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Nonequilibrium dynamics of the complex Ginzburg-Landau equation: Analytical results
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We present a detailed analytical and numerical study of nonequilibrium dynamics for the complex Ginzburg-
Landau equation. In particular, we characterize evolution morphologies using spiral defects. This paper is the
first in a two-stage exposition. Here, we present analytical results for the correlation function arising from a
single-spiral morphology. We also critically examine the utility of the Gaussian auxiliary field ansatz in
characterizing a multispiral morphology. In the next paper of this exposition we will present detailed numerical
results.
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I. INTRODUCTION perature, the system prefers to be in a spontaneously magne-
tized state. The evolution of the system from the unstable
There have been many studies of pattern formation in thénitial state is a complex nonlinear process. In appropriate
complex Ginzburg-LandalCGL) equation, which has the dimensionless units, this evolution is described by the time-
general form dependent Ginzburg-Landd@@DGL) equation, i.e., Eq(1)

with z//(F,t) real anda=B=0. The system evolves by the
formation and growth of domains that are enriched in either
up or down spins and are characterized by a time-dependent
. R length scalel(t). In the case of a pure and isotropic ferro-
—(1+iB)|g(r,0)|2u(r ). (1)  magnet, the domain growth law Is(t)~t2 which is re-
ferred to as the Lifshitz-Cahn-Alle(L.CA) law [9]. The pri-
In Eq. (1), (r,t) is a complex order-parameter field which mary mechanism for domain coarsenify “phase-ordering

depends on spacé)(and time ¢); anda, 3 are real param- dynamics”) is the curvature-driven motion and annihilation

eters. The CGL equation arises in diverse contexts, e.g?,f interfaceq(or defect$. Ohtaet al.[10] have formulated an

chemical oscillation§l], thermal convection in binary fluids ntérface-dynamics approach to obtain an analytic form for
[2], multimode laserg3], etc. An overview of applications of the equal-time correlation function of a phase-ordering fer-
the CGL equation is provided in the review article by Crossfomagnet. _ _ o
and Hohenberg4]. The importance of the CGL equation ~ N&xt, let us consider the dynamicaly model, which is
stems from the fact that it provides a generic description oEq. (1) with (r,t) complex buta=£=0. In this case, the
the slow modulation of oscillations in a spatially extendedrelevant defect structurgfor dimensionalityd=2) are vor-
system near a Hopf bifurcatidi]. tices (or vortex lines, etg, and domain growth is driven by

The CGL equation exhibits a rich range of dynamical be-the motion and annihilation of vortices and antivortices. Puri
havior with variation of the parameters and 8, and the [11] obtained the time-dependent correlation function for the
“phase diagram” has been investigatéchostly numeri- XY model, using singular-perturbation methods due to Su-
cally) by various author$6]. In a large range of parameter zuki [12], Kawasakiet al. [13], and Puri and Rolanfi14].
space, the emergence and interaction of sgaatl antispi- Furthermore, Bray and PuUr.5] and(independently Toyoki
ral) defects play an important role in determining the mor-[16] obtained the time-dependent correlation function for the
phology. Our present work focuses on characterizing pattersmector TDGL equation witfO(n) symmetry ind dimensions
formation in the CGL equation using spiral-defect structureswhenn=<d, i.e., when topological defects are pres¢ihe

We have studied nonequilibrium dynamics analyticallydynamical XY model corresponds to the case wii(2)
and numerically in the CGL equation witla=0. Typically, = symmetry] The corresponding domain growth law is again
we consider the evolution morphology resulting from athe LCA law L(t)~t2, with logarithmic corrections when
small-amplitude random initial condition. There has been inn=d [8,17]. To the best of our knowledge, there are no
tense research interest in such problems in the context afeneral results available for the case witkrd, where the
far-from-equilibrium statistical physics—for reviews, see absence of topological defects makes it difficult to character-
[7,8]. The simplest problem in this class considers a homoize the dynamical evolution.
geneous two-phase mixture, which has been rendered ther- The present two-stage exposition focuses on phase-
modynamically unstable by a rapid quench below the criticabrdering dynamics in the CGL equation with=0. Further-
coexistence temperature. An example of such a system israore, the analytical and numerical results presented here are
two-state ferromagn€in zero magnetic fieldat high tem-  for the two-dimensional case, where spirals are point defects.
peratures, which consists of a homogeneous mixture oflowever, the analytical results obtained by us can easily be
“up” and “down” spins. However, below the critical tem- extended to the case with#0 andd=2, as the underlying

aP(r 1)

— = (1, t)+ (L+ia)V2(r,t)
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paradigm remains the same, i.e., spiral defects still determine
the morphology in large regions of parameter space and foi
higher dimensionality.

Following the work of Hagari18], Aransonet al. [19],
and Chate and Mannevillg], we briefly discuss the phase
diagram of thed=2 CGL equation withae=0. The limit 8
=0 corresponds to the dynamicdly model, which is well
understood 11,8]. Without loss of generality, we consider
the case with3=0. For 0<8<p; (B,=1.397[18]), spirals
(which are asymptotically plane wayeare linearly stable to
fluctuations. ForB;<B<p, (B,=1.82[19,6]), spirals are
linearly unstable to fluctuations, but the growing fluctuations
are advected away, i.e., the spiral structure is globally stable
Finally, for 8,<pf, the spirals are globally unstable struc-
tures and cannot exist for extended tinj&@8]. Our results
correspond to the parameter regime witks 3,.

In this paper we present analytical studies of the correla-
tion function resulting from single-spiral and multispiral
morphologies. A later paper will present detailed numerical
results and compare them with the analytical results pre-
sented here. This paper is organized as follows. In Sec. Il, we
obtain analytical results for the correlation function of a X X
single-spiral morphology. In Sec. lll, we critically examine  £iG_ 1. Evolution of a small-amplitude random initial condition
the utility of the Gaussian auxiliary fieldSAF) ansatz[8]  for the complex Ginzburg-Landau equation with-0, 8= 1. These
for the characterization of a multispiral morphology. Sectioneyolution pictures were obtained from an isotropic Euler discretiza-
IV concludes this paper with a brief summary and discussionion of Eq. (1), implemented on ai? lattice (N=256) with peri-
of our analytical results. odic boundary conditions in both directions. The discretization

mesh sizes werdat=0.01 andAx=1.0. The pictures show regions
of constant phase9¢=tan’1(lm y/Rey), measured in radians,
Il. CORRELATION FUNCTION FOR A SINGLE-SPIRAL with the following coding: 6,c[1.85,2.13 (black; 6,
MORPHOLOGY €[3.85,4.19 (dark gray; 6,<[5.85,6.19 (light gray). The snap-
shots are labeled by the appropriate evolution times.

Figure 1 shows a typical evolution from a small-
amplitude random initial condition for thé=2 CGL equa- PR i 2\ i
tion with a=0 andB=1. We have plotted constant-phase wrh=pnexd —iA1-aHt+rimo-i¢(n], (2
regions in this figure, and it is clear that the evolving mor-y,yere FE(r,é)), g=0 is a constant which is determined
phology is characterized by spirals and their interactionsunique|y as a function oB, andm is the number of arms in
(We use the term “spiral” for both spirals and antispirals, o spiral. The cases witn>0 andm<0 correspond to a
unless specifically stated otherwis&here is a characteristic spiral and antispiral, respectively. The limiting forms of the
length scale, e.g., interspiral spacing or square root of inversﬁmctionSp(r) and #(r) are
defect density, which we denote hsDetails of our simula-

tion techniques and comprehensive numerical results will be p(r)—(1-g?¥%  ¢'(r)—q asr—om,
provided in a future paper. Figure 1 is shown here only to
motivate our subsequent discussion. p(r)—ar™ ¢'(r)—r asr—0o, 3

We would like to quantitatively characterize the evolution
morphology shown in Fig. 1. The standard tool for this is thewhere the constard is determined by finiteness conditions.
correlation function of the order-parameter figfd8], which ~ Hagan presented explicit solutions fipf3) in the cases with
we will define shortly.(The momentum-space structure fac- m=1,2. We will focus on the case witin=*1, as only the
tor is obtained as the Fourier transform of the real-spacene-armed spirals are expected to be stable in the evolution
correlation function. At the simplest level of approximation, [18]. Figure 2 plots Hagan's solution fog(g8) (with 8
the morphology in the frames of Fig. 1 can be interpreted as<1.5) in the case witim=*=1. In the simple limit3=0, we
consisting of disjoint spirals, each of sike(Of course, this haveq=0, and the spiral solution simplifies to the vortex
overlooks modulations of the order-parameter field at spiralsolution—for them= + 1 vortex, the lines of constant phase
spiral boundaries, but we will discuss that latéfherefore, correspond to constard. Spiral solutions for the general
it is obviously of relevance to compute the correlation func-case witha,3# 0 were discussed by Aransem al. [19,20.
tion for a single-spiral solution. We are interested in the correlation function for a one-
The CGL equation withe=0 has been studied by Hagan armed spiral at large length scales, so we simplify @yas
[18], who found that there is a family of spiral solutions with
the following functional form(in d=2): p(r)=V1—g?exd—iB(1—gd)t+i(6—qr)], (4
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where we have specialized to thee=1 case. The correlation
between points,; andr, is determined as

C(ry. T2, t) =Re[y(ry, )¢ (ry,0)}
=(1-g®)Relexdi(6,—qry)—i(6,—qry) 1}
=C(ry,r). (5)

The average correlation function is obtained by integrating

over the pointr;, settingr,=r,+ry,, i.e.,

1 N I .
C(rip= \_/J' driC(ry,ri+riph(L—|ri+rg)

_(1-9%)
-V

Re dFlqu|(01_02_qr1

+q|ry+rd)Ih(L—|ri+r1), (6)

whereV is the spiral volume. In Eq(6), we use the step
functionh(x)=1 (0) if x=0 (x<0), which ensures that we
do not include points that lie outside the defect of dize

Ford=2, the vector notation,=r,+ry, is equivalent to
roe'%2=r,e'%1+r %2 Thus we have

rie'fi+r el

ei02:
2 1
[r2471 124 2r,r,c08 6;— 61512

()

and

(1-9%) _ [t 2m
C(r12)= V] Refodl’lrlJO d01

y r1+rlzei(0l_012)
2 2 12
[rf+117+2rr1,c08 6;— 01) 1Y

xexp(—iq{ri—[ra+ri,+2riry,

Xcod 6;— 612 1Y)h(L—|r1+rd). (8

We introduce the variable®, — 61,= 6; x=r,/L; r=ry,/L,
to obtain

1—q? 1 27
C(r12)=( q)ReJ dxxf de
0 0

w

x+re'?
X 2 2 1/2
(X+r°+2xr cosh)

x exd —igqL{x— (x?+r2+2xr cosf)*3]
X h[1— (x?+r2+ 2xr cosf) ], 9

where we have used= 72 in d=2. Thus, the scaling form
of the single-spiral correlation function i€(rq5)/C(0)
=g(r1,/L,g%L?). In general, there is no scaling with the
spiral size because of the additional factdr. We recover
scaling only in the limitg=0 (8=0), which corresponds to
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FIG. 2. Plot ofq(B) vs B for the one-armed spiral solution of
the CGL equation withu=0. (Compare Fig. 5 of Ref.18].)

not morphologically equivalent because there is more rota-
tion in the phase as one goes out further from the core.
Figure 3 plotsC(r1)/C(0) vsr,/L for the case with
B=1 (q=0.306). These results are obtained by a direct nu-
merical integration of Eq(9). We consider four different
values ofL. The functional form in Fig. 3 exhibits near-
monotonic behavior for small values bf(i.e., in the vortex
limit); and pronounced oscillatory behavior for larger values
of L, as is expected from the integral expression. Notice that

ro/L=<2—larger values of 1, correspond to the poinfz
lying outside the defect.

Before we proceed, we should point out that the imagi-
nary part of the integral in Eq9) is nonzero, in general—
corresponding to a weak correlation between the real and
imaginary parts of the order-parameter field. The imaginary
part can also be obtained with relative ease. However, we
will confine our discussion to the conventional definition of
the correlation function in Eq5). Let us next consider the
asymptotic behavior of the correlation function in the limit
r.,/L—0, althoughr 1, is still much larger than the size of
the defect coré.

A. Case with =0
In the case with3=0, we haveq=0 and the integral
expression in Eq(9) simplifies as
x+re'?

(x2+ 12+ 2xr cosg)?

1 1 27
C(Mz)Z;Refo dxxf0 de

X h[1—(x2+r?+2xr cosd)?]. (10)

The behavior in the — 0 limit is of considerable interest as
it determines the large-wave-vectd-{ <) behavior of the
structure factof{8]. In that case, we can neglect the step

the case of a vortex. Essentially, spirals of different sizes aréunction on the right-hand sidlRHS) of Eq. (10) as it only
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L=10

which gives rise to a power-law tail in the structure factor
S(k)=4mL?(kL) 4, a result referred to as the “generalized
_____ Porod law” [22,15.

0.5

B. Case with B#0

C(r,)ICO)

We would like to undertake a similar asymptotic analysis
in the general case witB+0. As we are interested only in

the limit r—0, we again discard the step function on the
RHS of Eq.(9). In that case, we obtain

1-9) & (iqL)" (2 _
— o C(rlz):( ﬂ_q )Rergo((:]!) jodxxe*““'-X

2

X
|
0

dO(x+r cos)(x?+r2+ 2xr cosh) "~ V2,
0
| |
0.25 0.5 0.75

r,/L

(15

We will separately consider the cases witbdd andn even.
(&) n odd. We designate=2p+1 and consider the an-
FIG. 3. Correlation function for the one-armed spiral solution 9ular integral on the RHS of E¢15):
whenB=1 (q=0.306). We plotC(r,,)/C(0) vsrq,/L for differ-

ent spiral sizes.=10,25,50,100—denoted by the specified line _
types. The results are obtained from a direct numerical integration |2P+ 1(x,r)=
of Eq. (9).

2m
f do(x+r cos)(x>+r?+ 2xr cosd)?
0
provides corrections at the edge of the vortex defect. Then,
after some algebra, we obtain the result

m X2 2x P
:2xr2"j df| 1+ — +—cos
0 r r
m X2 2x P
=T n+£ ? +2r2”+1fO d6 cos6 1+r—2+Tcos¢9
C(rip=— ————[An(r)—Byu(r)], 11
(ra=2 ngo n!?2 [An(r)=Ba(n]. (1) =2xr2Pl +2r2PH1,, (16)
where The integralsl; and |, are obtained from Gradshteyn and
Ryzhik [23], and the consolidated result is
§r2—2rzlnr, n=1 P (p\? p-12)
A (r)= T = 2k+1.2(p—k) 4 2 (
olr) (n+d) 1L (opalxr) =2m) 2 (k) ot P
(h—1)(2n+3)" (n—-1) ’ ok
(12 > 2k+1.2k(y 2 4 (2)p—2k—1
ki1 X re(xc+r9) , a7
and
where[y] refers to the integer part of The corresponding
grz—rzlnr, n=0 contribution toC(r ) is
BaD=1 (2n+1)4n+3) (2n+1) 1-9° < (qL)"
r2— n+2  n£Q, Cy(ry)= E (—1)(n-Dr "
2n(n+1)(2n+3) 2n(n+1) T n=135,... n!
(13 L
This result is implicit in an earlier work of Bray and Huma- x fo dxxsin(GLX)tn(X,r)-
yun [21], who focused upon the singular part of this func-
A,(r) andBy(r), and can be computed as

(18)
tion. In the limitr—0, the singular terms i€(r) arise from  The important feature here is that the above expression for
1
Caindr12)= 512,

C,(ry,) contains only powers of?. Therefore, the overall
contribution toC(r,) from this set of terms is analytic as
(14

r—0. In the limiting case&j=0 (8=0), the above contribu-
tion is identically 0.
046206-4
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(b) n even. Next, let us consider the case withven. We » (q
designaten=2p, and the angular integral on the RHS of Eq. Cx(r1)=(1—0?) 2 (—1)"2
(15) is n=024, ...

- 2w
[op(X,1)= | dO(x+r cosd)(x?+r?+2xr cosg) 2P~ 2,
0

X 2Xp2_1F(T,T;1;—2

P>
(19 3-n 1-n _ p?
_ - - P
+rpl 2p<(n—1)F(T,T;2;—§H
We introducep_ =min(x,r) andp-=max(x,r) to obtain P>
=(1-0°)(T1+Ty). (25
2p—1
Top(x,1)=2p%" f do(x+r coso) The singular contributions t€(r;,) asr—0 arise en-
tirely from C,(ry,), asCy(ry,) is analytic inr. A consider-
P2 2p. (2p-D)2 able amount of algebra is involved in extracting the singular
1+ —+ ——cosd terms inT, and T,. For the sake of brevity, we will sketch
ps P> only the broad features of the calculation here. We have
=2p2P " H(xlz+rly). (20) oc (qL)?°
Ti=22, (1)
p=0

The integrald ;3 andl, can be computed in terms of hyper-

2
grall; ¢ <2p>!r(§—p)
geometric functions as follow23]:

1 2
o +m
11 p2 (2 P p2"
I3 WF(Z p,2 p;1 ’pz) (21) 2: decos{qLX)X 2(m p)+1’

and (26)

where we have used the standard expansion for the hyper-

1 p 1 p2 geometric functiof24]. The integral on the RHS of E¢R6)
l,=ml =+p _<|:(__p, p,2;—<) can be written as
2 p- \2 M2 o2
1 r
2 - 2m+2
p< |1 1 ps ls= 2(m7p)+1J< dx cogqLx)x
B =) I I r 0
”pf(z PPt i)
1
1) p 3 1 p? +r2mf dxcogqLx)x 2(M-P+1 (27)
= .= r
=7T( _E)p_> (E—D,E—D,Z,—2>- (22)
>

The first term on the RHS of Eq27) is analytic asr —0.

S . ) . The second term contributes singular terms onlymi&p
We have simplified Eq(22) using the standard identif4] 1 yielding the result

. . o L)2(m=p-1)
(c—a—1)F(a,b;c;2)+aF(a+1p;c;2) ,5:(_1)m—p[(20('m)_—_1)]|r2m|nr+(ana|yticterm$.
=(c—1)F(a,b;c—1;2), (23 g ' (28
with a=1/2—p, b=1/2—p, andc=2. Replacing this in the expression oy, some algebra yields

Combining the expressions fog andl,, we obtain

= > (—1)p+m+1(q|‘)2(p+m)
~ - (1 1 p2<) p=0 Mm=0 (2p)!(2m)!
|2p(X,r) 27Tp>p XF P, p,1§—2 3 2
P> r §+m
p< 1 3 1 ps X > p2(m+p+1) |qp
o] T

(24 + (analytic termg (29

The corresponding terms in the correlation function are A similar analysis forT, yields
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o (qL)2Ce+m tispirals are attracted to each other and annihilate, thereby
T,= E Z (—1)p*mﬁ decreasing the defect density and increasing the interdefect
p=0 m=0 (2p)!(2m)! distance(or characteristic length scaleWhen the defect
1 2 density is large, the spiral sizes are small and spirals are
I'=+m similar to vortices. Therefore, we expect an initial coarsening
x 2 . (2m+1) 2m+p+1) |ny regime which is analogous to that for th€Y model—in
r 1 2 (M+p+1) terms of both the domain growth law(t)~ (t/Int)*2 [25]
2 p| (m+p)! and the morphology as characterized by the correlation func-
) tion [11,15. This is in accordance with our numerical simu-
+ (analytic terms. (300 Jations, as we will discuss in a future paper. Distinctive ef-

fects of spirals are seen for length scalesL ., wherel

We can <_:ombine the singular terms from and T, to ~q t—clearly, L~ asq—0 (or B—0). Furthermore,
obtain the singular part d(r;,) as follows: there is a repulsive spiral-antispiral potential beyond a cer-
v o 2(p+m) tain distance, which p_revents the annealing of a_II plefects

Cand " 2):l ST (Cqypm (qL) [4,20]. Thus, the evolving system “freezegin a statistical

sing.” 127" p=0 M=0 (2p)!(2m)! sensg into a multispiral morphology. This should be con-

5 trasted with the case of the dynamicdl¥ model [ o=

F(£+ ) =0 in Eq. (1)], where we expect the zero-temperature sys-
m ; )
2 tem to continue coarsening &s>°.

X 2 A common theme in the characterization of dynamical
r 5~ p) (m+p+1)!? evolution with a nonconserved order parameter is the intro-

duction of a Gaussian auxiliary fiel(B,10,15,26. Essen-
X (2m+1)(2p+1)r2Mm D ny.  (31) tially, the GAF ansatz takes the form(r,t)=F[m(r,t)],
where the functionF[m] is determined from the defect
We notice that the leading-order singularity is unchangedtructure, and the complex field (which measures the lo-
and continues to bé:sing(rlz):%rzlnr, as in the case with cation relative to the defect corés assumed to obey a
B=0. However, there is now a sequence of subdominanGaussian distribution. The zero crossings of the fialdor-
singularities proportional togL)?r*Inr, (qL)*r®Inr, etc., respond to the location of defect cores. The GAF ansatz en-
and these become increasingly important as the length scaébles a straightforward computation of the correlation func-

L increases. These subdominant term€ip{r 1) are remi- tjon for the fieldy(r,t). However, the analytical justification
niscent of the leading-order singularities in models withfor the GAF ansatz is meager and its primary virtue appears
O(n) symmetry, wheren is even[8,21]. Of course, in the to be that it works rather well in some situatio.

context ofO(n) models, these singularities arise only for Let us examine the utility of the GAF ansatz in the
<d as there are no topological defects unless this conditiopresent context. The appropriate form of the ansatz for the
is satisfied. In the present context, all these terms are alreadyGL equation in the regime where the spiral structures are
present ford= 2. The implication for the structure-factor tail \well developed igusing Hagan’s solution for the spiral de-
is a sequence of power-law decays witts(k) fect)

~(qL)2M=DL9/(kL)4*2M where m=1,2, etc. Thus, al-

though the true asymptotic behaviordr=2 is still the gen- [1—¢?m(r 1)
eralized Porod tailS(k)~L2(kL) 4, it may be difficult to P(r 1) = exp{ —i[ wt+q|m(r,t)|]},
disentangle this from other power-law decays. \/1—q2+|m(F,t)|2

The results presented in this section are of relevance in (32

determining the small-distance behavior of the correlation

function, or the large-wave-vector behavior of the structurevhere w=8(1—q?); and we take|=|m| near the defect
factor. This is because small length scales only probe indicore (m|—0), in accordance with Hagan’s solution. The
vidual defects. Nevertheless, as our forthcoming numericdiield m (=m;+im,) is assumed to obey a Gaussian distri-
results will demonstrate, the single-spiral correlation func-bution with

tion agrees with the correlation function for multispiral mor-

phologies(obtained numericallyover a considerable range 1 m;

of distances. For even larger length scales, we have to ex- P(m)=-—=—=exp ——|, =12 (33
plicitly account for the modulation of the order parameter at V2mo 20

defect-defect boundaries. We address this problem in the R R .

next section of this paper. where o?=(m;(r,t)%); and the fieldsm,(r,t) and my(r,t)
are taken to be statistically independent of each other.

Our numerical results show that the GAF ansatz in Eq.
(32 is reasonable in the vicinity of defects. However, it is
inappropriate for defect-defect boundaries, where the order-

The evolution in Fig. 1 is characterized by a morphologyparameter amplitudig/| is often larger than/1—q?. This is
with multiple spirals and antispirals. Initially, spirals and an- demonstrated in Fig. 4, which replots Fig. 1 with defect lo-

2

IIl. UTILITY OF GAUSSIAN AUXILIARY FIELD ANSATZ
FOR A MULTISPIRAL MORPHOLOGY
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t=25 . =50 P (') 1 jwd| || | |m|2
: 5o o D e "(m)=—— m||m|exp — —
2 g ¥ Ca 0 a0 B 60 Te3tY 0% po Y 2ma?lo 207
.: ':.' . .o... . ’ o:. . '.o .:' .. . : : O 2m
5 20 5 Iy ade? Do I O X | dos(m)—|m|cog 6—¢)). (35
> ... = e . . * * . 9 0
..'. < e ) e X ; ." Because of the periodicity of the function cés(¢), the
S > : N 3% phase factokp is inconsequential and
=100 t=1000 P (m) 1 m;? 36
— - - "(my)= exp ———|,
= € 2.0a%. 9 e Y SO AR ! 27a? 20°
LR YN LINSYE T and a similar distribution also applies for the variabig.
D La @ . Y . Y% a Thus, we have the appropriate GAF ansétizopping
- 2L AN+ o W2 20k primes as follows:
L/ -:. .. & ; : 'o. » ." Vo .. . .. N \1_q2m(F,t)
.-..-'.' ..«o a2 ol n... '.--. .. > - w(r't): g ’ (37)
R ; RS Vi-g2+{m(r.p)2
X X

where the variables (r,t) andmy(r,t) [m(r,t) =my(r,t)
FIG. 4. Evolution shown in Fig. 1 replotted to clarify the utility +im2(F,t)] are Gaussian and independent of each other.
of the GAF ansatz in this context. The asterisks denote spiral cerFhe inverse relation between the variablesindm is
ters, and regions whete/|>\1—g? are shaded gray.
V1-g%u(r b

cations marked by asterisks and regions whég m(r,t) = 1—q2—|¢(Ft)|2.

>\/1—qg° marked in gray. As discussed before, for early
times(e.g.,t=25), the system evolution is governed by the . -
interaction of vortices. Thus, the appropriate GAF ansatzme\:\i/fal\llva[gt?tgae?r?m'gigzﬁe)\:?g?'ttzeoé\%?u&ﬁ': d:niscatlgd r:rl:
should have max(/|)=1, as in the case of th&Y model. yiel, P

For late timege.g.,t =1000), the system has well-developed Fig. 1 (or Fig. 4. The appropriate parameter values fre

spirals. Nevertheless, the GAF ansatz for the order-paramete:r1 andq=0.306[18] (see Fig. 2 In Fig. 5, we plot the

field is obviously inappropriate for large regions of space aingle-variable distribution for the fielah, (r,t), obtained di-
these parameter values. For other valuegahe same gen- rectly from our simulation of the CGL equation using Eq.
eral arguments apply although there are changes in the cros&8) in regions wherg#|<\1—g*. The data in Fig. 5 are
over time to spiral-mediated growth, and the fraction of spa0btained as an average over five independent runs\for
tial region where the GAF ansatz is unreasonable. lattices, withN= 512.(Detai|s of our simulation will be pro-
Let us examine the validity of the GAF ansatz in regionsvided in a subsequent paper)IFigure Fa) is a plot of

(39

by defining the variablen’=me ¢, where ¢=wt+q|m|.  the evolution pictures shown in Fig. 1. In Figlhp, we have
Then we have the corresponding probability distribution forscaled variables and superposed the dataMfem,)o vs
(say m; as m, /o, whereo is obtained from the best fit of the numerical

data to the functional form in Eq36). The data collapse
onto a single master curve, which is reasonably approxi-
- ” ” , mated by the Gaussian forf(x) = (1/\27)e **2, denoted
P(my)= f_xdmlf_xdmzé(ml—ml cos¢ as a soli>(/j line in Fig. &). RO9=(hzm
Figure 5 was obtained by focusing only on regions where

—mysing)P(my)P(m,) || <1—q?% which is essentially equivalent to considering
disjoint spirals, for which the correlation function has al-

1

foo dmlfx dm,(m] —m; cosé ready been obtained in Sec. Il. We have examined vaadus
—o —o hoc methods of improving the GAF ansatz in E§7). For
example, one could set the saturation amplitude of the order
parameter to its maximum valug/| .~ 1 for Fig. 1), rather
than || .= V1— 2. Figure 6 plots the resultant probability
distributions P(m;) vs m; with |¢|s,=1. For early times
(t=25), the distribution has a Gaussian form, as expected
As usual, we transformng; ,m,)— (|m|, #) to obtain from our analogy with theXY model. However, with the

27’

2 2
m;+m
1 2) (34)

—mzsin¢)eXp(— o?

o
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t=100
t=1000

0.2

t=25
t=50
t=100
t=1000

> ¢ oo
> ¢ oo

- 015
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015
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B

P(m,)
(=)
T
op o> oo
S AR
|

P(m,)

_ voooﬁ’oﬁo

0.05 0.05

FIG. 6. Plot of data forP[m,(r,t)] vs my(r,t) from timest
=25,50,100,1000—denoted by the symbols shown. The parameter
values and statistical details are identical to those for Fig). Data

for my(r,t) are obtained directly from the numerical data for
#(r.t), using Eq.(37) with | /| sa= V1— 0 replaced byl ¢/|c.=1.

on the order-parameter field for spiral-spiral pd26] as a
function of two independent auxiliary fields—referring to
distances from the centers of the two spirals. We are pres-
ently studying the utility of such an approach for character-

izing multispiral morphology.

P(m,)o

IV. SUMMARY AND DISCUSSION

Let us conclude this paper with a brief summary and dis-
cussion of our results. We have undertaken a detailed ana-
Iytical and numerical investigation of nonequilibrium dy-
namics in a special case of the complex Ginzburg-Landau
m/o equation. Our results are described in a two-stage exposition.

! This paper constitutes the first stage of this exposition, and

FIG. 5. (a) Plot of data forP[m,(r,t)] vs my(r.t) from four ~ describes analytical results for the time-dependent correla-

different timest = 25,50,100,1000—denoted by the symbols shown.tion function. Our analytical arguments rely on the signifi-

The parameter values are identical to those in Fig. 1. We use E¢ance of spiral-defect structures in determining the morphol-
ogy and evolution of the CGL equation from a random initial

(38) to obtain data fonnl(F,t) directly from the order-parameter o
field in our numerical solution of the CGL equation—considering condition. ) )
only regions wherdy|<I—g2. The data were obtained as an _In this paper, we describe results for the exact correlation
average over five independent runs ot lattices N=512). (y) ~ function C(ry,) of a single spiral defect of size, and un-
Scaled plot of data frorte). We superpose data f&{ m;(r,t) ] (t) dertake its asym_ptotlc gnaly5|s in the IlrmizlLHO_ but
vs my (7 t)/o(t), where o(t) is obtained from the best fit of the '12/¢>1, whereéis the size of the defect core. We find that
numerical data to a Gaussian distribution. The solid line refers tgN€"e is @ sequence of singularities in this limit, which are
the Gaussian functioﬁ’(x):(l/\/ﬂ)e’lez. rem|n|sce.nt of singularities for defects v_v@(n) s_ymme.try,
where n is even. However, the dominant singularity as

emergence of well-formed spirals, the distribution develops @,/L—0 corresponds to the case of vortex defects, as ex-
double peak and is clearly non-Gaussian. pected. The implications for the large-wave-vector tail of the

We have also studied some other possible ways of rectistructure factor are also discussed.
fying the GAF ansatz. We find that thead hocapproaches We also investigate the validity of the Gaussian auxiliary
invariably result in non-Gaussian distributions for the auxil-field ansatz in the context of multispiral morphologies. For

iary field. Perhaps a more honest approach should be basedrly times [ < L.~q"1), domain growth in the CGL equa-
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tion is analogous to that for th€Y model, whose domain In a future paper we will present detailed numerical re-
growth law and correlation function are well underst¢8fl  sults for phase-ordering dynamics in the CGL equation. In
For later times, we find that the simple GAF ansatz is notparticular, we will focus upon the crossover from vortex-
reasonable, as it is unable to account for order-parametépediated dynamicsat early times to spiral-mediated dy-
modulations in the defect-defect boundaries. We have afdamics(at late times Furthermore, we will compare our
tempted ad-hoc improvements of the GAF ansatz but theseumerical results for the correlation function of the order-
invariably result in non-Gaussian distributions for the corre-Parameter field with the analytic form for a single-spiral de-
sponding auxiliary field. We are presently investigating thef€Ct presented in this paper.

possibility of formulating a generalized GAF ansatz in terms Before we conclude this paper, it is worth stressing that
of the order-parameter field for a spiral-spiral pair the results presented are easily adaptable to the general case

More generally, the utility of the GAF ansatz arises from of the CGL equation V‘."tm’ﬂgﬁo' Again, the ev_olvmg mor-
the summation over phases from many defects, which resul hology in a large region O.f parameter space is charagtepzed
in a near-Gaussian distribution for the auxiliary field. How- y the presence and annihilation of spirals and antispirals

ever, in the present context, the shocks between spirals eg@]' The resglts qf the pr‘??e”t. paper apply di'rectly in that
fectively isolate one spiral region from the influence of othercﬁJlse a_lscIJ, W:trl_mlnorsmodllfllcanons in the functional form of
regions. As a matter of fact, the waves from other spiral§ € spiral solution In >ec. 1.

depay_ exponentlally_through the shock and f[he phase of a ACKNOWLEDGMENTS
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