case, simulations are reported to illustrate
the behavior of the different choices. We also discuss the trajec-
tory tracking problem and show how to reduce it to a stabilization
problem, mimicking the usual approach in R™. Finally, regarding
the case of underactuated control systems, we derive linear and
homogeneous approximating vector fields for standard systems on

SO(3) and SE(3).
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1. INTRODUCTION

We here consider the problem of controlling a (mechanical) system whose
configuration space is a matrix Lie group: we focus on second order sys-
tems and attempt to generalize the standard notion of proportional deriv-
ative feedback. One large class of applications which motivates this work
is workspace control of robotic manipulators, where the end-effector config-
uration is naturally embedded in SE(3) (see [26] for a description of the
workspace control problem and traditional solutions). While local solutions
are easily obtained, we hope that a more geometric approach will yield ad-
vantages similar to those afforded by the geometric approach to kinematics
in [26].

Historically, nonlinear control systems defined on Lie groups have received
considerable attention in the literature: early work by Brockett [5, 7], Jurd-
jevic and Sussman [15], and others has served as motivation for more recent
contributions by Walsh, Sarti, Sastry and Montgomery [29, 32], Leonard
and Krishnaprasad [20, 21], and Crouch and Silva Leite [10], to name a few.
Early works concentrated on problem formulation and controllability issues,
while the more recent papers mainly consider constructive controllability:
how to generate a feasible trajectory between two (or more) points on the
configuration manifold given a limited number of actuators.

Our approach in this paper is somewhat different. We concentrate on the
problems of stabilization and trajectory tracking in the fully actuated case,
where one actuator is available for each degree of freedom in the system.
This is traditionally the situation for problems in robotic manipulation,
satellite reorientation and 6 degree of freedom underwater vehicles. We
attempt to exploit the geometric properties of Lie groups and to generalize
the classical proportional plus derivative feedback (PD) used for control of
simple mechanical systems in R”. For the case of compact Lie groups, such
as S0(3), our results are completely general. For the non-compact case, we
consider only control systems on SE(3) and on its subgroups, since those
are the main systems of interest in our applications.

The paper is organized as follows. In Section 2, we introduce basic and
new results on systems defined on Lie groups. Section 3 shows stabiliza-
tion results for the compact case and in particular for SO(3). Section 4
considers the SFE(3) case, a non-compact, non-semisimple group. Different
metrics lead to different control laws. These results are then generalized to
the trajectory tracking case in Section 5. In Section 6 we deal with underac-
tuated control systems and we show how the algebraic tools developed in the
previous sections lead to simple linear and homogeneous approximations for
standard systems on the Euclidean group. Section 7 discusses the results.
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2. SYSTEMS ON LIE GROUPS

We here review the notations and give some algebraic results on Lie groups
and on dynamical systems evolving on Lie groups. For a comprehensive
introduction in the context of robotics, see [26, Appendix A].

2.1. Basic definitions and results. In the following we focus our atten-
tion on the matrix Lie group SE(3) and its proper subgroups, even though
most of the results hold more generally.! Let G C SE(3) be a matrix Lie
group and g C se(3) its Lie algebra. A dynamical system with state g € G
evolves following

g=gV' =V, V' Viecg, (2.1)

where we can express the velocity in body (V?®) or in spatial frame (V).
To keep the notation consistent, we will use lower case symbols for elements
in the group and upper case for elements in the algebra. Since the system
§ = gV? is invariant under left multiplication by constant matrices, we call
it left invariant; correspondingly ¢ = V*¢ is said to be right invariant. For
all g € G and all X,Y € g, the adjoint map Ad, and the matrix commutator
adx are defined as

Adg(Y) = gyg_la
ady(Y) =[X,Y]= XY - Y X.

On SF(3) and se(3) we represent a group element g = (R, p) € SO(3) x R3
and a velocity V = (&, v) € 50(3) x R? using homogeneous coordinates,

R p oo
g‘[o 1]’ and V‘[o 0]’
where the operator = : R® — s0(3) is defined so that Zy = z x y for all
z,y € R3. Writing V as column vector (w,v), simple algebra shows

R 0

o 0
Adg_[ﬁR R] and adv_[ﬁ &?] (2.2)

On SFE(3) and its proper subgroups the exponential map exp : g — G is
a surjective map and a local diffeomorphism. Standard computations show:
Lemma 1 (Exponential map). Given b e 50(3) and X = (zb, q) € se(3),
¢2
1412

expsogs) (D) = +smu¢u||¢7” (1 — cos |l

-~

expso(s) (V) A(v)g
0 1 !

(2.3)

expgp(3)(X) =

'We will denote with G the generic Lie group (g being its Lie algebra), while for specific
results we will refer to SE(3), SO(3) etc.
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where || - || is the standard Fuclidean norm and
1—COSH¢H) v ( SinWH) v
Ay =1+ ( +(1- .
) AT AT

Equation (2.3) is also known as Rodrigues’ formula. In an open neighbor-
hood of the origin dense in G, we define X = log(g) € g to be the exponential
coordinates of the group element g and we regard the logarithmic map as a
local chart of the manifold .

Lemma 2 (Logarithmic map). Let (R,p) € SO(3)xR? be such that tr(R) #
—1. Then

oo (1) = 5 (R—RT) € s0(3),

where ¢ satisfies cos ¢ = S(tr(R) — 1) and |¢| < w. Also

(el SN

A7 @)p ] € 5e(3), (2.4)

logsp sy (£, p) = [ 1

where 1 = logso(s)(R) and

2

<)

AW =T =50+ (1 - allv)) (25)

14

| 2

and a(y) £ (y/2) cot(y/2).

Note that elements of the Lie algebra g can represent a velocity as in
equation (2.1) or can represent the matrix logarithm of the state (and should
therefore be considered states) as in equation (2.4). We denote them with
V = (@,v) in the first case and with X = ({b\, q) in the second (also we
usually have g = (R, p) € SFE(3)).

Example 1 (A few useful identities). With the aid of Mathematica it is
easy to verify the following identities:

A()TTR(¥) = R($)A() ™ = A(w)~T )
AW R(Y) = R(P)A() = 2A(2¢) — A(2))
d 1
MAW) = W(R - A), (2.8)

-~

where R(¢) = expgos) (1)
Example 2 (Exponential and logarithmic map on SFE(2)). Regarding the

0 -¢ ] . Given

group of planar motion, let = : R — so(2) map 6 to 00
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0 c so0(2) and X = (5, q) € se(2), the formulas above become

3 = cosf —siné
eXpSO(2)( )= sinf cosd
6) A(f
expp(z)(X) = [ expsc())(z)( ) (1)q ] ’
1 sin 0 —(1 —cosb)
where A(0) = 9 [ (1 - cosb) sin ]

Let (R,p) € SO(2) x R? be such that tr(R) # —2. Then logggs)(R) = 6
where cos @ = Ry, sinf = Ry and [6] < 7. Also

o A6
logsp(2) (R, p) = [ 0 1( p ] € se(2),

0 — S| alf) 62
where § = log g (3)(R) and A(f)~! = [ 02 (o) |
Note that singularity is at tr(R) = —1 for SO(3) and tr(R) = —2 for
S0(2).

2.2. The Jacobian of the exponential map. We now want to compute
explicit formulas that relate the time derivative of X (¢) = log(g(t)) with
the body and spatial velocities V?, V*. For the linear time dependence case
(X (t) = tY), it is easy to show that X =Y = V? = V*; for the generic case
X = X (t) the relationship is not trivial.

Theorem 1 (Integral Formulas). Let g(t) be a smooth curve on G, X (t) =
log(g(t)) be the exponential coordinates of g(t), V* = g~'g the body velocity
and V* = g~ the spatial velocity.

Then we can relate X and V', V* through:

Vb= /0 " Ad o (X)dA, (2.9)

Ve = /0 1 Adax (o (X)dA. (2.10)

Proof. For all A € [0, 1], define V/\b as the solution to the algebraic equation
LX) = X0 ], (2.11)

Note that we here want to compute explicitly V° = V.

Following [14], we prove the desired result by equating the two mixed
derivatives of the smooth quantity f(¢, ) = e’ in equation (2.11). We
have

d i AX ()] _ AX (02170 1 DX (1) d b
o [dte | = X(t)e AVY +e d}\()\V/\)
d d
= X(t) [%e/\X(t)] + eAX@)a(Avf). (2.12)
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Differentiating with the reverse order yields

drd \xwy_ d X)) L v X ()

e O] = X (1) [dte ] + X (1), (2.13)
Equations (2.12) and (2.13) give

d
AX () AX ()
e d}\()\V/\) X(t)e ,

or

d
d)\(

We now integrate with respect to A from 0 to 1 to obtain

AVY) = e MOX0)eMO = Ad _axe (X).

1
Vi=1-V{—0-V :/ Ad—xx (X)dA.
0

The corresponding equality on the spatial velocity follows from the basic
equality V* = Ad (V") and a simple change of variable g = 1— \:

1
V= Ad, (V") = Adyx / Adonx (X)dA
0
1 .
- / Adxoax (X)dA
0

1
_ / Ad o (X)dp.
0

With the same notation we have the following Jacobians:

Theorem 2 (Differential of exponential). Let g(t) be a smooth curve on G,
X (t) = log(g(t)) be the exponential coordinates of g(t), V* = g~ the body
velocity and V* = gg~! the spatial velocity.

Then we can relate X and V', V* through

X = Z ad% (V?), (2.14)

= Z n—? ad% (V?), (2.15)
n=0

where {B,} are the Bernoulli numbers.

Remark 1. Note that equations (2.14) and (2.15) represent the infinites-
imal version of the Campbell-Baker-Hausdorff formula. Indeed, in their
original work [9, 2, 12] similar relationships are derived.

Proof. Recall the basic matrix equality

Adgorx = XX =3 (=) A ady

n! !
n=0
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and the simple equalities

1 v _ 1 1 1—eu
/ Mgy = = / e Mgy = —— %
0 u 0 u

From previous lemma we have

- 1
Vb= / e~ adx dA] (X)
-J0

- 1
—Au Y
= d\ X
-/(; ¢ L«=ale( )

1 —e™®

u :| u=ad x

(X), (2.16)

where the expression f(u)|y=ad, means: take the Taylor expansion of f
about v = 0 and substitute the linear operator ady for all w. That is:

o~ (=1)"

Vh= d% (X).
Z (n n 1)' @ X( )
n=0

We now want to invert the linear relationship between V? and X in equa-

tion (2.16). As it is proven in [22, Lemma 2], this can be easily done by

inverting f(u):

e
1 —e Uly=adyx

X=| (),

which explicitly written as a matrix series is

Similarly for the spatial velocity

o0

¥ = [ V= L k)

n=0

In the following we will sometime write equation (2.14) as
X =Bx V",

where with the symbols Bx we denote

n=0
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Recalling that Bgjyq = 0 for all & > 0, the two series (2.14) and (2.15) differ
only in the second addend:

B - m
X =V Fady (V) + ) Gy ¥ (V")
m=1 ’
s B s - B m m s
= Vi adx (V) + ) G adf (V)
m=1 )

Also, since Bg = 1,B; = —1/2,By = 1/6,B, = —1/30, the first terms look
like

. 1 1
X=v'4+ §adX(Vb) + Eadg{(Vb) -

= VP ady (V) 4 s adk (V) 4

Note that, for small X, the matrix series in equation (2.14) is full rank and
absolutely convergent, in particular at X = 0 we have X = Vb = Vs,

It is instructive now to sum the matrix series in equation (2.14) for the

important cases of SO(3) and SE(3). In general, since the dimension of G

is finite, say IV, the rank of the linear operator ad x is also at most NV and by

the Cayley-Hamilton theorem, there exist some function ay(X),...,an(X)
such that
N .
ady T =" a;(X)ady . (2.17)
i=1

Additionally note that
ady X =0 (2.18)

for all X € g, so that the rank of ady is at most N — 1.

We start by considering the SO(3) case: group elements are rotation
matrices and we denote them with the standard symbol R. The natural
isomorphism between the Lie algebra so(3) and R?is given by the Z operator
and satisfies

[2, 9] = (x x y),
so that the standard outer product on R® corresponds to the bracket ady

on s0(3). Thus, for simplicity, we refer to R? as the Lie algebra of SO(3).
Simple computations show that equation (2.17) reduces to

7 = —||z||%5. (2.19)

Lemma 3 (Time derivative of exponential coordinates on SO(3)). Let R(t)
be a smooth curve on SO (3) such that tr(R(t)) # —1. Let ¥(t) = log(R(t))
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be the exponential coordinates of R(t) and & = R™'R the body angular ve-
locity. Then we have

§= eyt 30 xw) + alll o
= (1 2 (- et o) (2:20)

where a(y) £ (y/2) cot(y/2) and w = wy+wy is the orthogonal decomposi-
tion of w along span{v} and span{v}*.

Remark 2. To the authors’ knowledge this expression is novel and relates
the time derivative of the angle-axis quantity ¢ with the body angular ve-
locity w. In a very peculiar way, it happens to hold that 1& A(p)~Tw with
A1)t defined in (2.5).

Proof. 1dentifying so(3) with R?, it holds

(o)

Ban =y
b=wet s ¢w+z 2 pmy,,
From equation (2.19) we have the relation
= —|||Pg*0m Y
= (=1 M PR,
Thus
i L S B2m 1 2 122
b=wt st il 13 [ty
il PY o
1~ 2
= 2wt v
30+ (1= all)) e

where the last equality follows from the Taylor expansion of cot(-). Addi-
tionally notice that

122
[off? =~ apenti

that is the orthogonal projection along the span{zb}J‘. Thus we can write
. 1~
Yv=w+ 51&0& - a("¢")Pr5pan{@}Lw
1~
= ot 5w — (bl
1~
=)+ 5w+ (L= a([[$l))er
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where, once again, w = w)| +w is the orthogonal decomposition of w along
span{y} and span{t}*, that is:

“|| = Plspan{y} (w) = EZ:Zi¢7

w = prspanw}J_(w) = w-u

O

Also, note that this particular result can also be proved through the dif-
ferentiation of Rodrigues’ formula (2.3). Differentiate Rodrigues’ formula,

multiply by ¢~ and express ¢~'¢ only as a function of {b\ = log(g).
We also have a corresponding expressions for the SE(3) and SE(2) cases:

Lemma 4 (Time derivative of exponential coordinates on SFE(3)). Let g(t)
(R(t),p(t)) be a smooth curve on SE(3) such that tr(R(t)) # —1. Let

X(t) = ({b\, q) = log(g(t)) be the exponential coordinates of g(t) and V* =
g~ be the body velocity.
Then we have

X =Bx(V"
= (14 Sadx +AQ ) adk 4161 ad ) (V)
where
v Aly) =201~ aly)] + 3 [o(y) - A)],
JBy) =[1 - a(y)] + loly) - B

and o(y) = (y/2) cot(y/2), Bly) £ (y/2)? /sin?(y/2). Additionally the op-
erator Bx can be written as

Bx = (2.21)

Proof. Consider the expression of adx in equation (2.2). If X = ({b\, q) €
se(3), then simple algebraic computations show that

ad = —2[|¢|]* ad’ ||| adk .

Substituting this relationship into equation (2.14) of Lemma 2, the result
follows after tedious computations, see Appendix A. O

For the SE(2) case, it is possible to compute a more explicit expression:

Lemma 5 (Time derivative of exponential coordinates on SF(2)). Let g(t)
(R(t),p(t)) be a smooth curve on SE(2) such that tr(R(t)) # —2. Let

o~

X(t) = (8,q) = log(g(t)) be the exponential coordinates of g(t) and V* =
g~ g = (@,v) be the body velocity.
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Then we have
f=uw
i =21 =A@O) g+ A@0) T
_ [ a-w8)/e ~1/2 ]q+[ a(f)  6/2 ]v

- 1/2 (1—a(8))/6 —6/2 o(6)
Proof. Differentiating with respect to time ¢ = A(f)~!p, we obtain
q':w%A(H)_lp-l—A_lp :w%A(G)_lAq-I—A_le
= —wA‘ld%A(&)q + ARy =-— %A‘l(R — A)g+ A™'Rv
= %(I—A_IR)q-I—A_le :%(I—A“T)q-I—A_Tv
where we used A='A = —A~'A and equation (2.8), equation (2.6). The
final result is obtained by substituting the definition of A=7. O

2.3. Metric properties on compact Lie groups. On any Lie group G,
the Killing form (-, ) is defined as the bilinear operator on g x g:

<X, Y>K £ tr(adX -ady) VX,Y €g.

A Lie group is said to be semi-simple if (-, -) i is nondegenerate. For compact
Lie groups (-, -)x is both nondegenerate and negative definite, so that by
a simple multiplication with a negative constant, we can define an inner
product on the Lie algebra g (e.g. on so(3) (-,-) £ —1/4(-,-)k). An inner
product defined this way will satisfy the crucial property of Ad-invariance:

(X,Y) = (Ad, X,Ad, V), VgeG,

where Ad is therefore an orthogonal operator of g. Equivalently the matrix
commutator satisfies

(ady X,Y) = —(X,adzY) VZeaq. (2.22)

Now, an Ad-invariant inner product on the algebra g induces a Ad-invariant
metric on the group G by either left or right translation: this gives the
additional structure of a Riemannian manifold to the group G. Without
entering details, we refer to [4] and we simply state the following result:

Proposition 1. With respect to an Ad-invariant metric, the geodesics of
G are the one parameter subgroups, that is the curves of the form exp(Y't),
with Y € g constant. Furthermore, the distance between the element g and
the identity eq = I € G is given by the norm of the logarithmic function:

lgllc = (log(g), log(g))*/2. (2.23)

The computational result we are interested in is an extension of Gauss’s
Lemma (see [4] and [8]), obtained thanks to property (2.22) and equa-
tion (2.23).
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Theorem 3 (Derivative of distance function). Let G be a compact Lie group
with bi-invariant metric (-,-). Consider a smooth trajectory ¢(t) € G, such
that g(t) never passes through a singularity of the exponential map. Then

S lallz = flom(9), V") = (os(g), V*).

3. PD coNTROL ON SO(3)

We begin with the problem of stabilizing a control system evolving on
a compact, semisimple Lie group. Without loss of generality we will here
consider only the SO(3) case. As explained in the previous section, a bi-
invariant Riemannian metric is naturally defined on SO(3) and allow us to
easily design appropriate Lyapunov functions.

We begin by briefly describing our approach for a simple first order system
on SO(3), described as in equation (2.1) by ¢ = ¢gV*. Consider the natural
candidate Lyapunov function

1
Wig) = 5“9”%0(3)7

and assume we can directly control the quantity V'’ € so(3) to any desired
value (i.e. the system is fully actuated). Then the proportional control
action

Vb= —k,log(g), Kk, >0, (3.1)
leads to

W(g(t)) = (log(g), —kylog(g)) = —2k,W,

thanks to Theorem 3. Thus, for this first order system, a logarithmic control
law ensures exponential stability for all initial conditions ¢(0) such that
tr(g(0)) # —1.

Now, motivated by standard control problems in mechanics and robotics,
we consider the stabilization problem for second order systems, that is for
systems where we have full control over forces (accelerations) rather than
velocities. A second order system on SO(3) has the form

g = gv°
{Vb = flg V)4, (32)

where g € SO(3) is the configuration of the system, f(g, V") € s0(3) is the
internal drift, and U € so(3) is the control input. Note that we once again
assume that the system is fully actuated. To regulate the configuration g to
the identity matrix I € SO(3), we couple the proportional action (3.1) with
a derivative term, i.e. with a term proportional to the velocity V?.

Theorem 4 (PD plus feedforward control on SO(3)). Consider the system
in equation (3.2) and let K, and K, be symmetric, positive definite gains.
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Then the control law
U=—f(g,V") — K,log(g) — K;V°, (3.3)

exponentially stabilizes the state g at I € SO(3) from any initial condition
tr(g(0)) # —1 and for all K, and V*(0) such that

Vo
7~ 00 Eo

where Apin(K,) is the minimum eigenvalue of K,,.

/\min(l{p) > (34)

Proof. We will here rely on the properties of the inner product on so(3).
Let idgg(s) be the identity automorphism of so(3). With a slight abuse of
notation, we can define the candidate Lyapunov function as

W, = 1<[10g(9)] ’ [ idso(s)  idso(3) [Iog(g)

2 Vb p id50(3) .[{p_l Vb :| >50(3)X50(3)7

where idgg(3) is the identity map on so(3), the inner product is taken in
50(3) X s0(3) and € is taken small enough.
The closed loop system satisfies

Vho= —K,log(g) — K4V*.

We now drop the subscript and write the previous system in exponential
coordinates X = log(g) € s0(3) to obtain

. = (=1)"B, .,
X:Z%adx(vb) = BxV
n=0

V= -K,X - K;V,

where we have defined Bx = >0 L_—lnr;& ad’%. Differentiating with re-
spect to time our candidate Lyapunov function we have

d

TWe= (X, By V) + (V. K;'V) + e (Bx V. V) + e (X, V)

= (X, V) + (VK (-K,X — K;V))
+ e(Bx V, V) + e (X, K, X — K;V)

= — € (X, K,X) = (V,K;'K4V) — e (X, K,V)
+ € <BX Va V>

The last term can be upper bounded by € (V, V) using Lemma 11 in Appen-
dix B, so that

d 1,[X X
EWE < _§<[V] ; Qe [V] )50(3)x50(3)
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where
eK, eKq/2

@c= eKy/2 K'Kg - cidgo(s)

is positive definite for small €. Local exponential stability is therefore proven.
We now show that condition (3.4) provides a sufficient bound in order for the
closed loop trajectories to avoid the singularity of the logarithmic map. Note
that Woy(t) is a non increasing function (since () is negative semidefinite)
and that

1

5“9@)“250(3) < Wo(t) < Wo(0)

1 _
5\’9(0)\’250(3) +(VP(0), K, 'V (0)) o)

1 -
< S9(0)1Z0g) + Amax (K IV (0]

N | —

2 1 b 2 2
900w + ey IV OF < /2

where we use the fact that the maximum eigenvalue of Kp_l is equal to the
inverse of the minimum eigenvalue of K,. By the previous equation, ¢(t)
can never become a rotation of 7 radians and therefore the singularity of
the logarithmic function is never reached. O

Notice that the proof follows the same steps as the usual one in R™. The
introduction of the cross term, proportional to a small ¢, is a well-known
trick. See, for example, Wen and Bayard [33] or Murray et al [26].

Remark 3. We have written the control law (3.1) and Theorem 4 in terms
of the body velocity V?, i.e. we assumed “body-fixed” control inputs. A
dual version can be easily written for the opposite case of “spatial-fixed”
control inputs, i.e. for the case V* = f(g,V?®) 4+ U. Thanks to Theorem 3 a
logarithmic control law is the correct choice also for this case.

Example 3 (Orientation control of a satellite). A standard example of a
control problem on a compact Lie group is attitude control of a satellite.

In the literature, various PD control laws based on different parametriza-
tion of the manifold SO(3) have been proposed: Euler angles [30], Gibb’s
vectors [31] and unit quaternions [34]. In particular, Wen and Kreutz-
Delgado [34] introduce the idea that the “error measure should correspond
to the topology of the error space”. Here we additionally require that the er-
ror measure correspond to the (natural) metric of the Riemannian manifold
SO(3). The second order model of a satellite is

g = g
Jwb = f(gawb)-l_Ta
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where the control inputs 7 is the total torque applied to the satellite either
by momentum wheels or by gas jet actuators. The internal drift is

[g"mo,w’] momentum wheels
[Jwb Wbl gas jet (Euler equations).

f(g,&") = {
Following early work by Koditschek [19], we introduce a slight modification
to the design of Theorem 4 and we adopt the modified Lyapunov function

k 1
W= nggWSO(g) + §<wb7 Jw')gs + € (log(g), Jw")
where the second term has the interpretation of kinetic energy. This leads
to the feedback law

T = —k,log(g) — K’ (3.5)

where we write the control law in R® making use of the isomorphism = given
in Section 2. Note that in equation (3.5) we are not canceling the nonlinear
Coriolis forces, but instead we are exploiting their intrinsic passivity prop-
erties. This procedure is what we refer to as Koditschek’s approach [19]; its
drawback is that we need to restrict ourselves to scalar proportional gains
k, (the derivative gain Ky can remain a (positive definite) matrix). This is
somehow a characteristic behavior (see the complete example on SE(3) in
the following section for more details).

This feedback has strong similarities to the ones already proposed in the
literature: it is instructive to compare it with the equivalent proposed by
Wen and Kreutz-Delgado [34]. Both laws consist of the sum of a propor-
tional and derivative action, where they differ is in the expression of the
proportional term. In particular along the “geodesic” direction (equal to
the rotation axis of the attitude matrix g¢), the two laws differ in the inten-
sity of control action. Our feedback relies on the notion of group norm (as
defined in equation (2.23)) and is proportional to this quantity. Instead the
control laws proposed by Wen and Kreutz-Delgado are based on either the
2-norm of the unit quaternion or the 2-norm of the vector quaternion, and
therefore exert an action proportional to either sin||g|| or 2sin(||g]|/2).

4. PD coNTROL ON SFE(3)

We now consider the extension of the results in the previous section to
SFE(3), the special Euclidean group of rigid-body motions. As described in
the introduction, this Lie group is common in robotic applications. Unfor-
tunately, since this SFE/(3) is not compact, the results of the previous section
cannot be extended directly. As before, we begin by studying the simple
first order case and we then couple proportional with derivative action for
second order systems. Finally we apply our results to the case of mechanical
manipulators and we then report some simulations.
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4.1. Proportional actions on SE(3) and first order systems. The
geometric properties of the group SE(3) have received much attention in
the recent control literature [7, 26] and a very complete treatment is con-
tained in [28]. A well-known negative result is the following: no symmetric
bilinear form on se(3) can be both positive-definite and Ad-invariant. There
is therefore an algebraic obstruction to the procedure we have followed for
the SO(3) case.

Recall the design procedure: we need a positive-definite bilinear form
(hence an inner product) to construct a Lyapunov function W, and we
need the Ad-invariance of this form to compute the time derivative of W
(Theorem 3). Therefore we here briefly consider bilinear forms defined on
se(3). Let Vi = (wy,v;) for i = 1,2, we have

1. A linear combination of Klein and Killing form: the most generic Ad-

invariant form on se(3) looks like

(V1, Va) ad—iny = a{wr,w2) + B((wi, va2) + (wa, v1)),

where with (-,-) we indicate the standard inner product on R?,
2. The standard inner product on se(3) = RS: discard the Lie algebra
structure of se(3) and write

<V1, V2>R6 = <w1, (.UQ> + <Ul, 1)2>. (41)

Hence we are left with two possible design choices: as proportional ac-
tion we can insist on the logarithm function (which no longer corresponds
to the geodesic direction of a Riemannian metric), or (giving up the Ad-
invariance) we can still regard SFE(3) as a metric space with respect to the
inner product (4.1) and compute the correct proportional action within this
new framework. 2

The two procedures are illustrated in Figure 1 for the case of left invariant
control systems § = ¢V’ the following two lemmas formalize this discussion.

Lemma 6 (Logarithmic feedback). Consider the left invariant system § =
gV® on SE(3) and let k, > 0. Then the control law

kols 0
0 (kot k)l | 1209

exponentially stabilizes the state g at I with time constant k,, from any
initial condition g(0) = (R(0),p(0)) such that tr(R(0)) # —1.

vh=— (4.2)

Proof. In exponential coordinates log(g) = X = ({b\, q) € se(3), the closed-
loop system is

X =By VP’
2Given an inner product on g, we can extend it to the whole T'G by either left or

right translation: we end up therefore with a metric structure on G. We refer to [4] for a
detailed treatment of this standard construction.
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Using the equations (2.18) and (2.21), we have

By X=X and Bx[g]:[ 0 ]

so that
X = - By (ka-|-kU [ 2 D = kX — K, [

Separating the rotational and translational parts

1& =~k

G = —kug—k,A@)Tq.
Regarding the rotational part, exponential stability is proven for all R such
that tr B # —1 (in order for the exponential coordinates to be defined).
Regarding the translational part, consider the candidate Lyapunov function
W = Ljg||%. Its time derivative satisfies

-2
d
SW = —(q, kuq + ko A(¥) " Tq)

dt
= —kullall® = (gl + 12Nl ]),

where last equality is obtained using the definition of A~! in equation (2.5)
and where ¢ = ¢ + ¢ is the orthogonal decomposition of ¢ along span{}

and span{zb}J‘. Thus local exponential stability is proven also for the trans-
lational part.

Finally, since # is a decreasing function of time, the closed loop trajecto-
ries will not encounter the singularity points of the logarithmic function, as
long tr(R(0)) # —1. 0

The second approach is based on the decomposition of the control system
on SE(3) into a control system on SO(3) x R®. Recall the notation intro-
duced in Section 2: g = (R,p), V* = (&%,v°), V? = (&°,v%). The original
systems ¢ = ¢V? and ¢ = V*¢ reduce to

R = R3S [ R = &R
p = R p = w Xp+vi
Indeed adopting the bilinear form (4.1) involves applying a proportional

action along geodesic directions for both the subsystems in SO(3) and R3
(therefore we call such approach double-geodesic).

Lemma 7 (Double-geodesic feedback). Consider the left invariant control
system § = gV® on SE(3) and let K,, K, be positive definite symmetric
gains. Then the control law

{ w — Ky loggos) (R)

' = —RTK.p
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FIGURE 1. Proportional actions on SE(2). From left
to right: logarithmic function (1-parameter subgroups on

SFE(2)) and double-geodesics for SO(2) x R% Each point
g € SE(2) is depicted as a frame on the plane.

exponentially stabilizes the state g at I, from any initial condition ¢(0) =

(R(0),p(0)) such that tr(R(0)) # —1.

Proof. In rotational and translation coordinates the closed loop system is

R = R(-K,log(R))
p=—Kyp.
]

Remark 4 (Symmetries in the control laws). Similar versions of the two
lemmas can be easily written for the right invariant case (¢ = V?®¢) and
some instructive behavior can be easily described. In the following, let
Glefe (t) and gright(t) the solutions to the left and right closed loop systems:

e To examine the logarithmic control law applied to a right invariant
system, recall the basic Lie group identity Ad,log(g) = log(g). Then
the closed-loop systems (with unit gains),

Gleft = —Glete 108 (g1ere)  and  Gright = — 10g(Gright) Gright,
are the same differential equation and we have

Glett (0) = Gright(0) = Glefo(t) = Grighe(t) (4.3)

e Regarding the double-geodesic control law we can state a similar but
opposite result. The control law for this case is

w® = —I(W 10g50(3) (R)
v* = —Kyp,
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and (with unit gains) the left and right closed-loop control systems are

{R = —Rlogso(s)(R) and {R = —logso) (B)R
p = —p p= —logsog (R)p—p.

Then easy algebraic steps show
Grefe (0) = gr_iglht(o) = Giere(t) = gr_iglht(t)' (4.4)
Note the peculiar correspondence between (4.3) and (4.4).

4.2. Second order systems . We now apply these proportional strategies,
coupled with a derivative term, to second order, fully actuated systems on
SE(3). Consider the left invariant second order system

g = gv°
{Vb = flg V) +U, (45)

where f(g,V?),U € se(3) are internal drift and control input. The previous
discussion leads to the two theorems:

Theorem 5 (Regulation via the double-geodesic law). Consider the system
in equation (4.5) and let K, K, and K; be the positive definite gains. Then
the control law

K, log (R)
by by w S0(3)
exponentially stabilizes the state g at I from any initial condition g(0) =
(R(0), p(0)) with tr(R(0)) # —1 and for all K, and w*(0) such that

O
7= [RO)IEog,
Proof. The scalar gain case (K, = K, = k,) admits a standard proof iden-
tical to the one of Theorem 4, but with the candidate Lyapunov function

k
W, V) = 22 (I1Rllo@ + Ipl2) + (V" Ve

o log 503 ( 1)
RTp

For the matrix gain case the notation becomes more involved but the alge-

braic steps are the same. In particular, also the sufficiency of condition (4.7)

(exactly corresponding to condition (3.4)) follows from the same steps as in
Theorem 4. O

— KV°, (4.6)

Amin(Ky) >

(4.7)

VP pe.

Theorem 6 (Regulation via the logarithm function). Consider the system
in equation (4.5) and let K, and Ky be positive-definite gains. Then the
control law

U(ga Vb) = _f(ga Vb) - ‘K’p log(g) - I{dvba (48)
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locally exponentially stabilizes the state g at I € SE(3).

Furthermore, if scalar gains are employed (K, = kyls and Kq = kqlg),
then the control law in (4.8) exponentially stabilizes the state g at I from
any initial condition g(0) = (R(0),p(0)) with tr(R(0)) # —1 and for all k,
and w*(0) such that

(RO
72— [RO)|Bog

Proof. Given the definition of matrix logarithm on SF(3) in Lemma 2, the
feedback law in equation (4.8) is equal up to higher order terms to the one
in equation (4.6). Thus local exponential stability is ensured.

For the scalar gains case, we can prove almost global exponential stability.
Consider the closed loop system:

ky > (4.9)

g=gV (4.10)
V = —k,log(g) — k4V, (4.11)
starting from initial conditions (¢(0),V(0)) = (g0, Vo) € SE(3) X se(3).
Since equation (4.11) is linear, we can decompose the solution V' as the sum
of two components V' = Viom + Vpar, Where Viom(t) = Voexp(—t/kq) and
Vpar is the solution of (4.11) with zero initial condition (and considering the

log(g) term as an external disturbance).
Notice now that the manifold

M ={(g,V):V = Xlog(g), for some A € R} C SE(3) x se(3)

is invariant for the system of ODEs (4.10) and (4.11) with initial conditions
(9(0),V(0)) = (g0,0). For, consider the system expressed in exponential
coordinates

X=BxV
V= kX —kqV

and subsitute X = AV to obtain

X =By \X =\X
o kp . kp
V_—TV—de_— (T+kd) V.

Hence for all ¢, X () € span X (0) and V(t) € span X(0), provided V(0) =
AX(0). It is now easy to show that the invariant manifold M is stable, since
assuming X = x vers(X (0)) and V = vvers(X(0)) we have

r=v

b= —kyx — kav = &= —kyr — kqt. (4.12)
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The proof is now complete by noting that the original system (4.10) and (4.11)
can be written as

X=BxV =Bx Vpar + Bx Vhom
V= kX —kaV == kX — kaVipar — k4Vhom
BX Vhom
_kdvhom
in Khalil [18] applies proving local exponential stability.

Additionally, if condition (4.9) is satisfied, then with the same bounding

technique in the proof of Theorem 4, we can prove that no singularity will
be encountered by the closed loop trajectories. O

where the disturbance [ ] decreases to zero exponentially. Lemma 4.7

Remark 5. As usual we can extend to the right invariant case (§ = V"¢)
all we have done for the left one. For both systems the logarithmic control
law (in Theorem 6) is identical. The double-geodesic law applied to a right
system has the slightly different expression:

U(g, VS) _ —f(g, Vs) _ leoié'O(S)(R) — K Ve,
Lop

Example 4 (Workspace control of mechanical systems). As in Example 3
for SO(3), we here apply our control strategies to fully actuated mechanical
systems. Examples of this class of systems are robotic manipulators and
6 degree of freedom (DOF) underwater vehicles. We assume here that a
change of coordinates and inputs has already been applied to the system so

that our model is described by

g = gV’
M(gV* = —C(g,V)VP = N(g,V*) + U,

where M (g) is the inertia matrix, C'(g, V) is the Coriolis matrix and N (g, V?)
is used to model friction and gravity. The kinetic energy of this mechanical
system is computed with the positive definite form (4.1) (coupled with the
left translation of the velocity ¢V'*). Hence, for this class of systems, we are
naturally lead to prefer the double-geodesic control law over the logarithmic
one:

ko logso sy (1)
kyR™p

Exponential stability is proved through the Lyapunov function

Ulg,V?) = N(g,V®) — [ ] — KV', (4.13)

k., ky,
W(g, V) = 2Rl + bl + (V" M(9)V )i
. <[ logso(s) (1)
R™p
Once again, in writing equation (4.13) we take advantadge of the passiv-
ity properties of the Coriolis term C'(g, V®)V? and we compensate only for

| MgV
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N(g,V?®). Rather than canceling both terms, this approach appears to be
a more natural way of controlling fully actuated mechanical systems, see
Koditschek’s early work [19] for more details.

A few remarks:

1. The control law in equation (4.13) has the usual advantages of PD
control described in [26]: ease of computation and no knowledge of the
exact system’s parameters required.

2. A second approach would involve a typical “computed torque” tech-
nique, where the Coriolis term C'is explicitely compensated for. In this
latter case, the logarithmic control law of Theorem 6 can be applied.

Future avenues of research consists in the application of the logarithmic
control law for the case of robotic manipulators for the purpose of hybrid
(position /force) control and the study from a (Lie group) algebraic viewpoint
if simplifications occur in the expression of the Jacobian manipulator (again,
when logarithmic control law is applied).

Example 5 (Position and attitude stabilization of planar rigid body). To
compare the two classes of controllers presented above, we consider the prob-
lem of stabilizing a planar rigid body. Note that the subgroup of the planar
motions SF(2) contains still most of the complexity and richness of the full
SE(3) case.

We have simulated the feedback laws described in Theorem 5 and 6
(double-geodesic and logarithmic laws for left invariant systems), and in
Remark 5 (double-geodesic and logarithmic law for right systems). As fore-
seen from theoretical considerations, the logarithmic control law generates
the same closed-loop trajectories for both the right and the left invariant
systems. The shape of the trajectories for all of the cases varies consider-
ably depending on the size of the initial angle error and on the gain values:
for all cases we picked an initial rotational error equal to 7/2 and we choose
two sets of scalar gains: (kp, kq) = (1,2) and (k,, kq) = (1,1). We here
report the SFE(2) trajectories for the 4 controllers with the first set of gains
(Figures 2 and 3) and the corresponding velocity profiles for the two left
invariant controllers, (Figures 5 and 6). Also we show in Figure 4 how the
trajectories change when a low derivative gain is applied (low with respect
to a constant proportional gain).

Looking at the plots in Figure 2 and 3 a few simple remarks can be made:

1. In agreement with the fact that the various feedbacks are equal in the
rotational part, the angular behavior is the same in all simulations.

2. All the control laws seem to converge at a very similar rate in both the
rotational (of course) and translational part. This is also predictable
since identical gains are applied. Indeed, quantitative results (which we
don’t report for brevity) indicate that the various input norms for the
logarithmic control law are larger than for the double-geodesic strategy.
Typically the logarithmic inputs would be about 10% larger than the
double geodesics (see Figure 5 and 6).
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3. Qualitatively, the clearest difference regards the opposite handedness

of the various control laws. Corresponding to a choice of left invari-
ant control system the logarithmic and double-geodesic feedbacks will
follow quite different paths even from a simple qualitative viewpoint
(Figure 2). In the right invariant case instead the handedness is the
same, but the double-geodesic law shows a more curved behavior (Fig-
ure 3).

. The difference in the shape of trajectories becomes even clearer in sec-

ond simulation in Figure 4 where a low derivative gain k4 is employed
and where the effects of the different proportional actions is therefore
emphasized. Note the oscillatory behaviour of both closed loop system:
the values (k,,kqs) = (1,1) corresponds to an slightly damped second
order systems. This kind of behaviour seems therefore mantained by
our nonlinear models.

The issues described in Remark 4 on symmetries of control laws and the

proof of Theorem 6, find clear illustration in the case of high derivative gain
(first set of simulations). Notice that:

5. both left and right invariant closed loop systems with logarithmic con-

trol law remain on the l-parameter subgroup of SFE/(3) determined by
the initial conditions (see right pictures in Figure 2 and 4). In Figure 5
and 6 we report the time evolution of the velocity V' = (v;,v,). In
the logarithmic control case, since the state remains on a l-parameter
subgroup, the ratio of the inputs v, /v, remains constant during the
simulation, see Figure 6 compared to Figure 5. These facts are pre-
dicted and are at the basis of the proof of Theorem 6.

. modulo the differing initial conditions, we recover the trajectories of the

left double-geodesic closed loop system by inverting the right double-
geodesic trajectories.
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Left system with Double-Geodesic control law

Left system with Log control law
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FiGUrRE 2. Trajectories of left invariant control systems
on SE(2). From left to right: double-geodesic control law as
in Theorem 5 and logarithmic control law as in Theorem 6.
Each point g € SFE(2) is depicted as a frame on the plane.
Note the opposite handedness of the two control strategies.

Right system with Double-Geodesic control law

Right system with Log control law
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Ficure 3. Trajectories of right invariant control systems
on SE(2).

From left to right: double-geodesic control law
as in Remark 5 and logarithmic control law as in Theorem 6.
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Left system with Double-Geodesic control law Left system with Log control law
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FIGURE 4. Trajectories of left invariant control systems
on SE(2) with low derivative gain kq. From left to right:
double-geodesic control law as in Theorem 5 and logarithmic
control law as in Theorem 6. Note that the state of the closed
loop system with logarithmic control law (on the right) re-
mains on the 1-parameter subgroup determined by the initial
condition. The double-geodesic control law instead gives rise
to a spiraling (2, y) motion (on the left).
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Ficure 5. Velocity profiles of double-geodesic control law
for the simulation depicted in Figure 2. The eight figures
show the time evolution of v,(t),v,(t) from the eight initial
conditions: the location of the 8 pictures corresponds to the
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FIGURE 6. Same as above, but for the logarithmic control
law. Note that the input magnitude is slightly larger for log-
arithmic rather than for double-geodesic control law. Also,
in the logarithmic case, the ratio v, /v, is constant for all
initial conditions, since the state ¢ € SF(2) remains on the
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1-parameter subgroup exp(Alog(g(0))) for all time.
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5. TRAJECTORY TRACKING

We describe here a general approach to trajectory tracking problems for
second order systems defined on Lie groups. In particular, by exploiting the
group structure we reduce the tracking problem to a stabilization one for an
appropriately defined error system.

In the following, we will assume that we are given a left invariant, second
order control system on G

g = gVa
{V = flgV)+U &-1)

and a control law U = Z(g,V) that makes the closed loop driftless system
g=gV, V= Z(g,V) locally asymptotically (exponentially) stable at the
identity eq = I. We want to design a control law that makes the state ¢
track a reference trajectory g4 € G described by: ¢4 = Vygq, for Vy4(t) € g.

5.1. Choices of error function on SE(3). In order to define a correct
notion of error function, we exploit the natural group structure of the con-
figuration manifold, see for example [34].

Given the interpretation of group elements on SF/(3) as coordinate frames,
the natural choice of state error is

A 1

€=9; 9,
which represents the reference frame as “seen” from the state of the system.
In other words, if ¢ represents the body frame and ¢4 the desired frame,
then e is the relative g to g4 frame. Decomposing this error in its rotational
and translational components, we have:

0 1
We call this the natural error. An equivalent definition would be ¢g71¢g; =
e~1, since, as described in Section 4, controlling e or e~! is the same control
problem.

If we discard the physical reasoning associated with the natural definition,

other choices of configuration error are possible. In particular the following
two appear appealing:

1. Define the reciprocal error as

- RRY p— RRT
€recip £ ggdl = |: Od P 1 aPd :|7 (53)

where we exchange the order of multiplication.
2. In keeping with the notation in [26], define the hybrid error as

RTR p-—
€hybrid = [ 0 p 1”], (5.4)

where we keep the natural error choice for the rotational part (we could
instead have RRT).
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Even though these latter two definitions seem also rather natural, the Lie
group structure of the original problem is not taken into account. It happens
in particular that reciprocal and hybrid error (between body and desired
frame) depend on the arbitrary choice of inertial frame. For, recall that a
change of inertial frame correponds to a left translation. Thus consider the
map L, such that L, g = gog and Ly g4 = goga. Then, if go = (Ro, po), we
have

0 1

recip —

/ [ RoRRYRY  p— RoRRYREpy ]

/ RTR; Ro(p— pa)
ehybrid = 0 1 .

Note that for the hybrid error, this inertial frame depedency simply implies
the presence of an arbitrary rotation in the translational part. For the
reciprocal error instead, more evident effects appear: for example, even for
P = p4, i.e. for overlapping frames, erecip “sees” some translational error if
R # R,;. This will reflect in a control law with non-zero translational input,
which is undoubtedly undesired.

Eventually note that the drawbacks just described affect also the inverse
definitions er_e}:ip and egylbrid. Therefore, after this theoretical discussion, we
tend to prefer the natural choice (5.2); the simulations performed later will
further clarify the final choice.

5.2. Basic properties of dynamical systems on Lie groups. We char-
acterize here the behavior of the composition of systems defined on the group
G. Recall that, given I,r € G and L, R € g, we call [ = [L a left conirol
system and 7 = Rr a right control system. Also, given two systems with
state g(t),h(t) € G, we call the inverse system the one corresponding to
the state g(t)~! and the product system the one corresponding to the state
g(t)h(t).

By performing some chain rule differentiations, we have:

Lemma 8 (Time derivative of composed systems). With the notation just
introduced it holds

[t=-p l= IR,

and

d(gh Y
(gh)_l% = Ady-1(g7'g) + 7'

R gyt = g1 + Ady (i)
where the adjoint map Ad is defined in Section 2.

By means of these basic results, we are able to describe straightforwardly
how, for instance, the product of two left control systems evolves in time:
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letting il =1L, and ig = Iy Ly, we have

d

il = hilp(Adyor Ly + Ly). (5.5)
Lemma 9 (Derivative of adjoint map). Let U(t) € g, [ = [L and i = Rr,
with l,r € G and L, R € g. Then

d .

= (Adl(t) U(t)) — Ady U + AdJ[L, U],
d .

= (Ad,(t) U(t)) — Ad, U+ [R, Ad, U].

Now, recalling equation (5.5), we can define l1 £ [;l5 and Vi5 £ Adl;1 L+
Ly. Lemma 9 gives:
{ iz = LaViz

: , 5.6
Vie = Adi Ly +[Ador Ly, L] + Lo, (5.6)

which shows how we can write in full generality the second order dynamics
of the combination of Lie group systems.

5.3. Extending regulators to trajectory trackers. We are now able to
formulate the following general solution:

Theorem 7 (Trajectory tracking). Consider the system in equation (5.1),
the asymptotic (exponential) regulator law Z (g, V') and the desired trajectory
ga(t). Define the configuration error e = gd_lg € G and the velocity error
V.2V — Ad -1 Vy € g. Then the control law

U = Uﬂ‘(g,V) + Utr(gava Vda Vd) + Z(G,Ve) (57)

where

Uﬂ(gav) = _f(gav)
Us(9, V, Vi, Va) = Ad -1 (Vi) + [Ady—1 (Va), V],
makes the configuration error e locally asymptotically (exponentially) ap-
proach the identity I € G.
Proof. The result follows straightforwardly from equation (5.6). Indeed con-
sider the error e = gd_lg ans its velocity V., =V — Adgd—l V4. Then the ad-
denda in equation (5.7) cancel out exactly the extra pieces in equation (5.6)
and the closed loop system satisfies
V. = Z(e, V2).

By assumption, asymptotic (exponential) stability is proven. O

A few comments: first, for the SO(3) case we can simplify the tracking law
by defining Uy, = Ad,-1 V. The PD control law in equation (3.3) would still

ensure exponential stability thanks to the orthogonality properties discussed
in Subsection 2.3.
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Second, in stating Theorem 7, we assumed our control system to be left
invariant and our trajectory to be right invariant. These two choices are
suited to the kind of mechanical systems we are interested in, such as exam-
ple satellite reorienting and robotic manipulation. However, similar versions
of the theorem can be stated using any combination of right and left invari-
ant systems.

Eventually, Theorem 7 can be stated for the other definitions of error
function: reciprocal and hybrid.

1. For the case of €yecip, the results obtained in the previous subsection
lead straightforwardly to

{ érecip = €recip (Adgd V- Vd) £ erecipVe
Ve =Ady(f(9,V) +U) = Va+ [Va, Ady, V]

and similarly to equation (5.7) we set
U= Adg—l (Uﬂ' + Utr + Z(erecipa Ve))a

where Uy, =V, — Vi, Ad,y, V] and Ug = —f(g,V).

2. For the hybrid error instead, we want to keep the computations in
local coordinates (R, p): from definition (5.4) we have p. £ p — pg and
R. = RTR. For the rotational part R. € SO(3), we apply Theorem T;
for the translational part we have

Pe = Rv — vy
e = R(fig,V) + a) — 04 + R(w x v),

where a € R? is the acceleration input and f; is the drift in the trans-
lational coordinates (see equation (5.1)). So we can write U = (7, a),
where 7 is choosen from the previous theorem and a PD controller for
the translation part gives

a = ag+ a¢ + RT(_kppe - kdpe) (58)
where ag; = v X w and ag = — fi(g, V).

Example 6 (Position and attitude tracking on SE(2)). To compare the var-
ious error choice presented above, we consider the trajectory tracking prob-
lem for a planar rigid body. This control problem models for example a
robot manipulator spray painting planar objects.

We have simulated the trajectory tracking strategies just described for
the second order system (5.1) with no internal drift: f(g,V) = 0. To recall
the notation, our system is

6 1 0 0 w @
2 | =0 cosf —sinb . and vy | = U.
Y 0 sinf cosd Uy Uy

The reference trajectory has the shape of an | character in the (z,y)
variables and it specifies the reference angle 6 to be parallel to the normal
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vector of the planar curve. Thus the reference trajectory is discontinuous
in 6(t) and in the linear velocities v, (¢) and v,(t). To explicitely show
the differences due to the various error choices, we intentionally run the
simulations without including the additional term Uy, (no Ug is necessary
since the system we simulate is driftless). Indeed, assuming proportional and
derivative gains are high enough, a simple PD control without feedforward
does the job nicely; we picked (k,, kq) = (3,6).

Recalling the PD approach in equation (5.8) for the hybrid error case,
for natural and reciprocal error functions we employed the double-geodesic
control law as the Z regulator in Theorem 7.

We report in Figure 7 and 8 the time evolution of the state g = (8, z,y) €
SFE(2) depicted as a straight line on the plane. In the first figure we report
the natural and hybrid error cases, while in the second Figure we show the
reciprocal error wihtout and with left translation by ¢0 = (7/2,1,1). The
simulations start from the upper left corner of the | character and run
clockwise: the linear velocity of the reference path is constant and equal to
lem/sec, the angular velocity is always equal to zero (but the angle evolution
has steps at each corner).

A few conclusions can be easily drawn:

1. Theorem 7 with natural error function and double-geodesic regulator
is exactly equivalent to hybrid error function and double-geodesic ap-
proach described in equation (5.8). It turns out therefore that, even
though the hybrid error definition is inertial frame dependent, this de-
pendence disappears in the closed loop (the correct simplifications take
place).

2. The reciprocal error function (coupled with the approach in Theorem 7
and a double-geodesic regulator) shows both the drawbacks discussed
in Subsection 5.1: an error in the rotational part affects the transla-
tional part and an inertial frame translation changes the closed loop
trajectories (compare left to right picture in Figure 8).

We eventually draw some conclusions: the theoretical analysis in the pre-
vious subsections and the numerical simulations here presented, suggest that
the natural error function defined in equation (5.2) is the correct choice.
While the reciprocal error function shows some evident drawbacks, the hy-
brid error in equation (5.4) (coupled with the strategy described in the previ-
ous subsection) represents an equivalent choice. Nevertheless the definition
of hybrid error on SF(3) relies on the natural error function for the rota-
tional part and needs a distinct control design (it is not possible to extend
point stabilizers into trajectory trackers in a straightforward manner).
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Double-geodesic control law with natural error Hybrid error and double—geodesic strategy
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Ficure 7. Trajectory tracking for left invariant second order
systems. On the left natural error, on the right hybrid error:
they are identical pictures! As the pictures confirm, it is
equivalent to apply a double-geodesic strategy in Theorem 7
with the natural error function or to use the hybrid error
definition and then use a double-geodesic strategy in local
coordinates (5.8).
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Ficure 8. Trajectory tracking with Theorem 7 applied with
reciprocal error function. The simulation on the right shows
the dependence of the scheme on an arbitrary left translation.
As described in Subsection 5.1, errors in the rotational part
affect the translational part.
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6. LINEAR AND HOMOGENEOUS APPROXIMATIONS OF SYSTEMS ON THE
EUCLIDEAN GROUP

So far we have focused our attention on fully actuated control systems,
where the number of indipendent control inputs is equal to number of po-
sition variables (and in our case to the dimension of the group). More
challenging control problems arise when dealing with underactuted mechan-
ical systems possibly defined on manifolds of the form G x M. A classic
example of a purely Lie group system is the underactuated satellite model,
which can be described as

g:g(glul ++Emum)a

with EZ € g and m < dim(G). More generally many interesting locomotion
systems have also internal “shape” variables. For example the model of a
car with two trailers falls into this class and can be written as

1 A
g =g 0 v
Ll—2 tan(rsz)
) 1 tan(ry) 1
= |= —
"2 Lycos(ry) Ly an(ry) | v
f‘l = W,

where g € SF(2) and the operator ~ maps R® to se(2) in the standard way.
We now concentrate on a toy example and show how to generalize some
of the techniques introduced so far.

6.1. Motivating example. Following [32] and [27], we write a simplified
kinematic model for aircrafts and underwater vehicles on SFE(3) as

0 —w3 wy w
. W3 0 —u 0
9=19 —w9 W1 0 0 !

0 0 0 0

where we assume we only have 4 independent actuators: velocity along the z
axis and the three angular velocities. We want to globally track a reference
trajectory ¢ = gVy, where Vy lies in the subspace of feasible velocities.

Define the error attitude as R, = RgR and the error position as z, =
RT(p — py) (see later for an interpretation). Then, with some easy algebra,
we write the error equations as

R.=R.G,
v Ud 6.1
fe=zexw+ | 0| =R 0 (6.1)
0 0

where w, = w — szd.
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Lemma 10 (An asymptotically stable tracking feedback). Given the system (6.1),
let zey be the first component of z. and 1. = log(R.). Then the control law

v=1vg — k12e1 (6.2)

. _ s Vd
o = s =y + (Tl L=l 7Y o o
el e 0

ensures global asymptotic stability as long as vy # 0.

Proof. Consider the candidate Lyapunov function

1 1
W(Rer =) = 31 Relfiog + gl
and differentiate with respect to time
d v vy
_W:<¢67w6>+<zev 0 0 >7
dt 0 0

where we exploit as usual the properties of exponential coordinates. Substi-
tuting (6.2) we have

— RT

d
W = k2 o+ (e, we) + (26, (1= B])

and plugging in Rodriguez’s formula from Lemma 1

d  fsinfll, 1 cos|ledl <) | Y
—W = -k zz + (e, we) + ze,¢e( I — . 0

i e (e we) el T o]
_ (sin |1, 1—cos [lef| —\ | ¥

— ky22 4 (e, we) — (0, 5 (Smw Iy - Yoo |,

e (e we) = el T o]

The control law in equation (6.3) cancels out exactly the last addend and
gives
d 2 2 2 2
W= —hize = kal[Yell® = —kizd = kol Bellso ) (6.4)
proving the Lyapunov stability of the closed-loop system.
We can now invoke Lasalle’s principle to prove asymptotic stability: the
closed-loop trajectories of the system converge asymptotically to the largest
invariant set contained in

Q{(Re,ze) : W =0} = {(Re,2) € SE3): R. =1 and z, = 0},
and since in Q the dynamic equation of the closed-loop system reduces to

Ud
0 1,
0

0=we =7
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then, as long as vy # 0, the largest invariant set contained in €2 is the set

{(1,0)}. O

Despite the successful analysis for this toy example, the kind of technique
we have pursued so far cannot be generalized to solve generic point stabi-
lization problems and tracking problems for second order driftledd systems
or underactuated systems with drift (for example). For these cases vari-
ous approaches have been developed in the literature. Here we restrict our
interest to the following issues:

1. Jacobian linearization for gain scheduling design. For this standard
approach to trajectory tracking we here derive simplified Jacobian lin-
earizations of systems defined on SO(3) and SE(3).

2. Homogeneous approximations for point stabilization. We refer the
reader to [24] and [25] for an introduction to this subject. We here
want to describe a simplified way to obtain these approximations for
systems defined on SO(3) and SE(3).

In the following our attention will focus on mechanical systems defined
on Lie groups and actuated by only body fixed forces. Example of this sort
are car with trailers, satellites and buoyant underwater vehicles (basically
everytime gravity can be neglected).

Even though the following analysis can be generalized to full second order
models, we here restrict ourselves to to kinematic (first order) Lie group
systems and derive linear and homogeneous approximations for them. Since
the mechanical system is left invariant, we deal with the standard Lie group
ODE:

g=gV, Veg. (6.5)

Recall that, as described in Section 2, the previous equation can be repre-
sented in exponential coordinates by the series expansion in equation (2.14),

X=> (_172—7]3” ad’% (V), (6.6)

where X = log(g) € g. Out of this series expansion we will easily derive
linear and homogeneous approximations.

6.2. Jacobian linearization with respect to exponential coordinates.
For a gain scheduling solution to the tracking problem, we are interested in
computing the Jacobian linearization of the standard system (6.5) along a
reference trajectory g4(t) € G, such that g5 = g4Vy. As suggested in the
previous section, we set € = gd_lg to be the error state and obtain the error
equation

é=—Vie+ eV, (6.7)
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If exponential coordinates are used to parametrize the group G, the results
in Lemma 2 (equations (2.14) and (2.15)) lead to

1
E=(V-Vi) + Fade(V+Va) + o[ E]]"),
where I = log(e) € g, since in equation (6.7) V is a body-fixed quantity
and —V? is a spatial-fixed one. Recalling the skew symmetry of the linear
map ady, namely ady Y = —ady X, we have

. 1
E=(V=Vi) = adwiv,y E+o(|E[)
and the linearization about £/ = 0 and V = Vj is easily computed as

E=(—ady)E+ (V- Vy). (6.8)

Note the particularly simple expression of this Jacobian linearization. This
is of concrete interest in designing gain scheduling controllers with global

tracking properties. In the following we apply this expression to the §03 and
SE(3) cases.

Remark 6 (Jacobian linearization of system on SO(3)). Consider the er-
ror attitude R, = RTR € SO(3) and its exponential coordinate 1, € R®

such that R, = exp(t.). Then equation (6.8) tells us that the linearization
of system in equation (6.7) about ¥, = 0 and w = wy is

¢e = (_ad)¢e + (w - wd)a (69)
0 Wd3 —Wwd2
= —Wq.3 0 Wy 1 Ve + I3 (w — wd) (6.10)
Wdo  —Wwd1 0

= A¢e ‘|‘B(w —wd).

Note the simplicity of this formula: the A matrix depends linearly on the de-
sired angular velocity and the B is the identity. No trigonometric functions
are present.

Remark 7 (Jacobian linearization of systems on SE(3)). Even though equa-
tion (6.8) holds in SFE/(3) case as well, we here consider a different parametriza-
tion rather than exponential coordinates. This allows consistency with the
following subsection on homogeneous approximations.

Consider the error matrix e = g;'g € SF(3); in its rotational and trans-
lational parts it reads (Re,pe) = (RYR, RY(p — ps)). We parametrize the
attitude matrix R. with its exponential coordinates . € R? as for the pure
SO(3) case. Regarding the translational part, we choose z. = RIp, as our
coordinates in order to have the velocity v come into play linearly (also this
choice shows its usefulness later in the design of homogeneous approxima-
tions).

By definition we have

ze = RI'pe = RT(p — pa) (6.11)
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and differentiating
2= —R"(p—pa) + RT(p - pa)
= —ORY(p - ps) + R (Rv — Ryvg)
= Gz + (v — RTwy).
We now substitute in 1, for R, using Lemma 1

sin (||| ~ | 1= cos[[te]| 7
¢e+ ¢e Ud,
|2 | [l ||

and we linearize about (1, 2z¢) = (0,0) and (w,v) = (wq, vq):

Ze = —Wze + (U - Ud) + QZevd

= [ —va —ad][fE] + (0 - va).

€

2e:—c’&ze+v—(l—

For the full system on SE(3) we have therefore

d ¢e (:Jd 0 ¢e W — Wy
A e[ R E=
where (1, pe) = (log(R.), Rgpe) € RC.

Note how again, in equation (6.12), the A matrix depends linearly on
the desired velocities, the B matrix is the identity and neither of the two
depend on trigonometric functions of the state; the same linearization is
obtained using both mixed coordinates (¢, p.) and exponential coordinates
X. = log(e). We here adopt the choice in equation (6.11) for physical
reasoning and for consistency with the following section on homogeneous
approximations.

As afinal note, the Jacobians we have computed have the advantadge over
more standard approaches of being independent of rotation matrices. If only
body fixed forces act on the system, then this property is also mantained
by the full state Jacobian linearization. This helps in two ways: first global
properties are improved, since no singularity is encountered and second,
modern gain scheduling techniques for linear parameter-dependent plants
can be more easily applied, see for example [16, 1].

6.3. Homogeneous approximations for SO(3) and SE(3) standard
systems. Time-varying homogeneous feedback has proven to be a viable
tool to achieve exponential point stabilization of nonlinear driftless control
systems. Central point in the theory of homogeneous feedback are vector
fields invariant under certain standard transformations (called dilations).
These vector fields are called homogeneous (degree zero) and their basic
property is the equivalence of uniform asympototic stability and global ex-
ponential stability. 3 A classic reference is [11], while modern developments

®More precisely only a slightly weaker definition of exponential stability so called p-
exponential stability is achieved, see [25] for the details.
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can be found in the work of Kawsky [17] and Hermes [13]. In particular,
in this latter reference, approximating homogeneous expansions are defined
and their control theoretical application studied.

Regarding the stabilzation problem for nonlinear driftless control systems,
the use of time-varying (or discontinuous) feedbacks is proven necessary by
the famous Brockett’s theorem [6]. On the other hand smooth time-periodic
stabilizers with garanteed asymptotic stability show rather slow convergence
rates, so that the application of homogeneous feedbacks becomes appropri-
ate. A comprehensive description of this succesfull approach is described
in [25].

We here concer ourselves with the problem of computing homogeneous
approximations to left invariant vector fields on the Lie groups SO(3) and
SFE(3). We compute these approximating vector fields after expressing the
original system in exponential coordinates: it is possible to simply read off
the homogeneous expansion directly from equation (6.6). Instead of dealing
with the very general case, we show here a few simple examples and we
start by focusing on the SO(3) case. From Lemma 3, we have that R = R®
translates into

b=t 3 x )~ (1= allél))es, (6.13)

where ¢ = log(R) € 50(3), a(y) £ (y/2) cot(y/2) and w = W)+ wy is the
orthogonal decomposition of w along span{t} and span{e}+.

Consider now the kinematic model of a satellite actuated by only two
momentum wheels (see [23] with zero total angular momentum):

R = R(wlé] + w2€2).

Since [€1, €3] = €3, the dilation associated with this control system is (1,1, 2).
With respect to exponential coordinates, it is straightforward to compute an
homogeneous degree one approximation. Indeed equation (6.13) (assuming
w3 =0) as

g [ [ wy 1 0 0 w V1
o e | = | wo | + 5 0 0 -—w by | + oIl
A 0 —wy w; 0 3
wr + %w2¢3
= | w—geits | +o(lvl?)
| 5 (withy — wathy)

and the approximating vector fields are

d (o w1 1 0
a Py | = w9 = 0 wy + 1 way. (614)
V3 L(withy — wathy) 50 —iy

Once again, we are therefore dealing with the standard Brockett’s nonholo-
nomic system [6].
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Regarding the standard SF(3) system, by applying the same transforma-
tion of the previous subsection (that is going from, p to z = R’ p), we (once
again) have

R=R&

Z=U—wX 2z

As instructive example, we assume to be dealing with an underactuated
system with inputs v = [ 0 0 v ]T and w = [ wy wy 0 ]T (being a
little sloppy with notation). Then the dilation is (1, 1,2, 2,2, 1) with respect
to the standard basis on T'SE(3) = SE(3) xse(3). We deal with the rotation
part the same way we have done in the pure rotational case obtaining (6.14).
For the translational part one obtains

d 21 0 0 0 [0%5) 21
— | 22 =10+ 0 0 —-w 29
dt 23 | v ] | —w2 Wi 0 23
i 0 i i Wo 23
= 0 + —W1Z3
| V] | —w221 + w122

and defining v = v — wy21 + w122, we have an homogeneous approximation
for the full state model as

[ 1y 0 1 0
V2 0 0 1
d | s | _ | 0. 11y —1y
% 7 = 0 (e 0 wy + s w2
Z9 0 —Z3 0
L Z3 ) L 1 ) L 0 i L 0 1

Example 7 (Kinematic car on SE(2)). The approach described above is a
generalization to SE(3) of the standard transformation that puts the kine-
matic car model into chain form. Consider the simple kinematic model

0= w
T =1vcosb
y=wvsinb,

also written as
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Then by defining [ jl ] =RT [ z ] and zgp = 0, we obtain the transformed
2

system as
é’o =w
21 =v+ w2z
ég = —Wz1.

By redefining v = v + wz; we have transformed our original system into
chained form. For more details we refer to [24].

7. SUMMARY AND CONCLUSIONS

In this paper we have generalized proportional derivative control laws for
systems in R” to systems on matrix Lie groups. In the compact case (e.g.
SO(3)) we make use of the natural metric structure of the configuration
space and give completely general results. Similarities with existing control
laws by Wen and Kreutz [34] are discussed. We also design generalized
PD control laws for SE(3), where no natural metric structure is present:
different possible choices depend on whether SF(3) is treated as a direct or
semi—direct product of SO(3) and R? for the purposes of controller synthesis.
We then show an additional advantage to using the group structure by
extending controllers designed for stabilization to controllers for trajectory
tracking. The group operation naturally defines a notion of error function
with the same dynamics as the original system; as in the the linear R™ case,
we track the desired trajectory by stabilizing the error to zero. Additionally
we discuss various choices of error function and we evaluate them through
a theoretical and numerical study: a natural approach turns out to be the
most appropriate. Many of the results stated for the Euclidean group SFE/(3)
have a much wider scope and hold for generic Lie groups.

Regarding control problems related to underactuated mechanical systems
(point stabilization and trajectory tracking), the methods we have illus-
trated allow us to gain some insight into how to design gain scheduled linear
controllers for trajectory tracking and time-varying exponential stabilizers
through the use of homogeneous feedback laws. In doing this, the notion of
group error plays an important role in understanding global properties and
the notion of exponential coordinates helps in deriving rather simple linear
and homogeneous approximating vector fields.

As a future direction of research, we plan to focus on mechanical systems
with symmetries, where the use of geometric techniques allows the system
dynamics to be split into a set of reduced dynamics and a principal connec-
tion which describes the reconstruction process (for a discussion see [3]). In
this setting, the dynamics of the system have the form

g=g(-A(x)i + 17" (2) Ad} p)
M(z)i = N(z,%) +u
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where @ € M describes the base manifold (shape space), g € G gives the fiber
coordinates, and the remaining notation is as described in [3]. We retrieve
the equations considered here when A(z) = —1, p =0, and dim (M) = n.
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APPENDIX A. TIME DERIVATIVE OF EXPONENTIAL COORDINATES ON
SE(3)

We here give the proof of Lemma 4 in Section 2.

Proof. We here want to compute an explicit expression for the quantity

By =id + ;adx +m§=:1 )1 ad¥

on the Lie algebra se(3). The operator ady is finite rank and satisfies
adf = —2|[||* ady ~[|¢[|" ad,

where X = ({b\, q) € se(3) and || - || is the standard norm in R3. Therefore,
for all m > 2, we can express ad¥”" as a linear combination through some
coefficients a,, and b, of ad% and ad%:

ad¥y" = a,, ad% +b,, ad¥ .
Both series of coefficients {a,, } and {b,, } obey the same difference equation
em = =2[[$lPem—1 = 10| emn—2, (A.1)
but with different initial conditions:
a1 =1 by =0
ar =10 by =1
The solution of the difference equation (A.1) is of the form
e = (=1 [P (&1 + Eem),
with free parameters &. Substituting the initial conditions we obtain
= (=1)" [P (=24+m) m>1
b = (=) [P (=1 4+ m) m > 1.
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Plugging this result in the definition of Bx, we have

1
BX_ld-|—2adX-|—Z j(m ad% +b,, ad%)

=id + % ady +A4 adgg +B adg{, (A.2)
where
A= ;), =y B o I (=24 m)
m=1 m=1
= = P 1 m).
m=1 m=1

It is then possible to evalute A and B. To simplify notation, let y = ||¢||
and a(y) = (y/2) Cot(y/Q); we have

2 — ""Bam, % B2m 2
A= _= A7) P2m 2m m
2 Qm) 2y2 Z my

2 1/ d
= ?(1 - a(y)) + @(yd—ya(y))

where in the last equality we used the Taylor expansion of cot(:) and the
fact that

o0
:E a,z” = af(x E a,nx"
n=0

A very similar decomposition holds for B; eventually, since

o0 = Gy = e - e
we get
2 N RS oly) — M
A= " (1—aly) + 22 ( (v) sinz(y/Q))
and
1 . 1 oly) — _(y/2)*
B = % (1-a(y) + 21 ( (v) sin2(y/2)) .

Expression (A.2) is now completely known. To prove equation (2.21), we
write out explicitely what ad% and ad% looks like. From equation (2.2)

72 !
= [T 8] a7 0]
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so that

Bx =id + %adx -I—Aadg{ -I—Bad‘)l{

Is 0 1l 0 P20 0
= - ~ A ~ B ~
[0 13]+2[ﬁ¢+ R T
_ | I+ 30+ A¢? 4 By 0
* I3+ 3 + Ap? 4+ By?
Recall now that ¢* = —||¢[|2¢? and substitute in the expressions for A and
B. We have
B = | 330+ (A= [[0]?B)d* 0
X = L 2 B3Y oh2
* I+ 50+ (A= [[9l"B)¢
_ | fot 301 = adllvi) e 0 _
* Is + 30+ (1 = a((l¥])¢?

Now it is enough to note that the (1,1) and the (2,2) blocks are equal and
that the (1,1) block is exactly the B operator on SO(3). From Lemma 3
we have

By = A(qi)_T 0 ] .

APPENDIX B. PROOF OF BOUND IN THEOREM 4

We here want to prove an analytic bound required by Theorem 4 in Sec-
tion 3. Recall the definition in the proof of Theorem 4:

Bx :50(3) — so(3)
Ve S B g )

Let (-,-) be the standard inner product on s0(3) = R? introduced in Sec-
tion 2. We have:

Lemma 11 (Bound on cross term). Let g(t) be a smooth curve on SO(3),
X (t) = log(g(t)) € so(3) the exponential coordinates of g(t) and V = g~1g
the body velocity. If tr(g(t)) # —1 for all t, then the following bounds hold:
d
VIE + IVLPadiXD < (X V) < [V, (B.1)
where a(y) = (y/2) cot(y/2) and V =V + V is the orthogonal decomposi-
tion of V along span{X} and span{X*}.
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Proof.
L vy = BV, V)

<dt '
1 - B2m

V), V)

ﬁMg

1
= [VII* + {adx (V

o] B . .
= IV + Vel + 3 (2;),<ad%( (V).7).
m=1 ’

Note now that, since
(Viady (V) = —(adx (V),ady (V) (B.2)

then
(B.3)

(V,ad¥" (V) = (=1)"] ad (V)|*

Substituting, we have
) B2m m
[lad’ (V)|I*

d
(V)Y =IVilP + Vel + Z AT

) B m m
= IVyIl* + [|Vel? {1 + Z Wﬂlg lad% (VO)|* ¢

where in the last equality we used adX(V) =adx(Vy)
Now noting that || ad’ (vers[V])|| < || X]|", and that (=1)"Bg,, = —|Bam|,

we get the two bounds
d _ 2 2 N Bowl || (Ve P
<%X7V>— V= + 1Vl {1—;::1 2m)! dy Tl

2

< VI + IVl = 11

and

)

d Vi
— X, V)= HVIIW"‘HVLW{ (W)

<dt
zuw.u?+uw{ > 5 ,HXHM}

m=1

3 ng
l\')

= (VI + VLX),

where the last equality holds thanks to the Taylor expansion of cot(-). O
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