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Abstract 

We consider a finite horizon based formulation of receding horizon control for linear discrete- 
time plants with quadratic costs. A framework is developed for analyzing stability and perfor- 
mance of finite receding horizon control for arbitrary terminal weights. Previous stability and 
performance results, including end  constraint,^, infinite horizon formulations, and the fake alge- 
braic Riccati equation, arc all shown to  be special cases of the derived results. The unconstrained 
case is presented, where conditions for finite receding horizon control to  be stabilizing and within 
specified bounds of the optimal infinite horizon performance can be computed from the solution 
to the Riccati difference equations. Ne~ert~heless, the framework presented is general in that  it 
lays the groundwork for extension to  constrained systems. 

Keywords: predictive control, optimal control, linear systems. 

1 Introduction 

Receding horizon control (RHC), also known as model predictive control (MPC), is a discrete-time 
technique in which the control action is obtained by solving open loop optimization problems at 
each time step. The flexibility of this type of irnplementation has been useful in addressing various 
implementation issues that traditionally have been problematic. 

From a practical viewpoint, an attractive feature of RHC is its ability to naturally and explicitly 
handle both multivariable input and output constraints by direct incorporation into the optimiza- 
tion. The RHC strategy was first exploited and successfully employed on linear plants, especially in 
the process industries 112, 51, where relatively slow sample times made extensive on-line intersample 
computation feasible. Recent improvements in computer power have made RHC an attractive and 
more viable alternative approach in a variety of additional applications as well. 

On the other hand, theoretical aspects associated with stability and performance properties of 
RHC have proven to be a very coinplicated and difficult issue. The attractive capabilities of RHC 
and a promising outlook for future applications has motivated an intensive study of the stability 
and performance of various R.HC implementations, providing a challenging research area. 

*Automatic Control Laboratory, Swiss Federal Institute of Technology (ETH), CH-8092 Ziirich, Switzerland, e- 
mail: vesnaQaut .ee.ethz.ch 

+Control and Dynamical Systems, California Institute of Technology, Pasadena, California 91125, e-mail: 
jprimbs@cds.caltech.edu. Supported by NSF. 



Stability results have been established for special choices of the control parameters, and rely 
basically on two approaches. For finite horizon based RHC, stability results often require the 
addition of an end constraint that the state be zero at the end of the prediction horizon [9, 10, 3, 71. 
These constraints are somewhat artificial since they are not satisfied in the closed-loop, and the 
state only asymptotically approaches zero. An alternate approach is to use an infinite horizon 
formulation. This has been explored by Rawlings and Muske [13] for linear plants and quadratic 
costs, including the presence of linear state and control constraints. 

In this paper, we introduce a framework for analyzing both stability and performance of finite 
horizon based RH policies, withlout using end constraints, and without relying on monotonicity 
arguments. Following the ideas and approach used by Shamma and Xiong for non-quadratic R.HC 
[14], we derive stability and performance results for linear systems with quadratic costs. The 
stability results presented in this paper are based on Lyapunov arguments that use the finite 
receding horizon cost as a Lyapunov function, and lead to performance bounds on the RH policies. 
In particular, finite horizon computations which calculate the tolerance to which the infinite horizon 
RHC cost is within that of the optimal infinite horizon cost are provided. Furthermore, our approach 
appears to be a unifying framework which easily explains the majority of previously established 
stabiiity results, and provides a natural setting for extending stabiiity and performance analysis 
to constrained and nonlinear systems. R.esults which fully extend the ideas in this paper to these 
more general systems will be submitted for publication shortly. 

2 Linear Quadratic Optimal Control 

Consider a discrete-time linear system of the form 

where z(k)  E Rn and u(k) E Rm denote the state and control, respectively. A popular design 
paradigm for linear time-invariant systems is linear-quadratic (LQ) optimal control [8]. The LQ 
optimal control problem may be posed in either an infinite or finite horizon framework. 

2.4. Infinite Horizon Formulation 

The infinite horizon LQ problem is formulated as follows. Minimize the infinite horizon cost: 

subject to the system dynamics (1). 
Under standard technical assumptions ([A, B] stabilizable, R > 8, Q > 0, [&'I2, A] observable), 

the solution is given by: 
u*(k) = - ( B ~ P B  + R ) - ~ B ~ P A Z ( ~ )  (3) 

where P is the unique positive definite solution to the algebraic Riccati equation (ARE): 

In this case the control u,* is guaranteed to be stabilizing. In addition, P provides a method for 
evaluating the optimal cost in that J (xo)  = X F P X ~ .  



2.2 Finite Horizon Formulation 

The corresponding finite horizon problem is defined by the objective function: 

rT ( N )  P O ~ ( N )  + ( z T ( k ) ~ z ( k )  + sT ( k )  Ru(k ) )  
k=O 1 

Note that Po weights the final term of the horizon, x ( N ) ,  and is usually referred to as a terminal 
weight. The solution of this LQ regulator problem may also be given directly in closed loop form 
as follows. One merely iterates the Riccati difference equation (RDE) from the initial condition Po, 
according to: 

Pjil = AT[pj - P j B ( B T p j B  + R ) - ~ B ~ P ~ ] A  + Q. (6) 

and implements the finite horizon control policy, 

Note that the initial condition Po used for the RDE is also the terminal weight for the finite horizon 
cost JN.  We will interchangeably refer to Po as an initial condition or terminal weight owing to 
these two interpretations. 

Again, the optimal finite horizon cost can be evaluated from knowledge of PN by J N ( x 0 )  = 

z; fpNzo.  

3 Receding Horizon E?ormuladion: Problem Setup 

A receding horizon implementation [6] is typically formulated by introducing the following opcn- 
loop optimization problem. 

(p  2 mj where p  denotes the iength of the prediction horizon, and m denotes the iength of the 
control horizon. (When p  = oo, we refer to this as the infinite horizon problem, and similarly, when 
p  is finite, we refer to it as a finite horizon problem.) 

Let u ; ~ , ~ )  ji), i = 3 , .  . . ,m - 1 be the minimizing control sequence for J(p,,) ( x ( k ) )  subject to 

the system dynamics (1). A receding horizon policy proceeds by implementing only the .first control 
. 'i.(p,m)(x(k)) = U ~ ~ , ~ ) ( O )  to obtain x(k + 1) = Ax(k)  + B U ~ ~ , ~ ) ( O ) .  Thc rest of the control scqucnce 

u* is discarded and x(k + 1) is used to update the optimization problem (7) as a new initial 
(p,m) 

condition. This process is repeated, each time using only the first control action to obtain a new 
initial condition, then shifting the cost ahead one time step and repeating, hence the name receding 
horizon control. 

In particular, if we consider the case p  = m = N ,  then J(p,m) = JN as defined in ( 5 ) .  This 
receding horizon policy can then be simply characterized as: 

i iN(z(k))  = arg min {xT(k )&x(k )  + U ~ R U  + JN-1 ( A x ( k )  + B u ) )  (8) 

Note that the receding horizon policy iiN is equal to the initial control action of the solution to the 
finite horizon LQ problem and can be calculated from the RDE (6). i.e.: 



For the remainder of this paper, in order to simplify notation, we make the assumption that 
p = m = N. Receding horizon policies will be denoted as iiN and optimal LQ policies as IL& and 
u*. 

4 Stability and Performance of Finite Receding Horizon Linear 
Quadratic Control 

4.1 Motivation and Main Ideas: JN as a Lyapunov function 

Our approach to finite horizon based RH control relies on the use of the finite horizon cost JN as 
a Lyapunov function, but without imposing restrictive end constraints or relying on monotonicity 
arguments to prove stability. In fact, we present a general theory for performance and stability 
analysis of finite receding horizon LQ control for any initialization of the RDE, Po. 

The main argument is as follows. We wish to show that JN is a Lyapunov function, or equiv- 
alently that JN(x(k))  - JN(x(k + 1)) > 0 for z # 0. Rewriting JN(z(k))  - JN(x(k + 1)) by using 
that JN(z(k))  = zT(k)&z(k) + u*'(o)R~* (0) + JN-i (z(k + 1)) gives: 

JN(z(~)) - J N ( x ( ~  + 1)) = [xT(k)~x(k) + B~(z(k))R.iL~(z(k)) + Jni-I ( ~ ( k  + I))] - J N ( x ( ~  + 1)) 
> 0 ?? 

(10) 
(where we have used that fiN(x(k)) = uk(0)).  If it can be shown that the right hand side of (10) 
is positive, then stability is proven. Assuming Q > 0, the first term 

is positive. In general, it canmot be asserted that the second term 

is also positive. But, under appropriate technical conditions, it is known from LQ theory that 
JN + J as N -+ oo where J is the optimal cost for the LQ infinite horizon problem (2). This 
implies that ( JN-~ - JN) + 0 as N + oo. We will show that by choosing N large enough, it is 
possible to giiaraiziee that the secoild terin i i ~  ( lo) ,  [&-I ( . . ~ ( k +  1)) - JN ( ~ ( k  + I))]  i5 always srnaiier 
than the first term [zT ( k ) ~ z ( k )  + uT (k)Ru(k)], independent of x(k). In this case, thc right hand 
side of (10) will be positive, implying that JN is a valid Lyapunov function and proving stability. 

. . 
Firtherrnore, it is possible to cstaS1ish a criterion based on finite-horizon computations relyiilg oil 
the RDE (6), which not only establishes the above stability, but ensures that the cost of the RHC 
will perform within a specified tolerance of the optimal infinite horizon performance. 

Finally, we will show that most other known and well established stability methods, such as 
finite RNC with end constraints (z(p) = 0) [ lo ,  31, or the infinite RHC approach (p = oo) [13], 
rely on choosing the terminal weight Po, so that the finite horizon costs, JN, are mon,otoaically 
non-increasing, i.e. JN-~(X) > JN(x). Note that this trivially results in stability by ensuring that 
the second term (12), is non-negative. The results we present do not require any such monotonicity 
arguments and represent a general theory that encompasses many previous results as special cases. 

4.2 Preliminaries 

Let Zi denote the set of non-negative integers. We will consider the discrete-time linear system 
(1) with z(k)  E Rn and u(k) E Rm. In addition we require that Po 2 0, Q > 0 and R > 0, and 
assume that [A, B] is a stabilizable pair. Finally, recall the following standard result concerning 
the convergence of the solutions of the RDE (6) to that of the ARE (4). 



Proposition 4.1 Let PN be the solution of the RDE (61, then PN + P > 0 as N -+ cc where P 
is the solution o f  the algebraic Riccati equation (ARE) (4). 

Proof This is a standard result from LQ theory [I]. I 

We will define two parameters, a!N and p~ that will play an important role throughout the rest 
of the paper. These parameters help to characterize the right hand side of our key equation (10). 

Definition 4.1 

a, = min {a! : a JN(x)  > J N + ~  (x),  Vx) 
= min{a : aPN > PNS1) 

Remark: Note that since PN = P; > 0, 

- 
where A(.) denotes the maximum eigenvalue. Hence, a~ = X ( P ~ + ~ P ; ~ ) .  

Remark: The parameter a ! ~  is a measure of the maximum ratio by which the finite horizon 
cost may increase with the addition of a single step. That is, another characterization of c v ~  
is a w  = m a ~ ( J ~ + ~ ( x ) / J ~ ( x ) ) .  This parameter can be used to characterize monotonicity, for if 
a~ < 1, then this implies that the finite horizon costs are decreasing as the horizon N is increasing. 
By arguments in the previous subsection, stability is immediately implied. On the other hand, if 
QN is not less that one, it still provides an appropriate measure of the amount by which the finite 
horizon costs may increase, which is exactiy the information needed to bound the second term (12). 

An important property of a ! ~  is stated in the following proposition. 

Proposition 4.2 

lim a~ = 1. 
N t c o  

Proof: Immediate sincc PN -+ P. 

The second parameter related to equation (10) is defined as follows: 

Definition 4.2 

pw = max {p : xT&x > pJn;(x), VX) 
= max {p : Q > pPN) 



Remark: Similar considerations to those given above show that p ~  = x(QP;') where A(.)  
denotes the minimum eigenvalue. 

Remark: Note that p ~ r  determines a lower bound for the first term in (10) in terms of the finite 
horizon cost J N :  

Z ~ Q Z  + U ~ R U  2 pN JN ( z ) .  

It is also easily seen that p ~  is the minimum ratio of z T & z  to J N ( z ) .  Finally, note that since 
PN > Q ,  p ~  is always less than or equal to 1  and strictly greater than 0. 

The main results presented in this paper follow from simple applications of the main idea, as 
presented in equation ( l o ) ,  using the parameters a N  and p~ as defined above, to bound terms. 

4.3 Main Results 

In the subsections that follow we present the main stability and performance results which provide 
sufficient conditions for stability as well as performance bounds for the infinite horizon cost of the 
RH policy, without, any special requirement on the terminal weight P3. As will be shown later, 
these theorems provide a framework in which the majority of previous results can be viewed as 
special cases. 

4.3.1 Stability 

Consider the receding horizon policy (8) based on the finite horizon cost (5). 

Theorem 4.1 Let N be such that 

then the receding horizon policy iiN(.) is stabilizing, and J N ( . )  is a Lyapunov function for the 
closed-loop system with 

J N ( x ( ~  + 1)) < Y N J N ( z ( ~ ) )  

Proof: Let x ( k )  and u ( k )  be the state and control tra.jectory, respectively, resulting from the 
receding horizon policy 

~ ( k )  = u N ( x ( k ) ) .  

For any k  E Z + ,  

J N ( x ( ~ ) )  = x T ( k ) Q x ( k )  + u T ( k ) R u ( k )  + JN-1 ( ~ ( k  + 1 ) ) .  (13) 

Therefore, 

J N ( z ( k ) )  - JN ( ~ ( k  + 1 ) )  = x T ( k ) Q x ( k )  + u T ( k ) n u ( k )  + JN-1 ( ~ ( k  + I ) )  - J A T ( z ( ~  + 1 ) )  
1  > xT ( k )  Q x ( k )  + uT ( k )  R u ( k )  + - 

QiN-1 
J N ( x ( ~  + 1 ) )  - J N ( x ( ~  + 1 ) )  

Collecting JN ( ~ ( k ) )  terms on the left, and JN ( x ( k  + 1 ) )  on the right gives: 



Multiplying by Q N - 1  gives: 

Q N - I ( ~ -  P N ) J N ( x ( ~ ) )  > J N ( x ( ~ +  1 ) )  

which completes the proof. I 

Remark: Note that since P N  + A(QP-') > 0, then by Proposition 4.2, there always exists a 
finite N such that YN < 1. Furthermore, TAT is computable through finite horizon computations 
only. 

Remark: Just as a w  and p ~  can be interpreted as ratios of costs, it is clear that Y N  is in fact 
an upper bound for the ratio J N ( x ( k  + I ) ) /  J N ( x ( k ) ) .  

4.3.2 Performance 

Now we will derive bounds on the performance achieved by a stabilizing receding horizon policy. 

Themem 4.2 Let 1\;T and Y,P,T be as in Theorem 4.1. Eenote the infinite her iz~n  perf~rmancc using 
the receding horizon policy u ( k )  = G N ( 2 ( k ) )  by: 

CO 

Jc, ( ~ ( 0 ) )  = iT ( ~ ) Q x  ( b )  + Q: (.(I.)) RG ( i ( k ) )  
k=O 

Then a bound for the infinite-horizon performance is given by: 

where 

Prooi? Bounding the cost term-by-term gives the following. First, 

Similarly, 

By a summation of corresponding bounds on x T ( k ) Q z ( k )  + u T ( k ) R u ( k )  we obtain the following: 



Remark: Note that if a ~ - 1  < 1, then PN = 1 and the above bound reduces to J6,, ( x )  < JN(x) .  
This is implied by a monotonfcally non-increasing cost JN (or equivalently PN).  

4.3.3 Reformulation of Main results 

The results presented in Theorems 4.1 and 4.2 provide a general theory for the performance and 
stability analysis of finite receding horizon LQ control for any initialization (terminal weight) of the 
RDE, Po. In fact, these results used virtually none of the special structure present in LQ optimal 
control. They provide the framework for extending the above results to constrained finite RH LQ 
control, as well as to other more general systems. 

Recall that the parameter Y N  provides only a sufficient condition for JN to be a Lyapunov 
function. By using the fact that in the LQ case the RH controller can be characterized in closed form 
as given in (9), we may actually check exactly whether JN is a Lyapunov function. Additionally 
this allows us to relax the assumption that Q  > 0, and include semi-de,fin,ite Q with [Q1I2, A] 
observable. 

Theorem 4.3 Let N be such that PN > 0 and 

where KN corresponds to  

Then the receding horizon policy iiN(.) is stabilizing. Furthermore, JN (.) is a Lyapunov function 
for the closed-loop system, so that 

Proof: Let x(k)  be the state trajectory resulting from the receding horizon policy 

Then, 

J N ( x ( k ) ) -  J N ( z ( k + 1 ) )  = ~ ~ ( k ) ~ ~ x ( k ) - x ~ ( k + l ) P ~ x ( k + l )  

= xT(k)pNx(k)  - z T ( k ) ( ~  + B K ~ ) ~ P ~ ( A  + B K N ) z ( k )  

= xT ( k )  (pN - ( A  + B K N ) ~ P N  ( A  + B K ~ ) )  ~ ( k )  

t x (p;'12 (PN - ( A  + B K ~ ) ~ P ~ ( A  + B K ~ ) )  p;'I2) JN(3:(k)) 

= - A ( I  - p;'12(a + B K ~ ) " P ~ ( A  + B K ~ ) P ; ' I ~ )  ~ ~ ( ~ ( l c ) )  

= [I - x (P;'I'(A + B K N ) ~ P N ( A  + B K ~ ) P ; ' / ~ ) ]  JN(x (k ) )  

where we have used arguments similar to those in Section 4.2. Rearranging terms completes the 
proof. I 



Remark: Since C N  provides an exact test of whether JN is a Lyapunov function, CN may be 
thought of as the following quantity: 

or as CN =  ma^,^^^ ( JN(x ( l ) ) /  JN ( ~ ( 0 ) ) ) .  Showing that CN may be calculated from the eigenvalue 
formula in Theorem 4.3 is little more than an application of the remark after Definition 4.1 which 
showed that a~ could also be characterized by an appropriate eigenvalue computation. 

Remark: Clearly, Theorem 4.2 is applicable to the above result by replacing Y N  with CN in 
equation (16). When we need to distinguish between using y~ and CN in (16), we will write PY 
and P C ,  respectively. 

4.4 Using JN-I as a Lyapunov function 

As was done with JN, it is also possible to use JN-l as a Lyapunov function and obtain results 
analogous to those in Theorems 4.1, 4.2, and 4.3. For completeness, we also present this construc- 
4 '  b i O i i .  

Consider using JN-1 as a Lyapunov function, 

>o ?? 

(18) 
Similar arguments to those given in Section 4.1 apply. 

The following theorems paralleling Theorems 4.1, 4.2, and 4.3 are now easy to prove: 
Consider the receding horizon policy (8) based on the finite horizon cost (5). 

Theorem 4.4 Let N be such that 

then the receding horizon policy iiN(.) is stabilizing, and JN-~(.) is a Lyapunov function for the 
closed-loop system with 

J;V-l(~(;G. + 1)) I YNJN-l (~(k) )  

Proof: See Appendix A. I 

Theorem 4.5 Let N and yN be as in Theorem 4.4. Using the receding horizon policy 

a bound for the infinite-horizon performance is given by: 

where 



Proof: See Appendix A. 

Theorem 4.6 Let N be such that > 0 and 

where K N  corresponds to 

The receding horizon policy iiN(.) is stabilizing. Furthermore, J N - ~  (.) is a Lyapunov fullction 
for the closed-loop system, so that 

PrnoE See Appendix A. 

4.5 Discussion of Results 

Before proceeding, we take a momcnt to review the previous theorems. A sunlmary of the notation 
used in the stability results is given in Table 1. The theorems rely on using either JN or J N p I  as a 
Lyapunov function. Note that parameters with no tilde correspond to JN and those with tilde to 
JN-1. Furthermore we differentiate between results that did not use the specific structure of the 
control u, which have parameters YN or TN, and those that used u to exactly determine whether 
JN or JNPl was a Lyapunov function and are denoted by CN and &. In all cases, a sufficient 
condition for stability occurs when the corresponding parameter achieves a value less than 1. 

Table 1 

Table 1: Stability Theorems 

JN 

Furthermore, we would like to note the following. Recall that J denotes the optimal infinite 
horizon cost for the LQ problem (cf. eqn. (2)), JcN is the infinite horizon cost of the RH policy 
(cf. eqn. (14)), and JN is the optimal cost of the finite horizon LQ problem (cf. eqn. (5)). 

r If the finite horizon costs JN are monotonically non-increasing (i.e. c u ~  5 I ) ,  then PN = 1 
which leads to the following bound (cf. Thm. 4.2): 

without u 

Thm. 4.1 

exact 

Thm. 4.3 



If the finite horizon costs JN are monotonically non-decreusing, then we know that JN(2(0)) I 
J(x(0)). Combining this with the bound from Theorem 4.2, gives: 

Hence, it is possible to determine that the infinite horizon performance of the finite RHC is 
within specified bounds of the optimal performance, by performing the finite horizon calcu- 
lations of JN(z(0))  and PN only. 

r In general, the approach using JN as a Lyapunov function gives less conservative stability 
results and tighter performance bounds than the results of Section 4.4 which relied on J N - l .  
Results concerning this can be found in Appendix B. 

e Recall that CN and &r provide exact tests of whether JN and respectively, are Lyapunov 
functions. Clearly these are only sufficient tests for stability and, as will be seen in the 
examples, a gap may exists between the horizon length at which the RH policy is stabilizing, 
and when JN or JNml is sufficient to act as a Lyapunov function and guarantee stability. On 
the other hand, one might question the performance properties of a controi action obtained 
by minimizing JN, but that does not cause JN to decrease along its trajectories (i.e. JN is 
not a Lyapunov function), even if it is stabilizing. Hence, it could be argued that it is only 
reasonable to use horizons for which JN is a Lyapunov function, which furthermore allow for 
explicit bounds on performance through Theorem 4.2. 

Finally, it is worthwhile to mcntion that the ideas presented here can be naturally generalized 
to constrained linear and nonlinear systems. These results will be presented in a following paper. 

5 A Unifying framework for Stability Analysis 

As was clearly shown in the previous section, since it relies neither on monotonicity, nor end 
constraints, the finite RH LQ approach provides a general framework for stability and performance 
3 n ~ l T r o ; o  R l l n r n n ~ m r  it r o n  ha rnnc;r lnrnr l  a c  a ~ ~ n ; f ~ r ; n r r  a n n r n a r h  ~rihirh n r n c n n t c  I m a n o r o l  n ; o t ~ ~ m  F ~ Y  
",I'",IJ UIU. L Y l V L U V  Y b* , I" bull "b bVIIUIL'UIUU C U V  C U  Ul l l l J  lllb C U t J y l V C U U l l  "I I L I U I 1  t J l U U U l l V U  u IjbllblU1 y l U U  Ulb I V I  

understanding all previously established stability results. In what follows, the relationship between 
different stability approaches will be explored in detail. It will also be shown that all other stability 
approaches can he obtained as special cases of finite RH LQ control. 

5.1 Previous results: Monotonicity as an underlying principle 

The concept of monotonicity as a key to determining the stability of RHC is an idea which l~nderlies 
the majority of previous results. Both the finite horizon result using end constraints [9, 10, 3, 71 
and the infinite horizon approach [13] can be viewed as different methods for choosing the terminal 
weight Po so that JN (or equivalently PN) is monotonically non-increasing (i.e. a N  5 l), which 
trivially guarantees stability as described in Section 4.1. 

5.1.1 Finite Horizon Approach 

Results concerning the stability of finite horizon based RH control for linear systems with quadratic 
costs have, to date, been primarily based upon the use of end constraints. These end constraints 
typically consist of forcing the entire state to zero at the end of the prediction horizon ( ~ ( k + ~ )  = 0). 
Despite the fact that these constraints guarantee asymptotic stability of the finite horizon based 



RH control scheme, as was shown by Kwon and Pearson [lo], they have been criticized for being 
somewhat artificial since they are not achieved in the closed loop. 

Bitmead et al. showed that end constraints, or equivalently, P;' = 0, in a finite horizon RH 
formulation guarantee that PN is monotonically non-increasing [4]. In this way, stability is assured 
for every horizon length N 2 n as stated below in Theorem 5.1. [3, 41 

Theorem 5.1 Consider the system ( I )  with dimension n, and assume that R > 0, Q > 0, A 
invertible and [A, B] controllable. Further, consider P;' = 0 as the initial condition for the RDE 
(6). Then  the receding horizon policy CN(x) is stabilizing for all N 2 n.  

In our approach, the argument that end constraints imply non-increasing monotonicity of JN 
(or equivalently PN) is simple. Consider two finite horizon optimization problems, both with initial 
condition x(k), but one with cost function JN(z(k))  and end constraint x(k + N )  = 0, and the 
second with cost function JN+i(x(k)) and end constraint x(k + N + 1) = 0. Assume u>(.) is the 
solution of the first finite horizon optimal control problem. Then it is clear that (uk( . ) ,  0) is feasible 
for the second, and produces a cost for the second problem that is equal to the optimal cost JN(x(k))  
that it produces for the first. So the optimad cost for the second (i.e. J N + ~ ( X ( ~ ) ) )  must be at least 
as small as JN (x(k)). Hence we conclude that JNS1 5 JN or equivalently PN+' < P N  Recall that 
this monotonicity is equivalent to having a N  5 1, which was shown to guarantee stability by Thm. 
4.1. 

As shown previously, our finite RH LQ method does not require this monotonicity to achieve 
stability, and the end constraint argument apprars only as a result of a particular choice of initial- 
ization Po. 

5.1.2 Infinite Horizon Approach 

Rawlings and Muske showed that nominal closed-loop stability for all choices of the control tuning 
parameters (Q, R ,  and control horizon m) can be guaranteed by making the output horizon infinite 
(i.e. p = m), and forcing the unstable modes to be zero at the end of the control horizon. The 
following theorem summarizes these results for the unconstrained case [13]. 

P-BV - - - - - - - - -  F Q JL-- -L-~-.l-.-.-~l- r A ni -..:L~ -- L - ~ . ~ -  .----I-- -.- -1 --.. L..-~ L -..:. ... 
~~leu~ellil i ) . ~  P U T  SGuuabaLuuLe L I I , D I  ,UIZLIL , I L ~  . U I L S L U U L ~  , I I I , U U ~ S  U?LU CU,ILL,I.UL ILU,I-ZZUTI. T IC  2 z r ~ u i  i i ~ e  
infinite horizon receding horizon control policy with quadratic objective is stabilizing. 

Recall the infinite horizon based R.H formulation as given by equation (7) with p = oo. For 
stable plants, from time step m to oo, the state evolves according to the uncontrolled dynamics (i.e. 
u = 0). Hence, from i = m,...oo, the cost is given by 

rT ( i )  Qz ( i )  = zT (m) 

and the infinite RHC problem can be reformulated into the finite RHC setup according to the 
following: 

m-1 

J(,,,) (xo) = inf x(m) + (xT ( i )&r ( i )  + 2 (i)  Ru(i)) 
i=o 1 

Hence the infinite horizon setup is equivalent to that of a finite horizon problem with horizon length 
m and RDE initialization Po = CEO ATiQAi, which will be referred to as P r  This initialization 
can be easily calculated from the discrete Lyapunov equation: 



This choice of Po = Pr also results in a monotonically non-increasing cost, JN. Viewing this 
problem in terms of the infinite horizon cost, it is clear that any state trajectory obtained using a 
control sequence of length N can be replicated with a control sequence of length N + 1 merely by 
adjoining the control u = 0 to the end of the sequence of length N. This implies that JN+~(.'C) 5 
JN(x) ,  demonstrating that the key property of an infinite horizon formulation is that it actually 
guarantees that the finite horizon cost is monotonically non-increasing. 

For an unstable plant, an end constraint that the unstable modes are brought to zero is imposed. 
Considering a Jordan decomposition of A, the infinite horizon formulation is equivalent to a choice 
of Po = Pooo which equals the combination of C z o  A F Q  A h h e r e  A, contains the stable modes 
of A, and cc corresponding to the unstable modes of A. This also leads to a monotonically non- 
increasing cost, JN. 

From the discussion above, it is clear that the infinite horizon approach also fits into our finite 
RH LQ formulation by choosing the proper initialization, Po. 

5.2 Monotonicity via a Riccati approach 

Although the idea of using monotonicity follows easily from our Lyapunov function approach, it is 
also possible to arrive at this through an appropriate reformulation of the RDE (6). If one defines, 
aj = Q - (P3+1 - PJ), then the RDE can be rewritten as: 

This equation is called the Fake Algebraic Riccati Equation (FARE) because it is an ARE (4), 
except in terms of P3 and a3. writing the RDE in the form of the FARE allows one to use the 
following standard result concerning the stability of solutions to the ARE [3, 4, 151. 

Theorem 5.3 Consider the ARE (4) where [A, B] is stabilizable, [Q, A] has no  unobservable modes 
o n  the uni t  circle, Q 2 0 anfa! R > 0. Then there exists a unique mazimal,  nonnega,tive definite 
symmetric solution P ,  fuhich is stabiliring. 

Stability of the finite RH control iiN is equivalent to PN-l being stabilizing, where PNP1 is 
determined through iterations of the RDE (6). Hence, if [ Q N - ~ ,  A] has no unobservable modes on 
the unit circle and Q N - ~  > 0, then is stabilizing. If QN-l > 0, then this ensures that these 
conditions are met. Hence, if 

QNP1 = Q - (PN - PN-1) > o (25) 

then PN-1, or equivalently GN,  is stabilizing. Additionally, one can see that if Pj is monotonically 
non-increasing, then Qj will always be positive definite, and stability is guaranteed for any choice 
of the finite horizon N. 

5.2.1 A connection with finite RH LQ control 

The FARE based stability result, (25) is actually a special case of the results presented in Section 
4.4, and is similar to the result given in Theorem 4.4. 

As in Section 4.4 consider using JN-1 as a Lyapunov function: 

JN-1 ( ~ ( k ) )  - JN-1 ( ~ ( k  + 1)) = JN-1 ( ~ ( k ) )  - [JN(x(k)) - (xT(k)Qx(k) + ~ C ( ~ ) R G N ( ~ ) ]  
= [xT ( k ) ~ x ( k )  - ( J N ( x ( ~ ) )  - JN-1 ( ~ ( k ) ) ) ]  + c % ( k ) ~ u N  (k) 
= xT(k) [Q-  (PN - P N - ~ ) ] x ( k )  +&:(k)Rii~(k) 



The FARE merely states that if the first term is positive (Q - (PN - PN-l) > 0), then JN-[ is a 
Lyapunov function and PN-l, or equivalently G N ,  is stabilizing. 

To see the connection with Theorem 4.4, note that: 

xT(k) [& - (PA' - PA'-[)] x(k) = xT(k) [ Q P ~ I ~  - ( P N P G ~ ~  - I)] PClz(k)  

> xT(k)[pN-l - (QN-1 - ~)]PN-Iz(~)  

From this consideration, it is apparent that Theorem 4.4 is slightly more conservative than the 
FARE result due to the fact that a ~ - 1  and piv-1 are independent bounds on individual terms 
involved in the above equation. The reason for calculating the quantities a ~ - 1  and p ~ - 1  separately 
is that ~ N - I  is a quantity needed for the performance bound PN (eqn. (19)) and hence can serve 
a dual purpose as a parameter for both stability and performance. 

Also note that the tern1 u T ( k ) ~ u ( k )  in the FARE result, as well as in Theorem 4.4, is ignored. 
On the other hand, Theorem 4.6 takes full advantage of the known structlire of control QN(k). It is 
therefore clear that the FARE result and Theorem 4.4 are more conservative than the result given 
in Theorem 4.6. 

5.2.2 Bounds on performance through the F A R E  

Let us consider the following costs associated with the FARE: 

1. J(&) is the optimal valiie of the infinite horizon control problem using the cost parameter Q 
(In our notation, this is simply the optimal infinite horizon cost J). 

2. . J ( Q ~ - ~ )  is the optimal cost of the infinite horizon control problem corresponding thc the 
cost parameter &NWl (Note that from the FARE, this is exactly the finite horizon cost ,JN-l). 

3. JQ,_, (Q) is the value of the infinite horizon cost for the problem corresponding to the cost 
parameter &, but using the controller designed for an infinite horizon problem with cost 
parameter QN-i (This is in fact the infinite horizon cost of the R.B policy with horizon 
length N, JG,). 

Then it is possible to show the following result [3], [ll]. 

Theorem 5.4 Q N - ~  > Q Implies J ( ~ N - , )  2 JaN-,(Q) 2 J (Q) .  

Using the notation established in this paper, the above theorem states that under the condition 
>_ Q, then J 5 .Jk, 5 JN-l. Furthermore, by noting that t,he condition QNP1 >_ Q is 

equivalent to PN 2 PNP1 or a ~ - 1  5 1, it is revealed that Thm. 5.4 is nothing more than a special 
case of Thm. 4.5. When a ~ - 1  5 1, then by Thm. 4.5, ?N = 1 and it reduces to the above result. 

Recall that a similar result is given in Section 4.5, equation (21). In fact, due to a ~ - 1  5 1, 
JN _< JNP1 and the bound given in (21) (J 5 Jc, 5 Jlv) is alwags a better bound than that given 
in Theorem 5.4 (equivalently Thm. 4.5). 

It should be noted that if one begins an iteration of the RDE with Po = Q, then the proper 
rnonotoliicity will not be present, and Theorem 5.4 will never apply. For the above result to 
be of use, some other initialization for the RDE must be chosen which will result in the proper 
monotonicity. On the other hand, Theorems 4.2 and 4.5 apply for any initialization Po of the RDE. 



5.2.3 (Non)usefulness of monotonicity based results 

Using monotonicity to derive stability results and performance bounds turns out to be quite limited 
in its application to many well known and commonly used receding horizon related schemes. For 
exampie, Generalized Predictive Control (@PC) can be cast in a receding horizon LQ framework, 
but only with Po = Q. This always implies a monotonically non-decreasing sequence of PN, which 
is noted for its difficulty in [3] by Bitmead et al.: 

" In  fact, wi th  monotonic i ty  going the  wrong way, it i s  hard t o  say anything about the  
achieved performance of the RN GPC controller as measured against i t s  optimal infinite 
horizon cost criterion except as N goes to  infinity." 

Our finite RH L Q  control formulation provides the framework to analyze situations, such as that 
described above, that are not within the reach of previous results. Furthermore, when Po = Q, we 
are able to determine the amount by which the RH policy can exceed that of the optimal infinite 
horizon policy, through knowledge of the finite horizon cost JN(z(0))  and PN only (recall equation 

(22)). . . 
1, unified picture of stability results, including the results discussed in this sectior,, is giver, ir, 

Figure 1. 

5.3 The optimal terminal weight 

Finally, we remark that the best strategy for choosing a terminal weight would be to approximate 
the infinite horizon cost J (x ) .  For if one were to use the infinite horizon cost itself as a terminal 
weight, then a receding horizon policy of any  horizon length would always recover the optimal 
infinite horizon controller. To see why this is, consider the finite horizon cost with terminal weight 
J (x) :  

N-I 

J N ( ~ o )  = inf J(x(N))  + (zT(k)Qz(k) + u T ( k ) ~ ~ ( k ) )  
4 . 1  k=O I 

Hence the finite horizon problem is actually the infinite horizon problem. 
Stability considerations have required that only special choices of terminal weights (end con- 

straints and the infinite horizon approach) be used, which are usually far from the optirnal choice 
of J (x) .  From this viewpoint, the importance of the ability to analyze the stability of RH policies 
with arbitrary terminal weights is clear in that it may allow for a serious attempt at choosing a 
more "optimal" Po. 

6 Examples 

Calculations demonstrating the characteristics of the finite RH LQ approach will be applied to two 
examples taken from [I41 and [13]. In order to show the full range of flexibility of this approach, 
for each example we will consider the following initializations of the RDE: 

(i) Po = Q (resulting in monotonically non-decreasing PN (aN > I)).  

(ii) Po = Pr (p = m, resulting in monotonically non-increasing PN (aN 5 I ) ,  (see eqn. 23)). 



End constraints Infinite horizon 

Figure 1: Diagram illustrating connections between stability results. (arrows signify "implies") 



(iii) P;' = 0 ( z ( k  + N )  = 0, resulting in monotonically non-increasing PN (aN < 1)). 

While the infinite horizon approach (ii), and end constraints (iii) fall within previously established 
monotonicity based results, only the methods presented in this paper are applicable to (i). 

Stability will be determined by checking the conditions presented in Theorem 4.1 (yN < 1) 
and Theorem 4.3 (CN < 1) which correspond to J n r  as a Lyapunov function, as well as those in 
Theorem 4.4 (yAr < 1) and Theorem 4.6 ((N < 1) which correspond to JN-~.  Due to the fact 
that a monotonically non-increasing PN guarantees stability for any N ,  we do not tabulate these 
parameters for (ii) and (iii). 

Performance results are given in two different forms: 

e Performance w.r.t. optimal: The upper bound for the infinite horizon performance of the 
RHC (PN J N ,  cf. Theorem 4.2) is compared to the optimal infinite horizon cost (J), which is 
obtained by solving the ARE. The tabulated value is the ratio PN JN/J. 

Finite horizon performance bound: When PN is monotonically non-decreasing, as in 
(i), then PN bounds the infinite horizon performance of the RH policy (cf. eqn. (22)). Note 
that this bound is not applicable to (ii) and jiiij. 

6.1 Example 1 

Consider the unstable system 

and the finite receding horizon control (8) with Q = I, R = 1. 
Since both modes of this system are unstable, the infinite horizon approach (ii) is equivalent to 

imposing end constraints (iii) (cf. Section 5.1.2). 
For comparison, in addition to Po = Q and Pi1 = 0, we provide the following initialization, 

which results in monotonically non-increasing PN. Note that while this initialization is not cquiva- 
lent to either end constraints or an infinite horizon approach, it is covered by FARE results, which 
require only monotonically non-increasing PN to provide stability guarantees and performance 
bounds. Additionally, it should be mentioned that it was not trivial to find the Po* given above so 
that the proper monotonicity was present. 

Table 2 presents stability results corresponding to Theorems 4.1 (y), 4.4 (T), 4.3 (C)  and 4.6 ((). 
Recall that y~ and CN correspond to using JN, and yN and & correspond to JN-~,  where in all 
cases, stability is guaranteed when the parameter is less than 1. For comparison, thc first column 
lists the magnitude of the largest eigenvalue of the exact closed loop system. Using this "exact" 
stability test, a horizon of N = 2 stabilizes the system. The parameter C indicates that stability is 
guaranteed for a horizon length N = 3, while all the others require a more conservative estimate of 
N = 4. Note the existence of a "gap" between the horizon at which stability is achieved ( N  = 2) 
and when JN (C column) becomes a Lyapunov function for the system ( N  = 3). 

Table 3 presents guaranteed performance with respect to the optimal infinite horizon cost, 
where P; indicates that y was used in equation (16), and similarly P& indicates the use of C. For 
reference, when Po = Q, the first column tabulates the ratio of the exact infinite horizon cost of 



Table 2 
Stabilitv: Pn = 8 

Table 2: Stability, Example I 

Table 3: Example 1: Ratio of exact RH performance (JcA, (first column)) or performance bound of 
RH policy (PN JN (Thm. 4.2)) to optimal infinite horizon cost (J), for tabulated terminal weights 
Po. 

Table 3 

the receding horizon controiier', J;,, to that of the optimai infinite horizon cost J. The exact 
performance (Jc,/J) using Po = I>$ and Ptl = 0 is not significantly less than the upper bound 
(PNJN/J) and hence is omitted. Also, recall that when non-increasing monotonicity is present (Po* 
and PC' = 0) , the upper bound using 5 and coincide (i.e. JN/ J = 7'; JN/ J = P$ JN/ J since 
PN = I ) ,  hence no superscript is necessary to differentiate between these. 

Both end constraints (PC' = 0) and Po = Po* provide better bounds than those using the initial 
condition Po = Q, guaranteeing a performance of less than 1% over that of the optimal performance 
with a horizon of N = 4. Using Po = Q requires a longer horizon ( N  = 8) to guarantee a similar 

level of performance, even though as indicated in the first column (%), this controller achieves this 
level of performance at horizon length N = 4. Hence, the performance bounds using Po = Q tend 
to be conservative for short horizon lengths when compared to the "exact" performance bound. 

n 

'This cost can be calculated from the Lyapunov equation 

( A  + B K ~ ) ~ P ( A  + B K N )  - P + ( Q  + K ~ R K ~ )  = o 

Performance w.r.t. Optimal 



- 
As a final note, we mention that bounds based on using JN-i (i.e. involving 7 or <) are more 
conservative than those presented in Table 3, and have been omitted due to space considerations. 

Table 4 

Table 4: Factor PN establishing bound on infinite horizon performance finite RH controller: 

JN ( ~ ( 0 ) )  I J(x(0)) L Jc, ( ~ ( 0 ) )  I PN J ~ ( x ( 0 ) )  (cf. eqn. (22)) 

N 
1 
2 
3 
4 
5 
6 
7 

Finally, in Table 4 we calculate the finite horizon performance bounds, given by PN 2 ,  and 
corresponding to Po = Q which do not rely on our ability to calculate the optimal infinite horizon 
cost. Note that these bounds are not available for Po = Po* and PC' = 0, where PN is not 
monotonically non-decreasing. Comparing Table 3 with Table 4, we see that the finite horizon 
bounds given in Table 4 are quite close to those in Table 2, demonstrating the potential usefulness 
of this approach. 

6.2 Example 2 

Consider the following stable dynamics taken from [13]. 

8 1.0031 1.0034 1.0026 1.0030 1 

Finite horizon performance bounds 
Po = Q 

with Q and R chosen as: 

Due to the semi-definiteness of Q ,  Theorem 4.1 (y) and Theorem 4.4 (7) are not applicable. Since 
this system is stable, the infinite horizon approach (ii) and end constraints (iii) result in distinct 
initializations Po. The three compared in this example are: 

$6 
-- 

- 

- 

2.1707 
1.2081 
1.0596 
1.0139 

P: 
- 

- 

- 

2.6393 
1.2244 
1.0627 
1.0146 

1.8889 -1.4074 
(ii) P,OO = , (infinite horizon approach) 

-1.4074 1.8395 

(iii) PC' = 0, (end constraints) 

P 
- 

A 

A 

P i  
- 

- 

5.1760 
2.8404 1.6085 
1.2505 1.1621 
1.0700 1.0504 
1.0162 1.0122 



Table 5 

- 
Stabilit 

X(A + BKN) 
0.8255 
0.6774 
0.6263 
0.5720 
0.5478 
0.5417 
0.5407 
0.5407 

Table 5: Stability: Q = Q*, Example 2 

Table 5 presents stability results for Po = Q. Recall that P r  and P;' = 0 are guaranteed to 
result in stability. Once again the eige~values of the cl~scd l ~ o p  are provided ir, the first co!umn 
for reference as an "exact" stability test. Observe that using 5 for Po = Q is quite conservative and 
requires a horizon of N = 5 to guarantee stability, while by considering eigenvalues of the closed 
loop, the system is stable at N = 1. This shows that it is possible to have a substantial "stability 
gap" between when a system is stable, and when JN will act as a Lyapunov function. 

Table 6 
/ I  I Performance w.r. t .  O ~ t i m a l  I 

Table 6: Example 2: Ratio of exact RH performance (JG, (first column)) or performance bound 
of RH policy (PN JN (Thm. 4.2)) to optimal infinite horizon cost (J), for Q = Q* (eqn. (28)) and 
tabulated terminal weights Po. 

Table 6 tabulates performance results. Considering the horizon length N = 5 for Po = Pom and 
PC' = 0, performance is guaranteed to be very close to the optimal. By horizon length N = 8, the 
performance bound for Po = Q has improved to within 2% of the optimal. 

For comparison, the above calculations were redone with positive definite Q = I. This allows 
for a comparison with results from Theorem 4.1 (y) and Theorem 4.4 (y). The initializations Po 
now become: 

' P ,  for ;j/ and < 



Table 7 
Stabilitv: Pn = 8 = I 

Table 7: Stability: Q = I, Example 2 

Table 8 

i[ Performance w.r.t. Optimal n 

Table 8: Example 2: Ratio of exact RH performance ( J c ,  (first column)) or performance bound 
of R.H policy ( P N J N  (Thm. 4.2)) to optimal infinite horizon cost (J), for Q = I and tabulated 
4-.--:- - --.-:-T.4.- 
bCl llllllCL! W C l 5 I I b J  IDU. 

(i) Po = Q 

The results are supplied in Table 7 and 8. In this case, the stability and performance results 
corresponding to Po = Q = I (Table 8) are far more competitive with those obtained by using 
Po = Pom and P;' = 0, than they were for the semi-definite Q = Q* considered previously. Both 
y and ( yield bounds that quickly converge to the optimal infinite horizon performance. 

For both choices of Q used in this example, the finite horizon performance bounds were very 
close to the performance with respect to the optimal (given in Table 6 and 8), as was the case in 
Example 1. 



7 Conclusion 

Performance bounds and conditions for guaranteed stability were presented for a general formulation 
of finite receding horizon control applied to unconstrained linear systems with quadratic costs. In 
this case, necessary parameters were efficiently calculated using the Riccati difference equation. 
Different from previously established stability results, the approach did not rely on end constraints, 
an infinite horizon, or monotonicity arguments, but rather was shown to be valid for any terminal 
weight and encompass the majority of previous results as special cases. Although not explored in 
this paper, these results offer a general framework that can be naturally extended to nonlinear and 
constrained systems, further demonstrating the power of this finite receding horizon approach. 
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A Proofs of Theorems 4.4, 4.5 and 4.6 

Consider the receding horizon policy (8) based on the finite horizon cost (5) 

Theorem A.1 (4.4) Let N be such that 

then the receding horizon policy .iiN(.) is stabilizing, and J N - ~ ( . )  is a Lyapunov function for the 
closed-loop system with 

J N - I ( x ( ~  + 1)) 6 Y N J N - I ( x ( ~ ) )  

Proofi Let x ( k )  and u ( k )  be the state and control trajectory, respectively, resulting from the 
receding horizon policy 

u,(k)  = I j ,N(x(k)) .  

For any k 6 ZS, 

Therefore, 

JN-l ( x ( k ) )  - JN-1 ( ~ ( k  + 1 ) )  = JN- I  ( . I I : ( ~ ) )  - [ J N ( Z ( ~ ) )  - ( x T ( k ) & x ( k )  + ' u 2 ' ( k ) ~ u ( k ) ) ]  
= x T ( k ) & x ( k )  + u T ( k ) ~ u ( k )  + JN- I  ( ~ ( k ) )  - J N ( x ( ~ ) )  

2 x T ( k ) & x ( k )  + u T ( k ) ~ u ( k )  + J N - L ( x ( ~ ) )  - Q N - I J N - I ( X ( ~ ) )  

2 x T ( k ) & x ( k )  + uT ( k )  R U ( ~ )  + (1  - Q N - I )  JN-1 ( ~ ( k ) )  

> ( 1  - ( Q N - I  - P N - 1 ) )  J N - 1  ( x ( k ) )  

which completes the proof. 



Theorem A.2 (4.5) Let N and yN be as in Theorem 4.4. Using the receding horizon policy 

a bound for the infinite-horizon performance is given by: 

where 

1 + (max{O, a ~ - I  - 1)) 

Proof: Bounding the cost term-by-term gives the following. First, 

Similarly, 

By a summation of corresponding bounds on z T ( k ) ~ z ( k )  + ~ , ~ ( k ) ~ u ( k )  we obtain the following: 

Theorem A.3 Let N be such that PN-I > 0 and 

where K N  corresponds to  

The  receding horizon policy iiN(.) is stabilizing. Furthermore, JN-l(.)  is  a Lyapunov ?unction 
for the closed-loop system, so that 








