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Abstract

We examine optimal Linear Quadratic Gaussian control for a system in which communication between
the sensor (output of the plant) and the controller occurs across a packet-dropping link. We extend the
familiar LQG separation principle to this problem that allows us to solve this problem using a standard
LQR state-feedback design, along with an optimal algorithm for propagating and using the information
across the unreliable link. We present one such optimal algorithm, which consists of a Kalman filter at
the sensor side of the link, and a switched linear filter at the controller side. Our design does not assume
any statistical model of the packet drop events, and is thus optimal for an arbitrary packet drop pattern.
Further, the solution is appealing from a practical point of view because it can be implemented as a
small modification of an existing LQG control design.

1 Introduction

Recently, much attention has been directed toward systems which are controlled over a communication link
(see, for example, [1] and the references therein). In such systems, the control performance can be severely
affected by the properties of the network or the channel. In extreme cases, poor network performance can even
destabilize a nominally stable control loop. Communication links introduce many potentially detrimental
phenomena, such as quantization error, random delays, data corruption and packet drops to name a few.
Understanding and counter-acting these effects will become increasingly important as emerging applications
of decentralized control mature. These applications will require the exchange of critical pieces of information
over unreliable communication media.

The above issues have motivated much of the study of networked systems. Beginning with the seminal
paper of Delchamps [5], quantization effects have been studied by Tatikonda [28], Elia and Mitter [6], Brockett
and Liberzon [4], Hespanha et al. [12], Ishii and Francis [14], Nair and Evans [22, 23], and many others. The
effects of delayed packet delivery have also been considered in many works, such as Nilsson [24], Blair and
Sworder [3], Luck and Ray [21], Gupta et al. [8], Tsai and Ray [29], and Zhang et al. [32], using various
models for the network delay.

In this work, we are specifically interested in systems communicating over links which randomly drop
packets. The nominal system is shown in Figure 1 where the link is modeled as one that randomly drops
packets being communicated from the plant to the controller. Preliminary work in this area studied stability
of systems utilizing lossy packet-based communication, as in [10, 25, 32]. Performance of such systems as a
function of packet loss rate was analyzed by Seiler in [25] and Ling and Lemmon in [17] assuming certain
statistical dropout models. Nilsson [24] proposed two approaches for compensation for data loss in the link
by the controller, namely keeping the old control or generating a new control by estimating the lost data, and
presented an analysis of the stability and performance of these approaches. Analysis of the performance when
lost data is replaced by zeros is given by Hadjicostis and Touri in [9]. Ling and Lemmon, in a series of papers
[17, 18, 19] proposed some compensators for specific statistical data loss models. Optimal compensator design
for the case when data loss is i.i.d. was considered in [18], in which the problem was posed as a nonlinear
optimization. An alternative approach was taken by Azimi-Sadjadi in [2]. In this work, a quadratic cost was
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Figure 1: The architecture of a packet-based control loop. The feedback loop is closed across an unreliable
link, which unpredictably drops packets.
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Figure 2: A common design for control over packet-based links. The compensation block attempts to mitigate
the effects of packet losses.

sought to be minimized and a sub-optimal estimator and regulator were proposed. Sinopoli et al. [27] and
Imer et al. [13] extended this approach further and obtained optimal controllers by assuming that the packet
drops were i.i.d. The related problem of optimal estimation across a packet-dropping link was considered by
Sinopoli et. al in [26] and extended by Liu and Goldsmith in [20] where analysis of the stability of estimation
error covariance was also carried out.

Most of the designs proposed in the above references focus on design of a packet-loss compensator, as
shown in Figure 2. The compensator accepts those packets that the channel successfully transmitted and
comes up with an estimate for the time steps when data was lost by the link. This estimate is then used
by the controller. Our work takes a more general approach by seeking the LQG optimal control for this
packet-based problem. In particular, our architecture is as shown in Figure 3. We aim to jointly design the
controller, the encoder and the decoder to solve the optimal LQG problem.

The remainder of this paper is organized as follows. In the next section, we present our mathematical
model and pose the LQG problem in a packet-based setting. We then discuss a separation between control
and estimation costs, and present an optimal solution to the estimation problem. We analyze the stability of
our system and compare its performance with some other approaches in the literature. We finish by pointing
out some directions for future research.

Controller Plant

Link
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  \ Decoder

Estimator

  \ Encoder

Figure 3: The structure of our optimal LQG control solution.
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2 Problem Formulation

Consider a discrete-time linear system evolving according to the equation

xk+1 = Axk + Buk + wk, (1)

where xk ∈ Rn is the process state, uk ∈ Rm is the control input and wk is random noise entering the
system. The noise process is assumed white, Gaussian, and zero mean with covariance matrix Qw. 1 The
initial condition x0 is assumed to be independent of wk and to have mean zero and covariance matrix Q0.
The state of the plant is measured by a sensor according to the equation

yk = Cxk + vk. (2)

Here vk is the measurement noise, again assumed white, zero-mean, Gaussian (with covariance matrix Qv)
and independent of the plant noise wk. The sensor needs to communicate these measurements (or some
function of the measurements) to the controller. The only constraint we impose on this communication is
that the function communicated should be a finite vector, whose size does not increase as time goes on.

The communication is done over a channel that randomly drops packets. For the moment we will ignore
delays and reordering of packet delivery; it will be shown that these effects can be accounted for with
time-stamping and a slight modification to our design. Thus, at each time-step k:

• A packet is created at the sensor side of the link. We do not specify in advance what data these packets
will contain.

• The packet is sent across the link.

• The packet is either received instantaneously, or dropped according to some probability distribution.

The packet dropping as discussed so far is a random process, but we will find it more useful to refer to
individual (i.e. deterministic) realizations of this random process, which we call packet drop sequences. A
packet drop sequence is a binary sequence,

Λ = {λk}
∞
k=0

in which λk takes the value “received” if the link delivers the packet at time step k, and “dropped” if the
packet is dropped.

We assume sufficient bits per packet and a high enough data rate so that quantization error is negligible.
We also assume that enough error-correction coding is done within the packets so that the packets are either
dropped or received without error. Finally, we assume no coding is done across packets; that is, no packet
contains information about any other packet. We impose this constraint because coding across packets can
induce a large encoding and decoding delay, and this is undesirable for control applications.

The packetized communication link described above warrants some discussion regarding the class of
controllers we will allow. Clearly, the absolutely optimal LQG performance achievable is given by the
classical LQR controller/Kalman estimator pair. However, this design does not respect the packetized
nature of the communication. Specifically, the LQR controller requires continual access to the Kalman filter
output, which in turn requires continual access to the sensor measurements. The sensor measurements may
not be continuously available because of data loss in the communication link. In order to make the class of
controllers that are allowed more precise, we introduce the following terminology.

Consider the control calculation at time-step k. Denote by sk the finite vector that is transmitted from
the sensor to the controller. By causality, sk can depend (possible in a time-varying manner) on y0, y1, · · · ,
yk, i.e.,

sk = fk (y0, y1, · · · , yk) .

Call the information set available to the controller as

Ik = {sk|∀k s.t. λk = received}.

1The results of the paper continue to hold for time-varying systems, but we concentrate on the time-invariant case to simplify
the presentation.
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Also denote by tl(k) ≤ k the last time-step at which a packet was delivered. That is,

tl(k) = max{i ≤ k | λi = “received”}.

The maximal information set at time-step k is defined as follows:

Imax
k = {yi | 0 ≤ i ≤ tl(k)}.

The maximal information set is the largest set of output measurements on which the control at time-step k

can depend. In general, the set of output measurements on which the control can depend will be less than
this set, since earlier packets, and hence measurements, may have been dropped. The information contained
in Imax

k thus upper bounds the information contained in Ik. We do not yet specify how the encoder designs
or the controller uses Ik. As stated earlier, the only restriction we impose is that the vector sk not increase
in size as k increases. We will call the set of fk’s which fulfil this requirement as F. 2 Without loss of
generality, we will only consider information-set feedback controllers, i.e. controllers of the form

uk = u(Ik, k). (3)

Thus, we allow the control to depend on the information set, and on the current time-index. Clearly, this
is the broadest class of controllers one can sensibly consider for this problem since we have not assumed
anything about the functional form of the control. Moreover, it is impossible for a physical realization of the
controller to have more feedback information than is contained in the information set. In addition, perfect
knowledge of the system parameters A, B, C, Qw and Qv is assumed at the controller. Moreover we assume
that the controller has access to the previous control signals u0, u1, · · · , uk−1 while calculating the control uk

at time k. For notational convenience, we denote the set of control laws of the form described by equation 3
by U .

We can now pose the packetized LQG problem as follows:

min
u∈U,f∈F

JK(u, f, P ) = E

[

K
∑

k=0

[

xT
k Rcxk + uT

k Qcuk

]

+ xT
K+1P

c
K+1xK+1

]

.

Here K is the horizon on which the plant is operated and the expectation is taken over the uncorrelated
variables x0 and the noise variables wi and vi. The expectation is taken over the primitive system random
variables x0, w0, w1, · · · , wK , v1, v2, · · · , vK . Note that the cost functional J above depends on the packet-
drop sequence P . However, we do not average across packet-drop processes; the solution we will present
is optimal for an arbitrary realization of the packet dropping process. That is, for any given packet-drop
sequence P , the controller, encoder and decoder we propose will minimize J(u, f, P ) over the set of allowable
controllers U and allowable functions F. Because of this, we will occasionally suppress the packet-drop
dependence in the cost functional, and merely write J(u, f) or just J .

Note that the usual addition and scalar multiplication operations make U a vector space. For a given f

and P , J(u, f, P ) is a convex cost functional, and so existence of optima follows immediately. We make no
claim regarding uniqueness of optimal control in this problem.

Our goal, then, is to solve the standard LQG problem with the additional complication of the packet-
dropping link. While this may appear a small modification, it is unclear a priori, what the structure of the
optimal control algorithm should be, and in what way the packetized link should be used through the design
of the encoder and the decoder. We will show that one optimal algorithm is to utilize an LQR state-feedback
design at the controller side, and to use the link to send the state estimates from a Kalman filter at the
sensor side.

3 Separation of Control and Estimation

In this section we will briefly revisit the LQG separation principle in the packet-based setting. This will
motivate the structure of our optimal controller/encoder design.

2The information set is reminiscent of the ‘information pattern’ introduced by Witsenhausen [30]. We assume that the
controller at time step k has access to all the previous controls u0, u1, · · · , uk−1. Thus the ‘information pattern’ of the
controller consists of the set Ik and all the previous controls.
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Consider again the K-horizon cost functional:

JK(u, f, P ) = E

[

K
∑

k=0

uT
k Qcuk +

K
∑

k=0

xT
k Rcxk

]

+ E
[

xT
K+1P

c
K+1xK+1

]

. (4)

We need to choose u0, u1, · · · , uK that minimize JK(u, f, P ). Following [11], we gather terms that depend
on the choice of uK and xK and write them as

TK = E
[

uT
KQcuK + xT

KRcxK

]

+ E
[

xT
K+1P

c
K+1xK+1

]

= E

[

[

uT
K xT

K

]

∆

[

uK

xK

]]

+ E
[

wT
KP c

K+1wK

]

= SK + OK

where

∆ =

[

Qc + BT P c
K+1B BT P c

K+1A

AT P c
K+1B Rc + AT P c

K+1A

]

SK = E

[

[

uT
K xT

K

]

∆

[

uK

xK

]]

OK = E
[

wT
KP c

K+1wK

]

.

In the above equation, we have used the system dynamics,

xk+1 = Axk + Buk + wk

and the fact that the plant noise is zero mean. Thus we can write

JK(u, f, P ) = E

[

K−1
∑

k=0

uT
k Qcuk +

K−1
∑

k=0

xT
k Rcxk

]

+ SK + OK . (5)

We aim to choose uK to minimize JK(u, f, P ) for a given f . From equation (5), it is clear that the only
term where the choice of uK can make a difference is SK . Now consider

SK = E

[

[

uT
K xT

K

]

∆

[

uK

xK

]]

.

Completing squares, we obtain

SK = E
[

(uK − ūK)
T

Rc
e,K (uK − ūK)

]

+ E
[

xT
KP c

KxK

]

where
Rc

e,K = Qc + BT P c
K+1B

and ūK is the standard optimal LQG control,

ūK = −
(

Rc
e,K

)−1
BT P c

K+1AxK .

Furthermore, the matrix P c
K is given by

P c
K = Rc + AT P c

K+1A − AT P c
K+1B

(

Qc + BT P c
K+1B

)−1
BT P c

K+1A.

In the absence of the packetized link, the controller could simply use the standard optimal control ūK .
However, as discussed before, this control law does not lie in the set of allowable solutions U because it is
not physically realizable for any non-trivial packet-dropping sequence. Instead, we will calculate uK based
only on the information set IK (and the previous controls u0, u1, · · · , uK−1 that are assumed known to the
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controller) and choose it so as to minimize SK . The control problem thus reduces to an optimal estimation
problem. Note that since all the random variables are Gaussian, and the cost function to be optimized is
quadratic, the optimal estimator is linear.

Given the information set at time k, Ik, we denote the linear least mean square (llms) estimate of a
random variable Γ based on this information as Γ̂|Ik

3 Then we can write the optimal control at time step
K as

uK = ˆ̄uK|IK
(6)

= −
(

Rc
e,K

)−1
BT P c

K+1Ax̂K|IK
.

Here we have used the fact that the llms estimate of a linear function of a random variable Γ, say LΓ, is
given by LΓ̂, where Γ̂ is the llms estimate of Γ. Thus, we only need to find the llms estimate of xK , given the
information IK available to the controller. Note that since the information content in Ik is upper bounded by
the information contained in Imax

k , the error in x̂K|IK
is lower bounded by the error in calculating x̂K|Imax

K
.

In the next section, we will provide a way to design the functions fk’s that will surprisingly allow the errors
to actually coincide.

Denote the estimation error thus incurred by ΛK . So we obtain

SK = ΛK + E
[

xT
KP c

KxK

]

.

Note that ΛK is independent of the previous control inputs u0, · · · , uK−1 since these are assumed known to
the controller when it calculates uK in equation (6). For the minimizing choice of uK , we can write the cost
function as

JK(u, f, P ) = E

[

K−1
∑

k=0

uT
k Qcuk +

K−1
∑

k=0

xT
k Rcxk

]

+ SK + OK

= E

[

K−1
∑

k=0

uT
k Qcuk +

K−1
∑

k=0

xT
k Rcxk

]

+ ΛK + E
[

xT
KP c

KxK

]

+ OK

= JK−1(u, f, P ) + ΛK + OK .

Thus we now need to choose control inputs for time steps 0 to K − 1 to minimize JK−1, independently of
the associated estimation cost at time step K (the terms OK and ΛK do not involve these control inputs).
However, our argument so far was independent of the time index K. Thus we can recursively apply this
argument for time steps K − 1, K − 2 and so on. We have thus obtained the familiar separation result, in
the packet-based setting:

Proposition 1 (Separation). Consider the packet-based optimal control problem,

min
u∈U,f∈F

JK(u, f, P ) = E

[

K
∑

k=0

[

xT
k Rcxk + uT

k Qcuk

]

+ xT
K+1P

c
K+1xK+1

]

.

Then, for an optimizing choice of the control, the control and estimation costs decouple. Specifically, the
optimal control input at time k is calculated by using the relation

uk = ˆ̄uk|Ik
= −

(

Rc
e,k

)−1
BT P c

k+1Ax̂k|Ik
,

where ūk is the optimal LQ control law while ˆ̄uk|Ik
and x̂k|Ik

are the llms estimate of ūk and xk respectively,
given the information set Ik and the previous control laws u0, u1, · · · , uk−1.

3This notation is a bit misleading in that it suppresses the fact that the previous controls are known to the controller and
are also used for the purpose of estimation. However we adopt it for simplicity and because it makes explicit the notion that
the information quantity we aim to optimize over is contained in the set IK .
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This result must be viewed in light of the limited information available to the controller. At every time
step, the controller tries to estimate the optimal control input based on the information set Ik, and uses this
estimate in the optimal LQR control law. Thus, the state-feedback portion of an LQG controller need not
be reworked for a packet-based implementation.

The packet-based LQG question thus reduces to choosing what information should be sent from the
sensor so that the optimal estimate can be formed at the controller, given that some of the packets might
be lost. We address this issue in the next section.

4 Optimal Encoder and Decoder Design

In this section we present an algorithm for encoding and transmitting sensor measurements so as to achieve
optimal estimation performance. Recall that we wish to construct the optimal estimate based on the infor-
mation set Imax

k , but we have not yet specified how to design fk’s that will allow the controller to compute
that. For a link which does not drop packets, it is clear that sending the current measurement yk in the
current packet can achieve optimal performance. The controller need only run a Kalman filter on the output
measurements it receives. However, it is not clear that just sending the measurements can achieve optimality
when packets are dropped. In particular, the Kalman filter input will be interrupted by the packet dropping.
A náıve solution would be to send the entire history of the output variables at each time step. However, as
mentioned earlier, it can be easily seen that this is impractical as it requires increasing data transmission as
time increases.

Surprisingly, we can achieve performance equivalent to the náıve solution using a constant amount of
transmission, and a constant amount of memory at the receiver end. To do so, we will use the fact that
the output of a Kalman filter is the optimal estimate of xk in the llms sense, given all of the previous
measurements, in order to encode or “compress” the entire history into a single estimate to be transmitted
at each time step.

The solution we propose has the structure of an encoder/decoder pair, with the encoder producing
messages to send across the link, and the decoder using these messages to construct an optimal estimate.
This procedure is described below.

Optimal Transmission and Estimation Algorithm

• The encoder receives as input the measurement yi.

• It runs a Kalman filter that provides the llms estimate of xk based on all the measurements until time
step k, denoted by x̂k|k. It transmits this vector across the link.

• The decoder maintains a local variable x̂dec
k . It is updated as follows:

– If λk = received , the decoder receives x̂k|k, and sets x̂dec
k = x̂k|k.

– If λk = dropped , then the decoder implements the following linear predictor:

x̂dec
k = Ax̂dec

k−1 + Buk−1. (7)

Proposition 2 (Optimal Estimation). In the procedure described above, x̂dec
k = x̂|Imax

k
.

Proof. There are two cases. First, suppose λk = received . Then, x̂dec
k is precisely the Kalman filter output,

and thus is the optimal least-squares estimate of the state xk.
Now, suppose λk = dropped . Recall that tl(k) is the last time at which a packet was received. Now,

note that the predictor equation (7) is the optimal least-squares predictor for xk given the llms estimate
of xk−1, since the plant noise is Gaussian and has mean zero. The decoder estimate x̂dec

k is thus precisely
the output of the optimal predictor, initialized at x̂dec

tl(k), and run for k − tl(k) steps. However, from the

previous argument, x̂dec
tl(k) is the optimal least-squares estimate of x at time tl(k). The output of the optimal

predictor, initialized at the optimal estimate, is the optimal estimate of xk, given all the measurements until
tl(k). Thus, x̂dec

k = x̂|Imax

k
.
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Note that throughout this discussion, we have made no assumption about the packet dropping behavior.
The encoding and estimation algorithm described above provides the optimal estimate based on Imax

k for an
arbitrary packet drop sequence, irrespective of whether the packet drop can be modeled as an i.i.d. process
(or a more sophisticated model like a Markov chain) or whether its statistics are known to the plant and
the controller. This, combined with our previous discussion regarding separation of control and estimation,
allows us to state our main result.

Proposition 3 (Optimal Packet-Based LQG Control). For the packet-based optimal control problem
stated in section 2, the combination of an LQR state feedback design with the optimal transmission-estimation
algorithm described above achieves the minimum of J(u, f, P ) for all P .

Thus we have solved the packet-based LQG control problem using the separation theorem and the results
presented in this section. Also note that the solution can be extended to the case when the channel applies
a random delay to the packet so that packets might arrive at the decoder delayed or even out-of-order, as
long as we assume that there is a provision for time-stamping the packets sent by the encoder. At each time
step, the decoder will face one of four possibilities, and will update its estimate as described below:

Optimal Asynchronous Estimation Algorithm Followed at the Decoder

• It receives x̂k|k. It uses this as its estimate.

• It does not receive anything. It uses the predictor equation (7) on x̂dec
k−1 as before.

• It receives x̂m|m while at a previous time step, it has already received x̂n|n, where n > m. It discards

x̂m|m and uses the predictor equation (7) on x̂dec
k−1.

• It receives x̂m|m and at no previous time step has it received x̂n|n, where n > m. It uses x̂m|m as x̂dec
m

and uses the predictor equation until time step k to obtain x̂dec
k .

5 Analysis of the Proposed Algorithm

Note that our analysis so far has made no assumption about the packet drop model. In this section, we
make some assumptions about the packet dropping random process and provide some stronger results on
the stability and performance of our algorithm. We will model the channel erasures as occurring according
to a Markov chain, which includes the case of independent packet drops as a special case. The model of
Markov jump system is a popular way to deal with communication channels and networks (see, e.g., [31]).
Thus the channel will be assumed to exist in two states, state 1 corresponding to a packet drop and state
2 corresponding to no packet drop. At any time, the channel is in one of these states and it transitions
probabilistically between these states according to the transition probability matrix Q which is of the form

Q =

[

q11 q12

q21 q22

]

.

The (i, j)-th element of Q represents the probability of the state changing from i to j at the next time step.
We also assume that in the Kalman filter used by the encoder, there is strict causality in the sense that to
calculate the estimate of xk, only the measurements till time step k−1 are used. The arguments given below
can be easily extended to the case when strict causality is replaced by causality (the estimate of xk depends
on y0, y1, · · · , yk). Finally we assume that the system is stabilizable and the pair (A,C) is observable, so that
the estimation error for the Kalman filter at the encoder is stable. We will use the following mathematical
notation. The operation A ⊗ B will denote the Kronecker product of matrices A and B, while vec(A) will
represent the vectorizing operation that results in a vector formed by stacking the columns of A (see [16] for
more details).
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5.1 Stability Analysis

The plant evolves as
xk+1 = Axk + Buk + wk,

the Kalman filter at the encoder according to

x̂k+1 = Ax̂k + Buk + Kk (yk − Cxk)

and the estimator at the decoder according to the relation

x̂dec
k+1 =

{

Ax̂dec
k + Buk channel in state 1

x̂k+1 channel in state 2.

Denote ek = xk − x̂k and tk = x̂k − x̂dec
k . Also note that the control input is given by

uk = Fkx̂dec
k .

Thus the plant dynamics equation can be rewritten as

xk+1 = (A + BFk) xk + wk − BFk (tk + ek) .

If (A,B) is stabilizable, by construction Fk is the optimum control law. Thus in particular, it stabilizes the
system as long as the disturbances wk, tk and ek remain bounded. We only need to ensure that wk, tk and
ek remain bounded for xk to be stable. We assume the noise wk has bounded covariance matrix. Also ek has
bounded covariance matrices by assumption of observability of (A,C). Finally for tk, we see that it evolves
according to the equation

tk+1 =

{

Atk + Kvk − KCek channel in state 1

0 channel in state 2.
(8)

Again note that vk and ek have bounded covariance. For tk to be of bounded variance, the Markov jump
system of equation (8) needs to be stable. Further note that since our controller and encoder/decoder
design is optimal, if the closed loop is unstable with our design, it is not stabilizable by any other design.
Following [24], we can write the stability condition for tk as follows.

Proposition 4 (Stability Condition). Consider the system given in equation (1) being observed through
a sensor of the form in equation (2) in which the sensor information is encoded and transmitted to the
controller over a packet erasure channel which transitions between the ‘drop packet’ and ‘transmit packet’
states according to a Markov chain with transition probability matrix Q. The system is stabilizable, in the
sense that the variance of the state is bounded, if and only if

1. the matrix pair (A,B) is stabilizable.

2. the matrix pair (A,C) is detectable.

3. the matrix
(

QT ⊗ I
)

[

0 0
0 A ⊗ A

]

has eigenvalues strictly less than unity in magnitude, where I is identity matrix and 0 is the zero matrix
of suitable dimensions.

Further, if the system is stabilizable, one controller and encoder/decoder design that stabilizes the system is
given in Proposition 3.

As a simple example, suppose the channel has two states between which it jumps independently. With a
probability p at each time step, the channel drops the packet. Also assume that the plant is scalar with the
system matrix given by a. Then the above condition reduces to the condition pa2 < 1.
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5.2 Performance Analysis

In this subsection, we calculate the total quadratic cost incurred by the system for the infinite-horizon case
(the case when K → ∞ in equation (4)). We will make the additional assumption that the Markov chain is
stationary and regular (see [7]) and that the probability of channel being in state i at time when the Markov
chain reaches the stationary distribution is given by π(i). For the infinite horizon case, the cost has to be
slightly modified to prevent divergence. We consider the cost

J∞ = lim
K→∞

E

[

1

K

K
∑

k=0

[

xT
k Rcxk + uT

k Qcuk

]

]

.

Assuming ergodicity, this reduces to

J∞ = lim
K→∞

E
[

xT
KRcxK + uT

KQcuK

]

= [trace (P∞
x Rc) + trace (P∞

u Qc)] , (9)

where P∞
x = limK→∞ E

[

xKxT
K

]

and P∞
u = limK→∞ E

[

uKuT
K

]

.
With the assumptions of stability and observability stated above the control law matrix Fk and the

Kalman gain matrix Kk can be considered as constant matrices F and K respectively. From the discussion
given in section 5.1, we can write the evolution of the system in the following manner. Denote

zk =





xk

ek

tk



 .

Then,

zk+1 =





















































A + BF −BF −BF

A − KC 0 0

0 −KC A






zk +







I 0

I −K

0 −K







[

wk

vk

]

channel in state 1







A + BF −BF −BF

A − KC 0 0

0 0 0






zk +







I 0

I −K

0 0







[

wk

vk

]

channel in state 2,

where 0 denotes the zero matrix and I the identity matrix of suitable dimensions. Following [24], we introduce
the following notation. Define the stationary covariance P∞ as

P∞ = lim
k→∞

E
[

zkzT
k

]

.
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Also denote

A1 =





A + BF −BF −BF

A − KC 0 0
0 −KC A



 ⊗





A + BF −BF −BF

A − KC 0 0
0 −KC A





A2 =





A + BF −BF −BF

A − KC 0 0
0 0 0



 ⊗





A + BF −BF −BF

A − KC 0 0
0 0 0





G1 =





I 0
I −K

0 −K



 R





I 0
I −K

0 −K





T

G2 =





I 0
I −K

0 0



 R





I 0
I −K

0 0





T

R = E

[[

wk

vk

]

[

wT
k vT

k

]

]

P̃i = πi lim
k→∞

E
[

zkzT
k | channel in state i

]

P̃ =

[

vec(P̃1)

vec(P̃2)

]

(10)

G =

[

vec(G1)
vec(G2)

]

.

Then the following proposition can readily be obtained by using the results of [24].

Proposition 5 (Performance Analysis). P̃ as defined in equation (11) is the unique solution to the
following linear equation

P̃ =
(

QT ⊗ I
)

[

A1 0
0 A2

]

P̃ +
(

QT ⊗ I
)

([

π1 0
0 π2

]

⊗ I

)

G,

where I is the identity matrix and 0 is the zero matrix of suitable dimensions. The matrix Q is the transition
probability matrix of the Markov chain and other quantities have been defined above.

Once we calculate P̃ , we can readily evaluate the cost in equation (9) by using the following relations.

P̃ =

[

vec(P̃1)

vec(P̃2)

]

P∞ = P̃1 + P̃2

P∞
x =

[

I 0 0
]

P∞





I

0
0





P∞
u = F

[

I −I −I
]

P∞





I

−I

−I



 FT .

Thus the cost can readily be calculated.

5.3 Example

In this section, we consider an example to illustrate the performance of the method outlined above. We
consider the example system considered by Ling and Lemmon in [18]. The plant transfer function is

H(z) =
z−1 + 2z−2

1 + z−1 + 2z−2
,
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Figure 4: Stability margin of our algorithm as a function of packet drop probability.

so that the system evolves as

xk+1 = Axk + Buk + Bwk

yk = Cxk,

where the system matrices are given by

A =

[

0 −2
1 −1

]

B =

[

2
1

]

C =
[

0 1
]

.

The process noise wk is assumed zero mean with unit variance. The cost to be minimized is the steady state
output error limK→∞ y2

K . The work of Ling and Lemmon [18] assumes unity feedback when no packet is lost
and gives an optimal compensator design when packets are being lost.

On analyzing the system with our algorithm, we observe that our algorithm allows the system to be stable
up to a packet drop probability of 0.5 while the optimal compensator in [18] is stable only if the probability
is less than 0.25. Figure 4 shows the stability margin of our algorithm as a function of the packet drop
probability. It shows the maximum absolute value of the eigenvalue of the matrix given in Proposition 4.
Also if we analyze the performance we obtain the plot given in Figure 5. The performance is much better
throughout the range of operation for our algorithm. The performance of the two algorithms is not the
same even at zero probability of packet drop since the optimal compensator presented in [18] assumes unity
feedback. If we assume unity feedback in our algorithm and compare the performance, we obtain the plot
in Figure 6. This shows that the difference in performance is mainly due to the novel encoding-decoding
algorithm proposed.

6 Conclusions and Future Work

In this paper, we considered the problem of optimal LQG control in situations when the sensor and controller
are communicating across a communication channel or a network. We modeled the communication medium
as a switch that drops packets randomly. We showed that a separation principle exists between the optimal
estimate and the optimal control law. For the optimal estimate, we identified the information that the
sensor should provide to the controller. This can be viewed as constructing an encoder for the channel. We
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Figure 5: Comparison of performance for the two algorithms assuming optimal controller for our algorithm.
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Figure 6: Comparison of performance for the two algorithms assuming unity feedback controller.
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also provided the design for the decoder that uses the information it receives across the medium and the
information it already has to construct an estimate of the state of the plant. We saw that our algorithm
is optimal irrespective of the packet drop pattern. For the case of packet drops occurring according to a
Markov chain, we carried out stability and performance analysis of our algorithm and compared it to other
approaches presented in the literature.

The work can potentially be extended in many ways. One possible direction is to consider a channel
between the controller and the actuator. In this scenario, it will be important to identify whether we want
the decoder to have any knowledge of the control law or the cost function. Another intriguing possibility is
considering the effect of allowing only finite number of bits in the packet. Ishwar et al. [15] have showed that
if the optimal vector to send in the infinite rate case is the state estimate, even for the finite rate case, the
quantized version of state estimate remains as the optimal thing to send. However, from the view of optimal
control, this issue has to be examined in greater detail. Extensions to decentralized control are another
exciting avenue of research.
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