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Abstract 

This thesis explores the paradigm of two degree of freedom design for nonlinear con- 
trol systems. In two degree of freedom design one generates an explicit trajectory 
for state and input around which the system is linearized. Linear techniques are 
then used t o  stabilize the system around the nominal trajectory and t o  deal with 
uncertainty. This approach allows the use of the wealth of tools in linear control 
theory t o  stabilize a system in the face of uncertainty, while exploiting the non- 
linearities t o  increase performance. Indeed, this thesis shows through simulations 
and experiments that  the generation of a nominal trajectory allows more aggressive 
tracking in mechanical systems. 

The generation of trajectories for general systems involves the solution of two 
point boundary value problems which are hard t o  solve numerically. For the special 
class of differentially flat systems there exists a unique correspondence between 
trajectories in the output space and the full state and input space. This allows us 
t o  generate trajectories in the lower dimensional output space where we don't have 
differential constraints, and subsequently map these t o  the full state and input space 
through an algebraic procedure. No differential equations have t o  be solved in this 
process. This thesis gives a definition of differential flatness in terms of differential 
geometry, and proves some properties of flat systems. In particular, it is shown that  
differential flatness is equivalent t o  dynamic feedback linearizability in an open and 
dense set. 

This dissertation focuses on differentially flat systems. We describe some in- 
teresting trajectory generation problems for these systems, and present software t o  
solve them. We also present algorithms and software for real time trajectory gener- 
ation, that  allow a computational tradeoff between stability and performance. We 
prove convergence for a rather general class of desired trajectories. If a system is 
not differentially flat we can approximate it with a differentially flat system, and ex- 
tend the techniques for flat systems. The various extensions for approximately flat 
systems are validated in simulation and experiments on a thrust vectored aircraft. 
A system may exhibit a two layer structure where the outer layer is a flat system, 
and the inner system is not. We call this structure outer flatness. We investigate 
trajectory generation for these systems and present theorems on the type of tracking 
we can achieve. We validate the outer flatness approach on a model helicopter in 
simulations and experiment. 
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Chapter 1 

Introduction 

Over the past four decades the field of control theory has witnessed an incredible 
growth in theory and tools. Much of the success of the theory can be attributed 
to  the development of software that  made this theory accessible t o  the practicing 
control engineer. Without these tools, the theory would have been just that: the- 
ory. The majority of these tools apply t o  linear control theory. Even though the 
nonlinear theory has witnessed substantial development, it has not been accom- 
panied by computational tools that  make the theory accessible. It is the author's 
belief tha t  software tools are an essential part of the development of a new theory. 
New paradigms need to  be continuously validated in simulation and experiment, 
therefore experimental validation takes a prominent place in this work. 

This thesis is a first step in the development of software tools for certain classes of 
nonlinear systems. The paradigm we advocate is the so called two degree of freedom 
design. This paradigm entails explicit generation of a nominal state space and input 
trajectory using the full nonlinear system description, and the use of linear theory 
t o  deal with uncertainty and to  stabilize around this trajectory. I t  is shown through 
experiments and simulation that  stabilizing around a nominal trajectory allows a 
more aggressive response for nonlinear systems. 

1.1 An Overview of Trajectory Tracking Methods 

This section will use some technical terms from control theory that  we loosely intro- 
duce here. We summarize the technical details and precise definitions of nonlinear 
geometric control theory in Appendix A. The reader unfamiliar with the concepts 
presented here is referred t o  that  appendix. 

Trajectory tracking is an important problem in nonlinear and linear systems 
theory alike. It is most prominent in the control of mechanical systems, where we 
want the outputs of the system to  follow a prescribed path. Important examples of 
mechanical systems where trajectory tracking is important are vehicles and robotic 
manipulators. Trajectory tracking is less common in the control of distributed 
parameter systems, like compressors, combustors and acoustic systems. Trajectory 
tracking methods can roughly be divided in two classes: methods that  compute 
explicitly a nominal trajectory for the state space, and those that  don't. 



2 1. Introduction 

In this dissertation we are not interested in trajectories generated as output 
of another system. One particular instance of this latter problem is the model 
matching problem, where we are interested in following all trajectories generated by 
a reference system subjected t o  the same input as our plant. For linear systems this 
problem is widely studied [27]. For nonlinear systems some initial work has been 
done in [35] .  Some researchers study the problem of tracking a trajectory generated 
by an exosystem subjected t o  one particular input [43]. It is our opinion that  this 
problem is merely of academic interest. In practice the desired trajectories are not 
generated by exosystems, but rather given to  us as independent entities. Hence we 
will devote our attention t o  the case where the desired trajectory is generated by 
arbitrary means. 

The most straightforward approach to  the problem of trajectory tracking is the 
one advocated in this thesis: compute a nominal path for the state of the system 
that  has the desired output, and try t o  regulate the system around this path. This 
approach contains two distinct parts: the computation of the nominal trajectory, 
and the design of a controller that  tries to  keep the system on the trajectory. For 
obvious reasons this approach is called two degree of freedom design. This is t o  be 
contrasted with the one degree af freedom design, where one only steers t o  a nominal 
output trajectory, while not caring what the entire state does, as long as the desired 
output is followed. The desired output trajectory does in general not determine the 
full state, and the two degree of freedom design uses more knowledge of the system 
than the one degree of freedom design. It can therefore be expected that  better 
performance will result if we control the system around a nominal state, rather 
than a nominal output. Indeed, we will show in this thesis that  the two degree of 
freedom design yields superior performance for trajectory tracking. For two degree 
of freedom design we use explicit trajectory generation t o  achieve trajectory tracking. 
This dissertation is concerned with the problem of trajectory generation. 

For linear systems without right half plane zeros, trajectory tracking can be ac- 
complished quite simply without resort to  optimal control theory. This can be done 
by writing a differential equation for the error between the output and the desired 
output and selecting a feedback that  make this differential equation asymptotically 
stable around the origin. The error converging t o  zero is equivalent t o  the output 
tracking the desired output. It might be that  the full system has internal dynamics 
that  are not visible from the output. The requirement that  the linear system have 
no right half plane zeros guarantees that  these internal dynamics are stable. If it 
so happens that  there are no internal dynamics, this method generates a full state 
space trajectory from the desired output and its derivatives. This happens when 
the outputs and their derivatives determine the trajectories for all states. If there 
are internal dynamics, the state space trajectory is not fully determined. 

With the advent of nonlinear geometric control theory, the problem of trajec- 
tory tracking for nonlinear systems made great progress. It was realized that  some 
nonlinear systems could be transformed into linear systems by a coordinate trans- 
formation on the states and a special control law [42, 711. This process is called 
feedback linearization. The same procedure as for linear systems would then ensure 
trajectory tracking. One would simply transform the desired output trajectory t o  
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linear coordinates, and the resulting stabilizing control law for the error system 
back t o  nonlinear coordinates. As in the linear case, the full system could have 
internal dynamics that  were not visible from the output. For the linearizing scheme 
t o  work, these internal dynamics would have t o  be stable. In the linear case this is 
guaranteed by the requirement that  all zeros be in the left half plane. For nonlinear 
systems, we call the equivalent property minimum phase zero dynamics. Again, a 
full state space trajectory is generated in the linearized coordinates if it so happens 
that  there are no internal dynamics. 

If there are internal dynamics, one can try t o  extend the trajectory for the 
outputs and their derivatives to  a full state space trajectory. One such method is 
reported by Chen et al. in the papers [16, 151, and by Devasia in [19]. The method is 
called noncausal inversion for trajectory generation for systems with unstable zero 
dynamics. This method requires the system t o  have well defined relative degree 
and hyperbolic zero dynamics, i.e. no eigenvalues on the imaginary axis. In the 
absence of imaginary eigenvalues, the zero dynamics manifold can be split into a 
stable and an unstable manifold. The method of noncausal inversion tries t o  find a 
stable solution for the full state space trajectory by steering from the unstable zero 
dynamics manifold to  the stable zero dynamics manifold. The noncausality results 
from the fact that  we first have t o  get from the origin t o  the right position on the 
unstable zero dynamics manifold. The solution is found by repeatedly solving a 
two point boundary value problem for the linearized zero dynamics driven by the 
desired trajectory. At each step a system of differential equations has to  be solved, 
and computational requirements are heavy. 

This iteration can also be performed in the frequency domain, as shown by Meyer 
e t  al. in [58]. This is because the solution of differential equations in the time domain 
can be done through integrating the desired output with a convolution kernel. This 
convolution corresponds t o  multiplication in the Fourier domain. In [58], the method 
is applied t o  flight path generation between via points for commercial aircraft. The 
update rate of via points is in the order of several minutes, which is long enough 
t o  allow steering on the unstable zero dynamics manifold. If the input is provided 
by a pilot in real time, the computational requirements and acausality might be 
prohibitive. 

Finally, an approach that  does not generate a feasible state space trajectory, but 
improves on the output-only trajectory has been explored by Getz et al. in [33]. The 
method generates an approximate trajectory for the internal dynamics by following 
an instantaneous equilibrium for the internal dynamics. The first and higher order 
derivatives of the internal states are set to  zero. Therefore the total state trajectory 
is not feasible. Further refinements of this technique can be found in [32]. 

In this thesis we investigate fast computational methods of generating full state 
space trajectories from output trajectories for differentially flat systems, or deriva- 
tives thereof. Differentially flat systems are systems that  exhibit a one-to-one cor- 
respondence between output trajectories and full state space and input trajectories. 
Trajectories can be planned in output space and then lifted to  the state and input 
space, through an algebraic mapping. 



4 1. Introduction 

1.2 Limitations of Feedback Linearization 

Although feedback linearization is a popular approach in nonlinear control theory, 
it is good t o  point out some limitations. One of the main problems of feedback 
linearization is the coordinate transformation, which makes the design of a controller 
hard. Oftentimes tuning of a controller is achieved by comparing step responses, 
in simulation or experiment. In the author's experience it is particularly hard t o  
design a controller for a system in which the states do not correspond t o  physical 
quantities. The coordinate transformation hides the meaning of the true dynamics. 

Example 1.1 To illustrate the potential problems with feedback linearization, con- 
sider the following simple system: 

where the constant a has a nominal value a, but is only known within some degree 
of accuracy: a = ti + 6a. A proportional feedback linearizing controller is 

whereas a controller based on the Sacobian linearization with the same gain is 

Figure 1.1 shows the response from an initial error t o  zero for both controllers, 
where kl = 5, ti = 10. The controller based on the Jacobian linearization regulated 
the state t o  zero faster. The reason is clear: the nonlinearity in the system (1.1) 
is actually helping us t o  drive the system t o  zero, and the feedback linearizing 
controller cancels this beneficial term. 

In some cases the Jacobi-linearized controller is optimal with respect t o  some cost 
criterion, and the feedback linearized controller is suboptimal. This is illustrated in 
the following example. 

Example 1.2 (provided by J.C. Doyle) Consider the system 

with cost criterion 

The linear controller with unity gain is 
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x: fbl (-.), Jac Lin (-) 

time [s] 

u: fbl (-.), Jac Lin (-) 
- - 

0 0.5 1 1.5 
time [s] 

Figure 1.1 Feedback linearizing and Jacobia,n linearization controllers. 

and the feedback linearizing controller with the same linearization a t  the origin is 

The optimal controller for this simple example can be found by solving the Bellman 
equation [48], 

giving 

and upon substitution in Equation (1.8): 

Hence the linear controller is optimal with respect t o  cost criterion J, whereas the 
feedback linearizing controller is not. The cost for the linear and feedback linearizing 
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controller as a function of the initial condition x  is 

Jt;, ( x )  = 2 - 2 ( 1  + x )  e-% 
1  

J f l ( x )  = -(I- e-2x(1 + 2 2 )  + 2x2)  
4 

respectively. For x  -+ +oo, Jj l /J l ; ,  grows quadratically. For x  --+ -m, Jjl/J1;, 
grows exponentially. This shows that  the feedback linearizing controller is arbitrarily 
worse than the optimal linearizing controller. 

In most cases we cannot solve the Bellman equation analytically, and this ex- 
ample was constructed t o  make the equation solvable. Other examples show that  
the optimality of the linear controller is not restricted t o  systems with strong non- 
linearities in the factor multiplying the input. 

In [9] it is shown that  in certain initial configurations a linear controller outper- 
forms the feedback linearizing controller for trajectory tracking for the kinematic 
car. This is related to  the fact that  feedback linearization tries t o  decouple a multi- 
input system into separate chains of integrators. The coupling between inputs and 
outputs can be beneficial in certain cases. This in turn is related t o  the fact that  it 
is easier t o  design controllers in physical coordinates. 

1.3 Optimal Control 

A solution t o  trajectory tracking that  does not compute an explicit s tate space 
trajectory is given by optimal control [48, 50, 81. Optimal control allows the mini- 
mization of an integral cost criterion subject t o  constraints on the initial and final 
states. In particular, optimal control encompasses the problem of steering from an 
initial t o  a final state while minimizing the error between the output and a desired 
trajectory for the output. It also encompasses the problem of minimizing an arbi- 
trary cost function of the states and inputs subject t o  initial and final constraints, 
and the formulation of the problem of steering from an initial state t o  a final state 
in minimum time. Although the formulation of the solution t o  optimal control 
problems is quite straightforward and extremely elegant, the practical solution is 
complicated. It involves the numerical solution of two point boundary value prob- 
lems, which is typically done by iteration and cannot guarantee convergence. For 
one time missions like spacecraft trajectories, the generality of optimal control out- 
weighs the computation penalty. Indeed, optimal control has been used for many 
years t o  compute orbits for spacecraft. Computation time was not a big concern, 
since the mission was one of its kind and planned a long time ahead. In this thesis 
we are concerned with situations where computation time is a t  a premium, and 
convergence guarantees are indispensable. In these situations we have t o  perform 
the trajectory calculation many times in one single mission, and the desired trajec- 
tory changes continuously. See Section 1.5 for examples of applications where these 
conditions are important. 
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1.4 Two Degree of Freedom Design 

As mentioned, two degree of freedom design is a paradigm where we generate a 
nominal trajectory for the state and input space around which we try t o  stabilize 
the system by means of linear controller. This is depicted in Figure 1.2. The source 
of the output trajectory is dependent on the application. It can be a human pilot or 
a machine based scheduler in a highly automated aircraft, a driver in a vehicle, or a 
high level scheduler for a robotic manufacturing plant. The module that  generated 
the desired output trajectory is a level in itself, so in some sense the situation 
depicted in Figure 1.2 is really a three degree of freedom controller. The topmost 
level generates the output trajectory, which might not be feasible, or just consist of 
a series of way points. The intermediate level generates a feasible full state space 
and input trajectory, and the low level stabilizes the system around the nominal 
trajectory. Since the scheme is traditionally known as two degree of freedom design, 
we will follow that  convention. 

Figure 1.2 Two degree of freedom control. 

The trajectory generation module generates a nominal state space trajectory 
and a nominal control input. This part of the controller can be run a t  a rate lower 
than the sampling rate, since the dynamics of the operator are typically much slower 
than those of the plant. The plant is linearized around the nominal trajectory, and 
a linear controller is used t o  stabilize the plant around this trajectory and deal with 
uncertainty. The advantage of linearizing the plant around a trajectory as opposed 
t o  using a coordinate transformation is that  in the latter case it is often impossible t o  
get a good uncertainty description that  makes physical sense. The linear controller 
runs at a higher rate, since it needs t o  stabilize the plant dynamics. Note that  the 
linear controller needs to  have information about the nominal state t o  compute the 
appropriate linearization. 

output 
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Two degree of freedom design allows an explicit robustness analysis using suc- 
cessive linearizations. Some promising work on the robustness analysis of nonlinear 
systems with uncertainty along a trajectory is reported in [83, 82, 841. 

Typically the linear controller is gain scheduled, i.e., in different operating 
regimes we use different controllers. Various scheduling schemes can be devised. 
Suppose the set of controllers is {K;} ,  and the scheduling variables are 0. 

1. Hard switching: use controller IS; if 0 E 0;. This might result in chattering 
around the switching boundary. 

2. Linear interpolation: design controller Ii'; for scheduling variables 0; and use 
Ii' = XiKi if 0 = XiBi. This has the problem that  the controller is never the 
controller designed for an operating point, but always some linear combination 
with neighboring controllers. This might hinder analysis. 

3. Switching with hysteresis: use controller K; if d(0,0;)  < E ; ,  keep using this 
controller until d(0, O;) > 6; where 6; > 6 ; .  This avoids the chattering around 
the switching boundary associated with hard switching. 

Even though gain scheduled controllers are widely and successfully used in prac- 
tice, the resulting closed loop system is nonlinear and typically time varying, and 
there is no guarantee that  the resulting system is stable. In particular, stability of 
the scheduled system over its entire operating range does not follow from stability 
in each separate regime. Only if the system is slowly time varying, i.e. the open loop 
system dynamics are much slower than the controller dynamics, we can establish 
stability. Even then the conditions are hard t o  compute [76, 49, 411. 

Linear parameter varying (LPV) [3, 721 controllers provide global stability for 
plants with gain scheduled controllers. Usually, LPV control is used for measurable 
parameters that  vary in some bounded interval. To apply LPV t o  two DOF design, 
we would have t o  schedule with respect t o  the nominal state and input, which would 
then have t o  be bounded for all time. This requirement is counter intuitive especially 
for the state. We would also need to  be able t o  express the error system as a linear 
fractional transformation on the nominal state. This can in general not be done. 
Adding a nominal feed forward trajectory t o  an LPV controller would break the 
stability guarantee since we no longer have a linear time invariant (LTI) system, 
with a linear fractional parameter dependence. 

An approach t o  deal with set point tracking for non-minimum phase systems 
is presented in [40]. This approach inverts the non-minimum phase zeros of the 
linearization t o  the left hand plane, and shows that  this achieves better set-point 
tracking. The paper restricts attention t o  single input systems that  are completely 
maximum phase, i.e. have all the poles in the right half plane. The authors suggest 
that  their approach is more general though, and we certainly look forward t o  seeing 
the extensions hinted a t  in the paper. In any case, this approach does not apply t o  
trajectory tracking per se. 
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1.5 Motivating Applications 

Aircraft control has long been a driving application for the theory of nonlinear con- 
trol systems. Aircraft have been flying successfully for many years without the help 
of sophisticated control systems, and the question arises if aircraft control really 
benefits from such sophisticated schemes as two degree of freedom control. The 
applications we have in mind exhibit a much higher level of vehicle autonomy than 
is currently present in aircraft control systems. The system might be a remotely 
piloted vehicle, with a low bandwidth communication link. The remote pilot can 
only give terse information a t  low update rates, and the on board computer has 
t o  generate feasible trajectories from the pilot information. Another application is 
an evasion-pursuit scenario, where the desired trajectory is the path of a vehicle t o  
be intercepted. The desired output trajectory is obtained by on-board sensors and 
fed on-line t o  the trajectory generation module. Yet another application is station 
keeping, where a vehicle is supposed t o  monitor a target that  might move, or maybe 
a target that  is stationary, whereas the vehicle is subject t o  disturbances. More 
concretely, the California PATH project features a high degree of autonomy in cars, 
that  are expected t o  follow other cars, or avoid them. Here too, the desired output 
trajectory comes from on-board sensors, and might not be feasible. The trajectory 
generation module functions as an intermediate layer that  takes this coarse output 
trajectory and feeds a feasible nominal path to  the lower level controllers. Finally, 
automated inspection by aerial vehicles is another application of highly autonomous 
systems. The desired inspection path may be stored as way points or be updated 
during the mission, depending on the type of information obtained. The trajec- 
tory generation module has t o  convert this sparse destination da ta  into a feasible 
trajectory. 

In all these cases, the variety of maneuvers is too rich t o  be stored on board in 
reasonably sized memory banks. The update rate of the desired output trajectory 
is slow enough t o  allow some on board computation, but not low enough t o  allow off 
line computation by heavy computational machinery. It is this class of applications 
for which trajectory generation has great potential. 

Current aircraft control systems still leave a great authority t o  a human pilot. I t  
will take time for more advanced control schemes, as suggested in this dissertation, 
t o  find acceptance in current flight control architectures. The most promising short 
term applications are in remotely piloted and fully autonomous vehicles. 

1.6 Summary of Main Contributions 

This dissertation is concerned with the problem of trajectory generation for nonlin- 
ear systems. A central theme in the thesis is the class of diflerentially f la t  systems. 
Differentially flat systems exhibit a one-to-one correspondence between trajectories 
in output space and trajectories in the full state and input space. From the de- 
sired trajectory in output space we can then algebraically generate the state space 
trajectory, making the trajectory generation problem trivial. 

Differential flatness was originally formulated in the language of differential al- 
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gebra. Most of the theory and tools in nonlinear control theory use the language of 
differential geometry. It is therefore useful t o  give a definition of differential flatness 
in terms of differential geometry, to  allow connections with the important results 
in nonlinear control theory. The main theoretical contribution is a foundation for 
differential flatness in the language of exterior differential systems. Using the tools 
of exterior differential systems the thesis proves some results connecting flatness 
t o  feedback linearizability. In particular, it is shown that  differential flatness is 
equivalent t o  feedback linearizability in an open and dense set. The thesis gives a 
complete characterization of differential flatness in the single input case, allowing 
time varying flat outputs. 

To follow up on the promise t o  provide computational tools, a number of im- 
portant trajectory generation problems are formulated, and a software library is 
presented that  solves these problems. All simulations presented in the thesis used 
this library and the real time experiments used the same library compiled on a PC. 
The software is analyzed on computation time. 

Another theoretical contribution is the formulation of the real time trajectory 
generation problem and two algorithms that  solve it. Again, software implementing 
these algorithms is provided and analyzed. 

A number of methods are given that  extend the trajectory generation methods 
for flat systems t o  systems that  are not flat. These methods s tar t  with a fiat ap- 
proximation t o  the system and look a t  the remaining terms as perturbations. These 
methods are analyzed on their theoretical properties and validated in simulation 
and experiment. 

Some systems exhibit a natural division in two subsystems: an outer system 
that  is flat with respect t o  some pseudo inputs, and an inner system that  is not flat. 
If we can control the inner system tight enough, we can treat the pseudo inputs 
t o  the outer system as inputs. Flatness of the outer system allows fulI state tra- 
jectory generation. We present two theorems on the conditions required t o  achieve 
exponential and bounded tracking for the total system based on exponential and 
bounded tracking of the inner and outer system. 

Experimental validation takes an important place in this thesis. Both algorithms 
and software are evaluated on real time experiments available a t  Caltech. One is 
the ducted fan, which is a model of the pitch dynamics of a thrust vectored aircraft. 
The other is an electric model helicopter. 

1.7 Overview of the Dissertation 

The theoretical foundation for differential flatness in terms of exterior differential 
systems is given in Chapter 2. This chapter also proves some properties of differen- 
tially flat systems in the geometric framework and gives examples of flat systems. 
Chapter 3 presents some important trajectory generation problems and algorithms 
t o  solve them for differentially flat systems. It also presents the software library 
tha t  implements these algorithms. I t  illustrates these through simulations and ex- 
periments. Chapter 4 presents the real time trajectory generation problem, and 
two algorithms t o  solve it for differentially flat systems. Again, simulations and 
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experiments validate the algorithms. Chapter 5 presents some extensions to  deal 
with perturbations t o  flatness, and validates these in experiment and simulation. In 
Chapter 6 we define outer flatness, discuss some theoretical properties and present 
the helicopter experiment as a test case for outer flatness. In Chapter 7 we surnma- 
rize the main points and point out directions for future research. 



1. Introduction 



Chapter 2 

DiRerential Flatness 

2.1 Introduction 

This chapter will give the mathematical definition of the class of difjerentially flat 
systems in terms of exterior differential systems. Much of this material is very 
technical, and the hurried reader can get a good understanding of flatness by looking 
a t  Equation (2.2), which captures the essence of flatness. In Section 2.7 we present 
examples of flat systems. The results in this chapter were joined work with Muruhan 
Rathinam, and appeared earlier in an abbreviated form as 1701. 

2.2 HistorieaP Context 

The problem of equivalence of nonlinear systems (in particular t o  linear systems, 
that  is, feedback linearization) is traditionally approached in the context of differen- 
tial geometry [42, 711. A complete characterization of static feedback linearizability 
in the multi-input case is available, and for single input systems it has been shown 
that  static and dynamic feedback linearizability are equivalent [14]. Some spe- 
cial results have been obtained for dynamic feedback linearizability of multi-input 
systems, but the general problem remains unsolved. Typically, the  conditions for 
feedback linearizability are expressed in terms of the involutivity of distributions on 
a manifold. 

More recently it has been shown that  the conditions on distributions have a 
natural interpretation in terms of exterior differential systems [31, 791. In exterior 
differential systems, a control system is viewed as a Pfaffian module. Some of the 
advantages of this approach are the wealth of tools available and the fact that  
implicit equations and non-affine systems can be treated in a unified framework. 
For an extensive treatment of exterior differential systems we refer t o  [7]. 

Fliess and coworkers [23, 24, 531 studied the feedback linearization problem in 
the context of differential algebra and introduced the concept of digerential  flatness. 
In differential algebra, a system is viewed as a differential field generated by a set 
of variables (states and inputs). The system is said t o  be differentially flat if one 
can find a set of variables, called the flat outputs, such that  the system is (non- 
differentially) algebraic over the differential field generated by the set of flat outputs. 
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Roughly speaking, a system is flat if we can find a set of outputs (equal in number 
to  the number of inputs) such that  all states and inputs can be determined from 
these outputs without integration. More precisely, if the system has states x E Rn,  
and inputs u E Rm then the system is flat if we can find outputs y E IRm of the form 

such that  

Z = x(y, jl, . . . , y(4)) 

U = u(y, jl, . . . , y(4)). 

Differentially flat systems are useful in situations where explicit trajectory gen- 
eration is required. Since the behaviour of flat systems is determined by the flat 
outputs, we can plan trajectories in output space, and then map these t o  appro- 
priate inputs. A common example is the kinematic car with trailers, where the xy 
position of the last trailer provides flat outputs [56]. This implies that  all feasible 
trajectories of the system can be determined by specifying only the trajectory of 
the last trailer. Unlike other approaches in the literature (such as converting the 
kinematics into a normal form), this technique works globally. 

A limitation of the differential algebraic setting is that  it does not provide tools 
for regularity analysis. The results are given in terms of meromorphic functions 
in the variables and their derivatives, without characterizing the solutions. In par- 
ticular, solutions t o  the differential polynomials may not exist. For example, the 
system: 

is flat in the differentially algebraic sense with flat output y = 2 2 .  However, it is 
clear that  the derivative of x2 always has to  be positive, and therefore we cannot 
follow an arbitrary trajectory in y space. 

To treat time as a special variable in the relations (2.2), one can t o  resort t o  
Lie-Backlund transformations on infinite dimensional spaces [25, 261. The latter 
paper distinguishes between "orbital (or topological) flatness" where time scalings 
are allowed, and "differential flatness" where they are not. 

In the beginning of this century, the French geometer E. Cartan developed a 
set of powerful tools for the study of equivalence of systems of differential equa- 
tions [11,12,79]. Equivalence need not be restricted t o  systems of equal dimensions. 
In particular a system can be prolonged t o  a bigger system on a bigger manifold, 
and equivalence between these prolongations can be studied. This is the concept of 
absolute equivalence of systems. Prolonging a system corresponds to  dynamic feed- 
back, and it is clear that  we can benefit from the tools developed by Cartan t o  study 
the feedback linearization problem. The connections between Cartan prolongations 
and feedback linearizability for single input systems were studied in [85]. 






































































































































































































































































