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Abstract 

This paper introduces an implicit framework for the analysis of uncertain systems, of 

which the general properties were described in Part I. In Part 11, the theory is specialized 

to problems which admit a finite dimensional formulation. A constant matrix version 

of implicit analysis is presented, leading to a generalization of the structured singular 

value ,u as the stability measure; upper bounds are developed and analyzed in detail. 

An application of this framework results in a practical method for robust 'Hz analysis: 

computing robust performance in the presence of norm-bounded perturbations and white- 

noise disturbances. 

1 Introduction 

Part I of this paper introduced a framework for analysis of uncertain systems in implicit form, 

combining the behavioral approach to system theory [24], the Linear Fractional Transforma- 

tion (LFT) paradigm for uncertainty descriptions [14], and the Integral Quadratic Constraint 

(IQC [26, 111) formulation. We summarize the main ideas of this formulation. The same 

notational conventions apply. 

An implicit system is described by equations of the form Gw = 0, where w is a vector of 

signal variables, and G is an operator in signal space. In this paper we only consider linear 
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systems (i.e., with G linear) in discrete time. The concept of stability in this formulation 

is characterized by the left invertibility of the operator G. Two versions were considered: 

"la-stability", meaning that G is left invertible as an operator on la; "stability", meaning that 

G has a causal, finite gain left inverse in the corresponding extended space 12,. 

Uncertain systems are characterized by a parameterized equation operator G(A), where 

A is a structured uncertainty operator of the form 

Robust (12) stability means that the G is (lz) stable for all structured A in the normalized 

ball of uncertainty BA. A parameterization G(A) of Linear Fractional Transformation (LFT) 

form was considered; it was shown how the general case reduces to the canonical version 

In addition to including the standard theory as a special case, it was shown that the implicit 

formulation allows for the representation of IQCs, which can be used to describe properties 

of signals, components, or mathematical restrictions in a problem under consideration. 

In Part I1 we take (2) as a starting point, and move closer to the computational aspects of 

implicit analysis questions by considering problems which can be cast in a finite dimensional 

setting, in terms of constant matrices. Different cases which result in constant matrix analysis 

are reviewed in Section 2. These include some special instances of (2), as well as a problem 

from an entirely different origin, related to model validation [22, 131. 

The constant matrix formulation leads naturally to an extended version of the structured 

singular value p [5, 141, which is introduced in Section 3. The issue of upper bounds to the 

structured singular value for implicit systems is extensively considered; as in the standard 

case, these bounds are attractive computationally since they reduce to a convex feasibility 

problem. Conditions under which this bound is exact for the implicit case are discussed. 

In Section 4, the case of state space implicit descriptions is addressed, and the analysis 

conditions are related to the case of linear time-varying (LTV) structured perturbations, 

already considered in Part I. 



The paper concludes with an application of the machinery to  robust performance tests in 

the presence of structured uncertainty and white noise disturbances, which has been referred 

t o  as the Robust 'Ti2 performance problem [15, 231. The main idea is to  consider deterministic 

descriptions [16,17] of white signals obtained by constraints in l2  space. The method described 

in Part I allows for these constraints to  be included in an implicit analysis problem of the 

type (2). Some examples are included for illustration. 

Preliminary versions of these results were presented in the conference papers [18, 191. The 

proofs are collected in the Appendix. 

2 Motivation for Constant Matrix Analysis 

In many important cases, robustness analysis can be conducted in a constant matrix repre- 

sentation. In the implicit framework, these have the form 

where A E CnXn,  C E CPXn, and the structure A0 is still of the form (I), but with blocks 

which are constant, complex matrices rather than dynamical operators. A. could also have 

blocks restricted to  be real as in 1271, which can be used to  capture real parametric uncertainty. 

By analogy with the dynamic case, we will say that the implicit system (3) is stable if 

Condition (4) strongly resembles the PBH test in standard system theory. In fact, for the spe- 

cial case A. = 61 ,  stability is equivalent to detectability of the pair (C,A). Further connections 

will be mentioned in section 3. 

Different problems which lead to  a constant matrix formulation are now reviewed. 

2.1 LTI uncertainty 

Analogously t o  the standard input-output case, if the perturbations A are linear time- 

invariant (LTI), then robustness analysis can be reduced to  a constant matrix test across 



frequency (over the unit circle or the unit disk). For a finite dimensional LTI map M ,  M(ejW) 

will denote the frequency response, and for causal M ,  M ( 0 ,  ,$ E C will denote the 2-transform 

Wt)  = E, M(t) l t .  

Proposition 1 Consider the implicit system (2), where A, C ,  A are finite dimensional L T I  

maps i n  L(12). Let the constant matrix A. have the same spatial structure as A. Then system 

( 2 )  is  robustly la-stable i f  and only i f  

Proposition 2 Consider the implicit system (2), where A, C ,  A are causal finite dimensional 

LTI maps i n  L ( lae ) .  Let the constant matrix A. have the same spatial structure as A. Then 

system (2) is robustly stable i f  and only if 

2.2 State space representations 

Another standard method to obtain a constant matrix formulation is by writing a state-space 

realization for the discrete-time (causal) maps A, C ;  consider the joint realization 

The state equations are of the form x = X(A,x + A,, z ) ,  with X the delay operator, and x 

the state. By adding these equations in implicit form to (2) we obtain 



A with As, Cs constant matrices, and the augmented delay-uncertainty operator As = diag[X, A]. 

For LTI uncertainty A, (9) can in turn be reduced to  a test in terms of constant complex 

perturbations A,,; constant matrix conditions in state space can also be given for the LTV 

case. These issues will be discussed in Section 4. 

2.3 Model Validation as Implicit Analysis 

Substantial attention in recent years has focused in establishing closer connections between 

robust control and system identification. In this category fall the results of [22, 131, where a 

model validation problem is posed as a generalization of the structured singular value p. In 

particular, [22] considers a p problem constrained to  a subspace. 

This is precisely the type of extension provided by an implicit representation as (3), 

as noted in 171. A simple example is presented here to illustrate this point. Consider the 

validation of a linear regression model of the form 

with l lOl l  5 K ,  lldll y. In this equation, y is a given vector in Rn, and M a given matrix 

in RnXm, both related to experimental data. The validation problem is to  determine whether 

there exist vectors 0 and d in the allowed class, satisfying (10). 

The basic observation is that the size constraints on 0 and d can be captured by implicit 

uncertain equations 0 = AsK and d = Ady, where A,, Ad are respectively m x 1, n x 1 

matrices of norm bounded by 1. Figure 1 jointly represents equations (10) and the constraints 

by means of an auxiliary "input" w = 1. The existence of nontrivial solutions for these 

equations is equivalent to  the validation of the model (the constraint w = 1 can be obtained 

by normalization). This is a stability question in an implicit LFT system, and can be readily 

reduced to  the form (3) by the method described in Part I. For a more complete discussion 

of these issues in a more general setting we refer to  [7]. 



Figure 1: Validation of a linear regression model 

3 A Structured Singular Value for Implicit Systems 

Standard robust stability analysis for constant matrices is provided by the structured singular 

value p [5, 141. In the constrained case of (3), the natural extension is given by the following: 

Definition 1 The structured singular value pA,(C, A) of the implicit system (3) is defined 

as follows: 
I - AoA 

I f  6 e r  [ ] = 0 VAO E Ao, define pAo(C, A) 0, otherwise 

a (A,) : A, E A,, K e r  

A restatement of this definition is to  say that (3) is stable if and only if p a o  (C, A) < 1. 

Equivalently, Definition 1 translates the analysis problem to the computation of the func- 

tion pAo(C, A); as in the standard case, exact computation is in general hard and one must 

rely on upper and lower bounds. We will only comment briefly here on the lower bound 

problem, and develop in detail the upper bound theory. 

The lower bounds for the standard unconstrained case (no C equations) are based on the 

fact that pA(A) = m a x a E ~ *  (p(AA)), where p(-) denotes spectral radius. Algorithms which 

resemble the power iteration for spectral radius have been developed [14, 271, which have 

good performance on typical problems. 



For the constrained case, only eigenvalues with eigenvectors in the kernel of C are relevant. 

In the following, it will be convenient to parameterize this kernel by a matrix CT, whose 

columns form a basis for the kernel of C. This leads to 

Denoting pJ(M7 N )  = max{lpl : ,DM - Nis singular) ( maximum modulus of a generalized 

eigenvalue of M ,  N),  we have 

These observations will presumably lead to an extension of the standard p lower bound; some 

difficulties arise, however: generalized eigenvalues do not always exist, and also the maximum 

in (13) need not occur on the boundary. Some initial work is documented in [7]. 

We will now consider the upper bounds for this version of the structured singular value. 

The following theory strongly parallels that of [14] for the standard case. We will use the 

same notation Y as in Part I for the real vector space of hermitian matrices which commute 

with the elements in A,, which have the form Y = diag [Yl , . . . , YL, yL+l Iml , . . . , 3/L+FImF]. 

We recall that (Y, Y) = ELl t r ( x x )  + z;=~ yL+jgL+j defines an inner product in Y. Also, 

X and x are, respectively, the convex subsets of Y of positive and nonnegative scalings. 

Lemma 3 For fixed /3 > 0, the following are equivalent: 

(i) 3X E X : A*XA - P2X - C*C < 0 

(ii) 3X E X  : CL(A*XA- P2X)C; < 0 

The previous conditions are both Linear Matrix Inequalities (LMIs, [2]) (strictly speaking, (i) 

is affine rather than linear). Testing whether an LMI is satisfied is a convex feasibility problem, 

for which interior point methods are available [2, 91. While version (i) is more directly related 

to  robustness analysis tests, (ii) is of lower dimensionality and therefore preferable from a 



computational point of view. We define the upper bound for p ,  

@A, (C, A) = inf{P > 0 : (14) is satisfied) ( l6)  

The fact that pa, (C, A) 5 @A, (C, A) is a consequence of Theorem 4 below. We first mention 

the following remarks: 

a Combining the upper bound with Propositions 1 and 2 provides tractable sufficient 

conditions for robust (la) stability in the case of LTI perturbations; for example, 

an LMI across frequency, guarantees robust la-stability of (2) under LTI perturbations. 

a LMI (15) for ,8 = 1 has appeared in previous work [lo] on stabilization of input-output 

LFT systems, where it characterizes the so-called Q-detectability of the pair (A,C) 

(this reinforces the connection with the PBH test mentioned earlier). It is shown in 

[lo] that it is equivalent to  the existence of an output injection matrix L such that 

inf, a (X(A + LC)X-I) < 1. 

a If the structure includes real SI blocks (corresponding to  parametric uncertainty), the 

upper bound can be improved in the same manner as the standard case (see [27]). 

For the analysis of the upper bound we introduce a static version of the V set defined in Part 

I. For ( E Cn, let 

Define Vo = {A0(() : C(5 = 0, /(I = 1) c Y; co(Vo) denotes its convex hull. 



Theorem 4 1. pA,(C, A) < 1 if and only if V0 n x = 4. 

2. The following are equivalent: 

(i) fia, (C, A) < 1 

(ii) 3 X € X : A * X A - X - C * C < O  

(iii) co(VO) n x = 4 

In this constant matrix case, the upper bound will be strict in general; equivalently, LMI 

(19) is not a necessary test for stability. Referring to  Part I, convexity of the V sets played 

an essential role in the necessity results, and this does not hold in the static context: Va is 

not in general convex (so V0 n X = 4 does not imply co(Va) n X = 4). 

In a similar manner as in the standard case [14], we now pose the question as to  which 

special A structures give equality of p and ji. 

Definition 2 The structure A is p-simple in the implicit case if pA(C, A) = ,ha(C, A) for 

any matrices A, C.  

Theorem 5 The following structures are p-simple in the implicit case. 

(i) A = {SI:  S E 43) 

(ii) A = {diag[Al,. . .AF] : Ai E Rm*mz), with F < 2, for A, C real. 

(iii) A = {diag[Al,. . . , AF] : Ai E Cm'Xm", with F < 3. 

In reference to  structures with only full blocks, the situation is analogous to  the standard case 

of [14]: the bound is exact for a maximum of 3 complex full blocks or 2 real full blocks. The 

only notable difference in the implicit case is the fact that the structure A = {diag[SII, A,]} 

is no longer p-simple, as shown in the following example. 



Example 1 Let A = diag [S112,  A,], S1 E C ,  A2 E CZX2 

The top half of CT - AACT is , so the kernel is nontrivial only for 
0 1 - O 3S1 I 

S1  = 112 or S1 = 113. In  the first case, the kernel must be the span of [ I ,  01' therefore [:I = A, [:I. This can be achieved with (A2)  of at least i/l/ii. 

A similar argument with S1 = 113, shows that for a nontrivial kernel, a (A,) 2 A. The 

first perturbation is smaller so pA(C,  A )  = 4 3 1 4  < 1. 

For the LMI, write X = diag [ X o ,  I,], with X o  = [, z] . some a b e h  gives 

For (20) to be negative definite, and X > 0,  we must have 

This implies lyl < 1,  ly + 21 < 1 which is impossible, so there is no solution to L M I  (15) with 

,h' = 1. Consequently, pa ( C ,  A) < jiA ( C ,  A ) .  

To conclude this section, we relate the LMI test (19)  to  the results of Part I. If A and C 

remain constant but allowed to operate on l2 signals, and A. is substituted by an arbitrary 

structured operator on 12,  Theorem 1,  Part I implies that (19)  is a necessary test for robust 

stability. This amounts to  an infinite horizon augmentation of the constant matrix problem 

( 3 ) ;  for this case where A and C are constant, a finite horizon augmentation suffices: 

Theorem 6 Let A,C,  be constant matrices, operating on finite horizon signals z = E 

( C n ) d .  Let A be the class of structured (as in  ( 1 ) )  operators in  ( c " )~ .  If d 2 d i m ( Y ) ,  then 



The previous finite horizon augmentation can also be rewritten in matrix form, by defining 

matrices which are d times larger than A, C,  and Ao, obtained by adequate repetition. A 

similar result (for standard p-analysis) has been obtained using very different methods in [I], 

where the size of the augmentation is n rather than dim(Y) (these two are the same when 

A consists of only scalar blocks). 

In comparison, in the case where A and C have unbounded memory, an infinite horizon 

augmentation (to LTV operators on l2 as in Part I) is required. 

4 Analysis of state space systems 

In this section we consider the state space representation of (9), where As,Cs are constant 

matrices, and the structure As = diag[XI A] has a "special" first block, given by the delay op- 

erator. As in Proposition 2, we will be dealing with causal operators A and the corresponding 

notion of robust stability. 

4.1 LTI Uncertainty 

If the uncertainty A is LTI, robustness analysis reduces once more to a constant matrix 

problem, where the corresponding constant matrix structure As, has a &I first block. 

Proposition 7 System (9), with A a structured LTI operator in .LC(12e), is robustly stable if 

and only if pa,, (CS, As) < 1. 

The upper bound for p will provide a computationally tractable sufficient condition for 

robust stability of the form 

A>XsAs - Xs - CiCs < 0 (23) 

where Xs = diag[Xo,X] is defined to commute with As: Xo is a positive square matrix of 

dimension equal to the number of states, and X E X. This condition is in general conservative, 

even in the case where A is unstructured (one full block); this is a consequence of the fact that 

in the implicit case, the structure As, = diag[&I, A] is not p-simple, as shown by Example 1. 



4.2 LTV Uncertainty 

Since (23) is a constant scales test it can be related to analysis with LTV perturbations, as 

considered in Part I. We have the following: 

Proposition 8 If (23) holds, (9) is stable for all As = diag[A, A], A E Ba where A is the 

set of arbitrary causal bounded LTV operators ( A  C .CC(12e)). 

It is not clear in general whether the converse of Proposition 8 holds, as it does in the 

unconstrained case (no Cs); the results of Part I do not apply directly since here the first 

block of As is constrained to be the delay. 

A special case where the converse holds is when the constraints Cs do not involve the 

state variables x: consider the state space implicit system of Figure 2 a), which corresponds 

to the case C, = 0 in (8). The corresponding system (2), depicted in Figure 2 b), has static 

C constraints. As was shown in Part I, a general robust performance problem with a finite 

number of IQCs in the disturbance variables can be cast in this special form. 

Theorem 9 In reference to Figure 2, let A vary in the class of structured, otherwise arbitrary 

causal operators in LC The following are equivalent: 

(i) (23) holds with As = 
Ax A,, 

[A,. A; = lo '1 
(ii) The implicit system (9) of Figure 2 (a) is robustly stable. 

(iii) p(A,) < 1, and the implicit system (2) of Figure 2 (b) is robustly stable. 

(iv) p(Ax) < 1, and 3X E X : ~ ( e j ~ ) * ~ ~ ( e j " )  - X - C*C < 0 'dw E [-n, T ]  (24) 

For the case of LTV perturbations considered above, the same X (constant scaling) must 

hold across frequency, which is a stronger condition than the one given in (17) for the LTI 

case. Solving (24) in a set of frequency points gives a coupled LMI problem. The "state-space 

LMI" (23) gives X in just one LMI, but must handle an extra full block in the scaling Xs. 



( 4  (b) 

Figure 2: Two formulations of the robust stability problem 

- 

Remark: Condition (iv) can be rewritten (see the proof of the theorem) in the form 

which is especially adequate for synthesis methods extending the so-called D - K iteration 

for p-synthesis. In this case A is a function of a controller Isr, and an 'FI, synthesis step is 

alternated with an analysis fit of X. These issues are addressed in [4]. 

XI 

A 

5 Application to Robust 7 i 2  Analysis 

- 

In this section we apply the implicit analysis framework developed in this paper to  the problem 

of analyzing white noise rejection properties of an uncertain system. 

For an LTI input-output system in the absence of uncertainty, the relevant measure is the 

X 2  norm of the system, which arises, for example, as the expected output power when the 

input is a stationary random process with flat power spectrum. 

The stochastic paradigm is less attractive, however, when analyzing systems subject to  

additional sources of uncertainty (parameters, unmodeled dynamics) which are usually ex- 

pressed more naturally in a deterministic setting. Research addressing this "Robust X21a" 

- [  - 

0 

Ax Ax, 

A,, A, 

C 



problem [15, 231 has faced the difficulty of analyzing the average effect of the disturbance 

together with the worst-case effect of the uncertainty. This is the main reason for which other 

deterministically motivated performance measures (X,, L1) have gained popularity in the 

robust control literature. 

For many disturbances arising in applications, however, a white noise model is more 

appropriate than, for instance, the class of arbitrary bounded power signals considered in the 

7-1, problem, where the worst-case signals (sinusoids) are often very unrealistic. 

The following treatment is based on imposing deterministic constraints on the disturbance 

inputs by considering set characterizations of white noise [16, 171. These constraints can be 

included in an implicit analysis problem of the form (2), and analyzed within this framework. 

5.1 Set descriptions for white noise 

This section shows how deterministic descriptions of white noise can be fit into the implicit 

analysis framework. We will first consider the case of scalar signals. In [17], sets of signals 

with a parameterized degree of "whiteness" are defined as 

where r w ( r )  = (w, XTw) is the autocorrelation of a scalar signal w(t). Restricting an input 

signal to  such a class is a deterministic method to  rule out highly correlated signals (e.g., 

sinusoids) which are deemed unrealistic in a particular problem, and which dramatically 

affect the system gain. In fact, the worst-case gain of an input-output LTI system H under 

signals in W-(,T, denoted 1 1  H l l w , , ,  , satisfies 

where rh(T) are the autocorrelations of the system impulse response. So for small y (one could 

use y = 0) and large T, the worst case induced norm of the system under the autocorrelation 

constraints approximates the norm. Alternative descriptions in the frequency domain are 

also considered in [17], by restricting signals to  have equal energy in a number of frequency 



bands, thereby enforcing an approximately flat spectrum. The relationship between these 

descriptions and the alternative stochastic paradigm is analyzed in [16, 171. 

The advantage of a description such as (26) based on a finite number of quadratic con- 

straints (as opposed to the ideal specification that r,(r) be the delta function) was already 

pointed out in [Ill. In our setting, it corresponds to the fact that the resulting sets Wy,T 

can be represented by the behavior of an implicit uncertain system, as was shown for general 

IQCs in Part I. 

We include the following derivation to motivate the multivariable case. Consider the 

constraints in (26), for real signals: 

Simple manipulations reduce (28) to 

For a fixed T and, for instance, the plus sign in (29), let P; = d m ,  Q; = 1 + AT.  The 
2 

corresponding constraint 11  P; w 11  < 11 Q; w 11 is equivalent by Lemma 1, Part I to  

for some contractive operator 6;. The same procedure can be repeated for the minus sign 

in (29), and for T = 1..  .T. The constraints (30) can then be jointly represented by ( P  - 

ACQ)w = 0, where P = [P:, P: . . . P?]', & = [Q:, Q! . . . QT]', and Ac = diag[6:, 61 . . .ST]. 
The set of white signals W-I,T has been represented in the form 

The previous construction can be extended to the multivariable case, by considering the 

autocorrelation matrix of a vector valued signal w E 17, R, (T) = C,"O=-, w(t +r)w(t)*. For w 

to  be white, R,(T) must be 0 for T # 0, and R,(O) must be a multiple of the identity matrix. 

These matrix conditions could be reduced, entry by entry, to a number of scalar constraints, 

and treated as before. 



For r # 0, and using the complex field, a simpler method is given by operator-valued 

SI blocks in the uncertainty l. Let r # 0 be fixed, and define P7 = 2/21) QL = (1 f X7)I, 

&; = ( I  f jX7)I. Consider the following four implicit equations, where each S is an arbitrary 

operator on 1 2 .  

(P' - S;I Q;)w = 0 

(P' - Q;)w = o 

By use of Lemma 2, Part I, (32-33) are equivalent to 

which in turn reduce to  (q*w, 7*X7w) = 0 Vq E Cm* R,(r) = 0. 

Comparing with the IQC formulation, the constraints (32-33) for multivariable white noise 

correspond to  matrix-valued IQCs, as mentioned in Part I. 

5.2 Robust 3-t2 Performance Analysis 

The framework will now be applied to  a problem of white noise rejection analysis in the 

presence of uncertainty. For this purpose, we return to the general setup of Section 3.4, Part 

I, which for convenience is represented in Figure 3. We are given an uncertain input-output 

system given as an LFT between an LTI map H(X) and a structured uncertainty operator A,. 

The question is to  test whether the worst-case l2  gain from d to y in the presence of uncertainty 

A, is less than p, when the input signal d is forced to  satisfy "whiteness" constraints of the 

form discussed in section 5.1. These constraints are represented by a map P - AcQ, on the 

left in the picture, where without loss of generality P can be chosen to  be static. The same 

formulation allows for arbitrary IQCs applied to  d. The "performance IQC" 1 1  yll > ,O lldll is 

represented by the block Ap. 

'This provides a motivation for this type of blocks 



Figure 3: Robust 'F12 Analysis 

The reduced representation (2) for this problem was already obtained in Part I. Adding 

the scaling ,b' gives 

In this case, the blocks Ap and A, are already in the class of structured L'I'V operators. We 

will analyze the case where A, is also structured LTV, which may give a conservative answer 

if it includes parametric or LTI uncertainty. Since C is static, the robust stability test is given 

by (24)) or equivalently (from Theorem 9) by the state-space version (23)) which is obtained 

by writing state-space realizations 

The corresponding equations (9) have As = diag[XI, XI, A,, A,, A,], 



Let POpt be the infimum of the values of the parameter /3 such that LMI (23) is feasible; this 

is a measure of the worst-case gain under uncertainty A, and autocorrelation constraints. 

Asymptotically, as the number of constraints increases, the process converges down to  a 

robust 'Hz performance measure, so that a finite number of constraints always gives an upper 

bound. 

5.3 Examples 

We will present two simple examples to  demonstrate the machinery, applied to  problems 

involving the l-t2 norm. 

5.3.1 An example without uncertainty 

The first example consists of calculating the 'Hz norm of the transfer function H(X) = & 
using this approach. There are of course exact ways to  compute the X2 norm, which give a 

result of 1/& = 0.577; this example is included for verification purposes. 

The process described above was performed with a number T of autocorrelation constraints 

(for y = 0). The feasibility of LMI (23) was checked using the software package LMI-Lab [9]. 

Figure 4 depicts Pop, as a function of T. Starting at T = 0 with the unconstrained (l-t,) norm 

which is 1, Popt asymptotically converges to  the 'Hz norm, as expected, a t  a rate consistent 

with bound (27). 

P o p  t 

- 

- 

- 

- 

0 75- 

0 7 -  - 

0 65- - 

0 6 -  

0 5So 
i 2 3 4 5 6 7 8 

T 

Figure 4: Approximation to  the 'Hz norm 



5.3.2 Robus t  IFta example 

We consider the standard SISO feedback system of Figure 5, where the plant P is subject t o  

multiplicative uncertainty. We wish to  analyze sensitivity of the tracking error e to  a white 

noise disturbance appearing in d (which could be due, for example, to  sensor noise). The 

map from d to  e (sensitivity function) of the uncertain system is given by 

S = 
1 - so 

1 + P K ( 1 +  WA,) - 1 + WToA, (39) 

and To = $& are the nominal sensitivity and complementary sensitivity where So = 

functions. 

Figure 5: Rejection of sensor noise 

LTI uncertainty:  

If the perturbation A, is assumed be LTI, for this simple case the worst-case IFt2 norm 

can be computed in the frequency domain; this will allow us to  evaluate the results obtained 

from the analysis framework. Assuming that IJWToll, < 1, we have 

So(ejw ) 
max IS(ejw)l = 

l A a ( e ~ w ) l S l  1 - lWTo(ejw)l 

This fact has been typically used (see [6]) to  show that the worst case IFt, norm of the system 

is given by 1 1  11,. Here we will use it to  obtain a worst case H2 norm of 11 I-$T.I )I2; for 

this we allow A, to  be a noncausal (L,) operator, which can achieve bound (40) for every 

frequency. 

We now choose I( = 2, P = , and W = 0.25. These values were chosen so that 

the uncertainty affects the sensitivity in a significant way; this is exhibited in Figure 6, where 



the lower curve indicates the nominal sensitivity function, and the upper curve the worst-case 

sensitivity from (40). We obtain the values 

W 

Figure 6: Nominal and worst-case sensitivity functions (magnitude) 

LTV uncertainty 

Exact analysis for A, an arbitrary LTV operator can be obtained from the procedure 

described in Section 5.2. Figure (7) shows the corresponding plot of POpt (obtained using 

LMI-Lab) as a function of the number of correlation constraints T. 

Figure 7: Induced norm of uncertain system 



For T = 0 (no constraints) we retrieve the value from (41) for the worst case 'Ft, norm 

(it is well known that in this unstructured case, the worst-case perturbation is LTI). As T 

increases, we approach the worst-case gain under white noise signals. The asymptotic value 

also appears to coincide in this case, with the value (42) obtained from LTI uncertainty, which 

is plotted for comparison 2 .  

Although for this case the frequency domain method is much simpler, it does not generalize 

to  multivariable systems or to  structured uncertainty. The procedure based on the implicit 

framework applies in principle to any case, although for this method to be practical in large 

problems, improvements in the efficiency of LMI solvers are required. 

6 Conclusions 

Implicit representations have been shown to be an attractive general framework where var- 

ious forms of system uncertainty, performance requirements and signal constraints can be 

expressed. A robustness analysis theory has been developed which includes what is available 

for the standard input/output setting, and enhances its domain of applications to include 

overconstrained problems, exemplified in this paper by robust 'Ha performance analysis. 

The computational properties of this extension are similar to those of the standard case. 

Conditions obtained in terms of LMIs lead in principle to tractable computation, but the 

size of the problems is also a concern. In this respect, tests with LTV uncertainty yield 

either coupled LMIs across frequency such as (24)) or a large full block of multipliers for the 

state space version (23). Additional research is required on practical methods for these large 

problems, and also for the case of mixed LTI/LTV uncertainty, which arises naturally in this 

setting (for example, when A, in (36) is LTI). Here the coupling is not easily avoided; some 

initial work on this problem is reported in [20]. 

One of the main reasons to adopt the LFT framework is that it allows for the consideration 

of highly structured (e.g. real parametric) uncertainty which is not captured by IQCs. For 

2 ~ h i s  is not a general fact; other examples (see [18]) exhibit a gap between LTI and LTV uncertainty. 



these cases the exact analysis conditions in terms of p will have increased computational 

complexity, as in the standard case where they are known to be NP hard [3]. Although this 

implies unacceptable computation time in the worst case, p lower bounds [14, 271 have proven 

t o  be efficient on "typical" problems. Their extension to  the implicit framework is a direction 

of future research. 

If successful, this extension can have an enormous impact in problems involving data, 

such as the model validation problem mentioned in Section 2.3, and the corresponding system 

identification problem (see [7]). The implicit LFT framework would then appear as the natural 

setting for unifying modeling, analysis, model validation and system identification, under a 

common set of mathematical and computational tools. 

Another natural extension of the results in this paper is the question of synthesis of 

controllers for robust performance in this setting. In [4], it is shown how standard "D-K 

iteration" methods for p-synthesis extend to  this formulation, and allow in particular for 

design of controllers for Robust IFt2 performance. 
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Appendix: Proofs 

Propositions 1 and 2 

The proof follows easily from Proposition 5 in Part I. We sketch the argument for the case of 

Proposition 1, the other one is analogous. For any finite dimensional LTI A, A(ejw) E BA o 

for every w; if condition (5) holds, 



is full column rank for all w E [-n, T ] ,  therefore E 2  stability follows from Prop. 5, Part I. 

Conversely if (5) fails at some wo, Ao, i t  is easy to  construct an LTI perturbation A E BA 

such that A(ejwo) = Ao, which violates l2  stability from Prop. 5, Part I. 

Lemma 3 

Since CCT = 0, (i) implies (ii). If (ii) holds, there exists X E X such that A*XA - X < 0 

on the kernel of C. By continuity, there exists E > 0 such that ((A*XA - X)u,  u) < 0 for all 
2 

2 1 7  I I v I I  = 1 7  llCu11 I 6. 

Now choose q > 0 such that X,,,(A*qXA - qX)  < E.  

This gives ((A*qXA - q X  - C*C)u, u) < 0 for all u # 0, so q X  solves (i). 

Theorem 4 

1. Assume pAo(C,A) L. 1. Then there exists A. E BA, such that (3)  has a nontrivial 

kernel; let (' of norm 1 be in the kernel. Then C(' = 0, AoAC = <; focusing on the blocks 

of A,, we obtain 

Therefore the matrix AO((') is in VO n X. The converse follows similarly. 

2. The equivalence of (i) and (ii) is obvious from the definition of ,GAo(C, A). 

Let X > 0 solve (ii). For any (' E Cn, C(' = 0, some algebra shows that 

Also, (X,  Y) > 0 for all Y E X. Therefore the hyperplane (X, Y) = 0 in Y separates the 

sets VO and X, which implies their respective convex hulls co(VO) and x are disjoint, 

proving (iii). Conversely, if co(VO), x are disjoint, a separating hyperplane can be 

found leading back to  (ii). 



A Lemma from Convex Analysis 

Lemma 10 Let K c V, where V is a d dimensional real vector space. Every point in co(K) 

is a convex combination of a t  most d $- 1 points in K ;  for Iri compact, every point in the 

boundary of co(1i) is a convex combination of at most d points in K. 

The first statement is a classical result from Caratheodory (see [21]), which implies that for 

every v E co(K), there exists a simplex of the form 

with vertices vk E K, which contains v. If the vk are in a lower dimensional hyperplane, then 

d points will suffice. If not, then every point in S(vl,. . . , vdfl) corresponding to  ak > 0 V k  

will be interior to  S(vl , .  . . , vdS1) C co(K). Therefore for points v in the boundary of co(K), 

one of the ah's must be 0 and a convex combination of d points will suffice. 

Theorem 5 

(i) In the case A = S I ,  if pa (C, A) < 1 then (C, A) is detectable in the usual system theoretic 

sense, so there exists an output injection L such that p(A + LC) < 1. From Lyapunov theory 

this implies there exists X > 0 such that 

(A + LC)*X(A f LC) - X < 0 (46) 

Multiplying on the left and right by CL, CT gives CL(A*XA - X)CT < 0 which implies 

i ia(C,A) < 1. 

(ii) The only nontrivial case is F = 2. Let A, C ,  A = diag[Al, A2] be real matrices. To 

analyze this case we must consider a real version of the V0 set, of the same form as (18) but 

with [ E Rn. Consider the n x r matrix I? = CT parameterizing the kernel of C ([ = rv ) ,  

and assume it is isometric. Then V0 can be rewritten as 



where aj (v) = vlHj v, and Hj  = (AI'); - is a real, symmetric matrix for j = 1,2. 

To prove that this structure is p-simple is equivalent, by Theorem 4 to the fact that 

for any A, C ,  or equivalently for any symmetric HI,  Hz. In this case x = (R+)', the closed 

first quadrant in R2. We have therefore restated the problem as a geometric condition on 

the range of two real quadratic forms. In this notation, (48) is equivalent to an "S-procedure 

losslessness" theorem from Yakubovich [25]; since this literature is not easily accessed we 

include a proof which is based on some modifications to the parallel results of [5]. 

Let P = A(vp), Q = A(vQ), be two distinct points in V0 (vp,vQ E W', IJvpll = llvQll = 1). 

Define 

E = {[ 7lk17,  v1g27 177 E R2, 11711 = 1) 

Then 

a E C VO. This follows from the fact that if lloll = 1) / /  [vp  VQ ] M-i9 ) )  = 1 from (49). 

P , Q € E . ~ o r ~ s e t ~ p = M ?  , w h i c h v e r i f i e ~ / l ~ ~ l l ~ = [ l ~ ] ~  

and analogously for Q .  

a E is an ellipse in R2 (which may degenerate to a segment). 

Parameterize 7 = (cos(O), sin(@)), O E [-n, n]. ~f ir, = [ z  21) then 

This implies that E is the image of the unit circle by an affine map, an ellipse. 



We have shown that given two points in VO, there exists an ellipse E c V0 through those 

points. Now we return to  (48). If co(VO) n (R+)' f 8, since Vo is bounded and (W+)' is a 

cone, there exists a point in the boundary of co(VO) which falls in the first quadrant. Using 

Lemma 10 there exist two points P,Q in V0 such that the segment P Q  intersects the first 

quadrant. But then the corresponding ellipse E will intersect (Rt )'; (the geometric picture 

is given in Figure 8(ii)). This implies V0 fl f. 8. 

(iii) 

Figure 8: Illustration to  the proofs 

(iii). We consider the case F = 3, the others follow similarly. The same procedure as in (ii) 

yields 

v0 = {A(v) = [(71(v), 02(v), (73(v)] E [W3, E CT, IlvII = 1) (53) 

where aj(v) = v* Hjv, and Hj are complex hermitian forms in CT. Similarly, we must show 

the geometric result 

V0 n (Rt)3 = 0 =+ co(VO) n (Rt)3 = 0 (54) 

for any HI ,  Hz,  H3. Once again, this result appears in the "S-procedure" formulation [8]. 

The following proof is based on [5]. In particular, it is shown in [5] (analogously to  (52)) 

that for the case r = 2, the set V0 is the image of the unit sphere in W3 by an affine map 

g : R3+R3. This gives an ellipsoid E (with no interior) in W3, which could also degenerate to  

a projection of such an ellipsoid in a lower dimensional subspace. 

Given two distinct points P = A(vp), Q = A(vQ) in VO, an analogous construction as 

the one given in (49-51) (with analogous proof) shows that there is such an ellipsoid E C V0 



through the two points. 

Assume now that co(VO) n (R+)3 # 0. Picking a point in the the boundary of co(VO), 

Lemma 10 implies that there are 3 points P,Q,R in V0 such that some convex combination 

S = aP + pQ + y R falls in (R+)3. Geometrically, the triangle P Q  R intersects the positive 

"octant" at  S. 

Claim: S lies in a segment between 2 points in VO. 

This is obvious if P,Q,  R are aligned or if any of a$, y is 0. If not, consider the following 

reasoning, illustrated in Figure 8. Write 

where T lies in the segment QR. Now consider the ellipsoid E C V0 through Q and R. If 

it degenerates to 1 or 2 dimensions, then T E E C V0 and the claim is proved. If not, T is 

interior to the ellipsoid E. The half line starting at P, through T must "exit" the ellipsoid a 

point U E E c V0 such that T is in the segment PU. Therefore S in the segment PU,  and 

P, U E VO, proving the claim. 

To finish the proof, we have found two points in V0 such that the segment between them 

intersects (R+)3 . The corresponding ellipsoid E C V0 between these points must clearly also 

intersect (IR+)~. Therefore V0 i l  (W+)3 # 0- 

Theorem 6 

Sufficiency of condition (19) is a consequence of the more general result given in Part I; the 

same argument as exhibited in the proof of Theorem 1 applies to this finite horizon setup. 

For the necessity, assume (19) does not hold. Therefore co(VO)nX # 0, and we can choose 

a point in the boundary of co(VO), which belongs to X. Since V0 is in a d dimensional real 

vector space Y, Lemma 10 implies that there exists d points in V0 whose convex combination 



with & k. En, C& = 0, a k  2 0, and C,  a, = 1. Define z = {z~) :=~,  zk = &&. Since A, C 

are static, we find that Cz  = 0, and 

Now we apply Lemmas 1, 2 from Part I to conclude there exists A E BA, structured operator 

in (En)d, such that AAz = X. Therefore [ I  -tA] x = 0 violating the hypothesis. 

Propositions 7 and 8 

Proposition 7 follows by the same arguments as Proposition 2. 

Proposition 8: Since Cs is static, Theorem 12, Part I is in force and LMI (23) implies that 

[ ' ~ ' ' ]  has a left inverse in L c ( l e )  for any structured A € L C ( )  A s  5 1, thus in 

particular for As = diag[AI, A], with A E Lc(l2e), //All 5 1. 

Theorem 9 

(i) + (ii) This is a special case of Proposition 8. 

(ii) + (iii) From (ii), r-2" I has a left inverse in LC(lZe) (causal, finite gain) for every 

As = diag[AI, A], A E BA. Setting As = diag[AI, 01 implies that ( I  - AA,) has a left inverse 

in Lc(12,), so p(A,) < 1. Now for any fixed As, the identity 

implies that the second term in the right hand side of (59) has a left inverse in Lc(lz,). So 

[ I  -2.1 has a left inverse in LC(lze). 

(iii) + (iv) This is a direct application of Theorem 11, Part I. 

(iv) + (i) Let the columns of C; form a basis for the kernel of C;  (iv) leads to  

c , A ( ~ ~ " ) * x A ( ~ ~ " ) c ~  < C L X C l  'dw E [-n, T] 



Since ClXC; > 0, pre and post multiplication by ( c ~ x c ; ) - ~  gives I (A(x)II~ < 1, where 

A(X) = X+ACT(C~XCT)-+,  as remarked in (25). We will now change notation, redefining 

CIT_(CLXCT)-+ as Ci ,  since it still spans the same column space. So CLXCT = I, and 

A(X) = X ~ A C T ,  which has state space realization 

It is well known that p(A,) < 1, I~A(x)II, < 1 implies the existence of a solution X, > 0 to  

A, A,, X, 0 A, A,, 
X0 O < o  

[A,, A, I* [ 0 I]  [ A ,  1, ] - [ 0 I] 

Substituting the expressions for A,, A,, , A,,, A, , and using ClXCT = I, (62) leads to  

Since Cs = [0 C], Csl = [i if; ] , so setting xS = diag[x, X] gives 

which implies (i) from Lemma 3. 
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