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Abstract— This paper presents both necessary and sufficient conditions for the stability of Zeno equilibria in Lagrangian
conditions for the stability of Zeno equilibria in Lagrangian  hybrid systems be obtained?
hybrid systems, ie., hybrid systems modeling mechanical sys- “rpo main result of this paper are both necessary and
tems undergoing impacts. These conditions for stability are - - . e
motivated by the sufficient conditions for Zeno behavior in Sufficient conditions for the stability of Zeno equilibria in-
Lagrangian hybrid systems obtained in [11]—we show that the Lagrangian hybrid systems. Moreover, the sufficient condi-
same conditions that imply the existence of Zeno behavior near tions that we obtain arexactlythat same as the conditions

Zeno eth”ibffia imply thel stability of thedZ¢”0 equi”Eria- TQ~i|-S for the existence of Zeno behavior presented in [11]. That
paper, therefore, not only presents conditions for the stability . .- ; ; ;
of Zeno equilibria, but directly relates the stability of Zeno 1S, glven.a Zeno equ"lb”u.m pomt of a La.granglan hyb”.d
equilibria to the existence of Zeno behavior. system, if the second d_erlva_tlve_ of the_unllateral constraint
function evaluated as this point is negative, then this point is
. INTRODUCTION stable and the hybrid system is Zeno. This result is appealing

Zeno behavior occurs in a hybrid system when an infinit8°t only because it presents conditions for the stability of
number of discrete transitions occur in a finite amoun@€no equilibria, but relates the stability of such equilibria to
of time. Despite the simplicity of the definition of ZenoZ€no behavior and vice versa. That is, this paper allows for a
behavior, understanding this behavior on a fundamental lev@g€Per insight into the relationship between stability of Zeno
presents difficult and intriguing problems in hybrid systems2quilibria and Zeno behavior in hybrid systems modeling
Can simple conditions for the existence of Zeno behavior J8€chanical systems undergoing impacts.
obtained? How does the existence of Zeno behavior relate toPue to the subtle and complex nature of Zeno behavior,
the convergence properties, or stability, of hybrid systems? ihhas been studied in many forms and from many different
order to obtain an intuitive understanding of this phenomenggrspectives. Most of the conditions for Zeno behavior are
and help to answer some of the fundamental questions tH¥fcessary and tend to be very conservative; see [20] for
arise when studying Zeno behavior, it is useful to study it igeneral hybrid systems, and [7], [19] for linear comple-
the context of hybrid systems that model real world systemglentarity systems. Until recently, sufficient conditions for

In this paper, we study hybrid systems modeling mechani&€no behavior were more rare [2]. Necessary and sufficient
cal systems undergoing impactsigrangian hybrid systems conditions for Zeno behavior in a significantly different class
In particular, we consider a configuration space, a Lagrangid controlled hybrid systems were found in [9]. We also note
modeling a mechanical systems, andrélateral constraint that this paper studies Zeno behavior in Lagrangian hybrid
function that gives the set of admissible configurations fopyStems, which were studied in [1], [3] and [4] as motivated
this system. From this data, we obtain a Lagrangian hybriy [6].
system. Moreover, hybrid systems of this form commonly
display Zeno behavior (when an infinite number of collisions Il. LAGRANGIAN HYBRID SYSTEMS
occur in a finite amount of time), and therefore provide

the ideal class of systems in which to gain an IntUItIV‘?_agrangian and the associated Lagrangian hybrid system.

understanding of Zeno behavior. : : ; P
Hybrid Lagrangians of this form have been studied in the
In [11], sufficient conditions for the existence of Zeno be- y grang

havior in Lagrangian hybrid systems were presented TheContext of Zeno behavior and reduction; see [1], [3], [4] and
: . Fi i h i f a simple hybri .
conditions were obtained by consideridgno equilibria— ?fb] Irst, we review the notion of & simple hybrid system

subsets of the continuous domains of a hybrid system that areP€finition 1: A simple hybrid systeris a tuple:

fixed points of the discrete dynamics but not the continuous # = (D,G,R, f)
dynamics. It was shown that one need only check the sign el
of the second derivative of the unilateral constraint functiop/here

evaluated at a Zeno equilibria to verify the existence of Zeno
behavior. These conditions, and the framework in which they
were presented, naturally raises the question: can similar

In this section, we introduce the notion of a hybrid

« D is a smooth manifold called th#gomain
o G is an embedded submanifold &f called theguard,
e R is a smooth magk : G — D called thereset map
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collection of domains, guards, reset maps and vector fields Om
as indexed by an oriented graph.
Hybrid executions. An executiorof a simple hybrid system lg
A is a tuplex” = (A, 7, C), where
« A=1{0,1,2,...} C N is an indexing set. y
e J={I;};ca is ahybrid intervalwhere I, = [1;, 7i41]
ifi,i+1eAandly_1 = [TNfl,TN] or [TNfl,TN) or

[Tv—1,00) If |A| = N, N finite. Here,r;, 7,41, 78 € R X
and Ti < Tit1- ;
e C={ci}ica is a collection of integral curves df, i.e., (a) (b)
¢i(t) = f(ci(t)) fort € I;, i € A, Fig. 1. (a) The bouncing ball on a sinusoidal surface (b) The double
And the following conditions hold for everi;i + 1 € A: pendulum
(i) ci(tit1) € G, Fi .
! irst, we define
(i) R(ci(Ti41)) = cip1(Tit1),
(111) Tit1 = min{t el;: Ci(t) S G} Dy, = {(q,q) eTq : h(q) > 0},
The initial condition for the execution is: (7). Gr = {(¢;4) €TQ:h(q) =0 and dh(q)q < 0},

Lagrangians. Let @ be then-dimensionalconfiguration \where
spacefor a mechanical system (assumed to be a smooth

T
manifold) and7'@Q the tangent bundle of). In this paper, dh(q) = (%(q)> — ( (;Lh(q) 6c’>h (q) ) .
we will consider LagrangiansL : TQQ — IR, describing dq “ "

mechanical, or robotic, systems, which are Lagrangians @i this paper, we adopt the reset map ([6]):

the form ) .
RL(Qa Q) = (Q7 PL(Qa C]))7

which based on thenpact equation

L(a,d) = 34" M(a)i — V(a), ®

where M(q) is the (positive definite) inertial matrix,
14T M(q)q is the kinetic energy and’(q) is the potential .

34 q)q ay q p . dh(q) -1 T
energy. In this case, the Euler-Lagrange equations yield the 4 — (1 + &) @rgyar—tangr M (@) (@)™, (4)

PL(Q»‘]) =

(unconstrained) equations of motion for the system: where0 < e < 1 is the coefficient of restitutionwhich
M(q)i + C(g,d)d + N(q) =0, ) is a measure of the energy o!is_sipated thrqugh impact. This
reset map corresponds to rigid-body collision law under
whereC(q, ¢) is the Coriolis matrix (cf. [15]) and N(¢q) = the assumption ofrictionless impact Examples of more
9v-(q)- Settingz = (g, ¢), the Lagrangian vector fieldiz, complicated collision laws that account for friction can be
associated td. takes the familiar form: found in [6], [8].

b= fo(2) < q ) 3 Finally, f1, = fr is the Lagrangian vector field associated
= fr(z) = o . :
g M(q)~'(~=C(g:9)d — N(q)) to L in (3). ' _ |
This process of associating a dynamical system to a La- E)fample 1 (Ball): The first running e>'<ample of th|s pa-
grangian will be mirrored in the setting of hybrid systemsP€" IS @ planar model of a ball bouncing on a sinusoidal
First, we introduce the notion of a hybrid Lagrangian. surface (cf. Fig. 1(a)). The ball is modelled as a point mass

__ ] . : o . m. In this case
Definition 2: A simple hybrid Lagrangiaris defined to B = (Qn, Ly, hs),

be a tuple
L=(Q,L,h), where Qg = IR?, and the configuration is the position of
Where the ballg = (z,y),
o (@ is the configuration space, Lg(z,3) = %mHCJHZ — mgy.

e L:TQ — IR is a hyperregular Lagrangian,
e« h : Q — IR provides a unilateral constraint on theFinally, we make the problem interesting by considering the
configuration space; we assume that (0) is a smooth sinusoidal constraint function
manifold. he(q) = y — sin(z) > 0.
Simple Lagrangian hybrid systems. For a Lagrangian (1),
there is an associated dynamical system (3). Similarly, givep0, for this example, there are trivial dynamics and a
a hybrid LagrangiarL, = (Q, L, ) the simple Lagrangian Nontrivial constraint function.
hybrid systen(SLHC) associated td. is the simple hybrid Example 2 (Double Pendulum):QOur second running ex-
system: ample is a constrained double pendulum with a mechanical
1, = (Dv, GL, Ry, fL). stop (cf. Fig. 1(b)). The double pendulum consists of two



rigid links of massesn,, mo, lengthsL,, Lo, and uniform Note that ifdim(Q) > 1, the Zeno equilibria in Lagrangian
mass distribution, which are attached by passive joints, whileybrid systems are always non-isolated (see [10])—this
a mechanical stop dictates the range of motion of the secontbtivates the study of such equilibria.

link. Sufficient conditions for Zeno behavior. Let h(q, ¢) be the

The example serves as a simplified model of a leg withcceleration ofi(¢) along trajectories of the unconstrained
a passive knee and a mechanical stop, which is widetgnamics (2), given by:

investigated in the robotics literature in the context of passive )
dynamics of bipedal walkers (cf. [18], [14]). In this case h_(Tq’ q) N . N (5)
P — (Op. Lo, hp) §" H(a)q +dh(g)M(q)~"(=C(g,9)d — N(a)),
o IR whereH q) is the Hessian of atg. The following theorem,
whereQp = S' x §', ¢ = (61,0;), and which was proven in [11], provides sufficient conditions
Le(g,q) = %qTM(q)q + (%m1L1 +maLy)gcos b, for _e_X|s_tence (_)f Zeno executions in the vicinity of a Zeno
equilibrium point.
. . _ . . Theorem 1 ([11]): Let 71, be a simple Lagrangian hy-
with the elements of the x 2 inertia matrix M (¢) given by  prid system and Lefg*,¢*) be a Zeno equilibrium point
My =mi L3 /3 +ma(L3 + L3/3 + L1 Lz cos b)) of ‘%,’i"ht;rhﬁn icfje <1 andf ?(q*, C];) < hO’hthe;e exists
_ _ . 9 a neighborhoodW C Dy, of (¢*,¢*) such that for every
Miy = My = ma(3L1Lx cosfz + 2L3)/6 (g0, d0) € W, there is a unique Zeno executiqri‘c of 4,
Mye = moL3/3. with ¢o(70) = (g0, do)-
Finally, the constraint that represents the mechanical stop is
given by hp(g) = 62 > 0. So, for this example, there are

—l—%mngg cos(bq + 02),

IV. STABILITY OF ZENO EQUILIBRIA

nontrivial dynamics and a trivial constraint function. In this section, we present and prove the main result of
this paper: sufficient conditions for the stability of Zeno
Ill. ZENO BEHAVIOR AND ZENO EQUILIBRIA equilibria. In particular, we introduce a type of stability that

This section discusses Zeno behavior and the corresporgkeno equilibria inSLHS can display: bounded-time local
ing notion of Zeno equilibria. More importantly, we statestability (BTLS). We show that the same conditions on the
the sufficient conditions for Zeno behavior that will motivatecoefficient of restitution and the second derivative of the
the main result of this paper in that our sufficient conditionsinilateral constraint function implies this type of stability.
for the stability of Zeno equilibria utilize exactly the sameConversely, if these conditions are not satisfied, the Zeno
conditions; that is, in Lagrangian hybrid systems, the exisequilibrium point isnot BTLS.
tence of Zeno behavior and the stability of Zeno equilibria pefinition 4: Let z* = (¢*,4*) be a Zeno equilibrium

can be detected W|th the same Simp|e and easily Verifiab‘!%int of a Simp'e Lagrangian hybnd Syste_%_ Then z*
conditions. is defined asbounded-time locally stabldé for each open
Zeno behavior. An executiony” is Zenoif A = N and neighborhood/ C T'Q of z* ande; > 0, there exists another
m 7 — 7 < 0o open neighborhoodV of z*, such that for every initial
imoo F ' conditionscy(7g) € W N Dy, the corresponding execution
Herer.. is called theZeno timef v is a Zeno execution X~ is Zeno, and satisfies(t) € U for all t € I; andi € A,

of a Lagrangian hybrid systen#4,, then itsZeno pointis  While its Zeno time satisfies,, — 7o < €.

defined to be A. Statement of Main Result

Too = (@oos Goo) = lim ci(7i) = lim (gi(7i), Gi(7:))- We now present the main result of the paper: conditions

These limit points are intricately related to a type of equilibfor BTLS of Zeno equilibria ofSLHS.
rium point that are unique to hybrid systems: Zeno equilibria. Theorem 2:Let z* = (¢%,¢") be a Zeno equilibrium
Definition 3: A Zeno equilibrium point of a simple hybrid point 9f a simple ITa_tgranglan hybrid systesf. Then the
systems# is a pointz* € G such that following two conditions hold:
o R(z*) =z*, (i) If e<1andh(q*,¢*) <0, thenz* is BTLS.
o f(z*)#0. (i) If A(g*,¢*) > 0, thenz* is not BTLS.
Zeno equilibria. If 74, is a Lagrangian hybrid system, For part (i), we not only prove the existence of the
then due to the special form of these systems we find thaeighborhoodiV for given U, but also provide an explicit
the point (¢*,¢*) is a Zeno equilibria iff¢* = P(q,¢*), relation betweenlV and U. For the sake of concreteness
with P, given in (4). In particular, the special form d%, and simplicity, we use docal coordinate chartfor small
implies that this hold iffdh(q¢*)¢* = 0. Therefore the set of neighborhoods of*. Therefore, we can identify bothand
all Zeno equilibria for a Lagrangian hybrid system is givenj with elements oflR™, and use the induced Euclidean norm
by the hypersurfaces i6'r: || - | to define neighborhoods af* = (¢*, ¢*) as

Z =1{(¢,4) € Gr. : dh(q)¢ = 0}. N(egseo) = {(q,4) € Dr: llg = q"[| < €qs [l4 = 47| < €0}



Note that (4) implies that;” = —ev; . Also, let T, =

T; — T;—1, Which is the time difference between consecutive
collisions. The following lemma states that any execution
which is bounded withiri” is guaranteed to be Zeno.

Lemma 1: Letz* = (¢*,¢") be a Zeno equilibrium point
of a simple Lagrangia hybrid system such th&*, ¢*) < 0
ande < 1, and letV = N(e,,€,) be a neighborhood of
z* that satisfies (6). Then for any executigif such that
¢i(t) e Vforall t € I; andi € A, the discrete-time series

of v}~ and 7; satisfy:

Fig. 2. lllustration of the neighborhoodg, V, W and W' of z*.

+
. . . . . [amin < Yit1 <, [@mas )

Using this notation, for a gively there exist, ande, such WVoamar = 0F =Y amin” ®)

thatU C N (g4, €,). Assuming that < 1 andh(q*, ¢*) < 0, Tit1 < oamas Q)

our goal is to construct a neighborhotd = N (4, d,,) that T = " amin

satisfies the requirements given in Definition 4. Therefore,” is Zeno.

B. Proof of Main Result Setup for Lemma 1. In order to prove Lemma 1, we will

The rest of this section proves Theorem 2 in stages througwl'ze methods _from optimal control. (The |q_ea of using
a series of lemmas. Before presenting these lemmas, we me“'tS from optimal control to analyze stability of differ-

first give a general outline of the proof. In particular, theential inclusions also appears in the work of Liberzon and

proof of part (i) of Theorem 2 is divided into three steps: Margaliot [1_21.) We,_therefor_e, _bnefly review t_he basic form
. . . . of Pontryagin’s maximum principle based on its presentation
1) We define an intermediate neighborhddd- U, such . : ; :
. ) . . in [5], though we adopt a slightly different notation.
that any execution that stays withir at all times is .
Consider a control system
guaranteed to be Zeno.

2) We define another neighborhotid’ ¢ G, NV, which & = f(z,u), (10)
lies on the guardGy,, such that any execution whose
first discrete eventy(;) lies within W’ is guaranteed wherez € IR" andu € Q C IR™, where() is a convex set
to stay withinV’. of admissible controls. A solution to (10) on a time interval
3) We construct the neighborhoddl, such that any exe- [t ¢,] is a pair(z(t), u(t)) satisfying (10) and.(t) € € for
cution with initial conditions withinlV is guaranteed gl ¢ ¢ [to, t¢]; the initial and final conditions of:(¢) are
to pass through a point d¥’" at timery, and thus itis  denotedz, = (to) andz; = =(t;). The design goal is to
a Zeno execution that stays within U, as required. Afind a solution to (10) that minimizes a given cost function
illustration of these neighborhoods appear in Fig. 2. P(z;,¢;) !; note that the end conditian; and the end time
We now formally proceed through these steps in order tt, may be either specified or “free”.
establish the main result of the paper. Using calculus of variations techniques, the solution of this
Step 1. We begin by defining the intermediate neighborhoogroblem is given as follows. First, define thtamiltonian
V = N(e,,¢€,), wheree,, < ¢, ande], < ¢, are chosen so given by H(z,u, A1) = ()" f(z,u), whereA € R" is

that for o calledthe co-state vectoil he co-state dynamic equations are

. then given byA = —22 and the optimal control satisfies
Gmin = = P& h(g, @), u*(t) = argminH. The end condition is given b g;; —
Umas = — min h(g,q), Atp))Toxy = 0, where if a particular state variable is

(e.0)eV specified, then its variatiobir; () vanishes, and if it is not
The following conditions hold: specified, then it gives an end condition for the corresponding

a co-state variable\;(¢y). In case where the terminal tintg
Amaz > Amin >0 and 6% <L (6) is not specified, an additional condition dii(t;) is given

Note that the fact that < 1 and/(¢*,¢*) < 0, al ith by G, +H(ty) =0,
ote that the fact that < 1 andh(q*,¢") < 0, along wit _ . . 4
the continuity ofh(q, ¢), imply that suche/, €/ exist. This Proof: [of Lemma ] We begin by proving (8). Leg”"

s A N be an execution such that(t) = (q:(¢),q:(¢)) € V for all
definition of V' implies that when(q(¢ t)) €V, h(q(t W\ A
i 'MpH when(g(?), 4(?)) (a(t) t € I; = [1;,7541) andi € A. Moreover,

satisfies the second-order differential inclusion

ﬁ(Q(t)a Q(t)) S [_amaxa _amin]~ (7) h(QL (t), q; (t)) € [_amagca _amin] (11)

. - . T
For Slmp|ICI'[y of notation, for an executiog™, let IMany textbooks also consider an integral cost function of the fdrea

ty . . . . .
v = dhlg._1(T:))d. T Ji! g(=, u, t)dt. This cost function can be incorporated into the formulation

(QZ 1( ‘))qz_l( ’)’ here by using an additional state variaklewhose dynamics is given by
v = dh(qi(r))d;(T:)- # = g(x,u,t). The cost function is then simply given by = z(t;).



for all ¢ € I;. The main idea of this proof is that, choosingreduces to maximizing the ratioj/ﬂ for a solution to

a state vector: = (z1,22) = (h(q),h(q,q)), (11) can be the second control system. Note that the definition of the

stated as a control system Hamiltonian H and the derivation of the co-state dynamic
) equation for\(¢) are also identical to those derived in the
1 = T2 (12) proof of (8). Settingt, = 7;_; = 0, the cost function to be

Ty = u minimized in this problem is given b¥(x ¢, t¢) = (z5)2/ts

where heret; = 7;. As before, the maximum principle

implies that the optimal input*(¢) is eithera,,;, of amaz,

To prove (8), consider the cost functiol(zs,ts) = N i
Lo 1 and depends solely on the sign 4§(¢). Using the end
(x )2 for the control system (12). The Hamiltonian is given ondition for A» gives As(t;) — 1/t;, which implies that

by H = A;x2+A2u. The co-state dynamic equations are theril(ﬂ — ¢y and Mo (t) = 1/t; + er(t — ). The additional

M =0 and iy = A\, indicating that)(¢) is constant and . . 5
A1 (t) is a linear function. The end condition givag(t) = co:gétlontonfir(lgj) %'Ve:r?%ézécég 1a/tt e)Hfa(tcfc))étcji aeothat
The maximum principle then implies that the optimal mputSI xQ(Qf) u(ty) gative, w u
w(1) IS @ither api OF dmas, and depends solely on the Zero, 1&1/er |s< pgsn-l(/rgsfoltrzpﬁ)ei ]th?l'th)\;r(e?or(cjaoeri|nr:rc:1t|z(;rt?osr?
i !
sign of A2(¢), which is a linear function that has at most one of the cost function is obtained by takingt) = —amas

zero-crossing point. Therefore,* is a piecewise-constant e
function with at most one switching point, and we can seftOr t € [0,t7], and the maximum value fof.,/T; is

whereu ¢ [_amawa _amin]-

u*(t) = —uy fort € [to, ts] andu*(t) = —us fort € [t,, ty], consequenthy G i i .
wheret, is the switching time, and, us € {amaz, Gmin }- Step 2. As the next step towards computing the neighbor-
Now, for the executiony”% and takingto = 7; andty = hood W, we compute the neighborhodld’ C Gy, NV, of
741, direct integration Oﬁ(ql( ), d:(t)) = u(t) gives initial conditionson the guardGy, (i.e. corresponding to a

collision), such that any execution with initial conditions in
M (Ti41), di(Ti41)) = W' stays withinV.
In order to construct?’ for given neighborhood#’ and
_ _ Ty g2
\/ urts)? + 2ua(vi'ts — wt3/2), V', we first define the following scalars:
whose critical value is attained &t = v;" /us, i.e. it satisfies o = tmaz
h(qi(ts), di(ts)) = 0. _It then follows that the minimum and  Qmin
maximum values of(q;(7;+1), ¢:(7i+1)) are given by o~ [Gmaz
\ a.
Zmaa.,u < h qi(Tit1 (ji Tit1 — ’U; < — Zf'min ,Uj’_ Y min
“\ amin ( ( + ) ( + )) +1 mas B — ||q ” —I—GL
Using the fact thav;” = —ev;", one obtains (8). | M=2(q)dn(q)7 ||
. . . . . = max
e e &) consider e diferenlal nchsion (13 for 1~ (5 dr@ M)
i—1 = [Ti—1,Tq i = _ N
[7i, i+1]- Thatis, we consider two control systems as defined ¢ = (Ifl?é( HM 9) (Clg,9)q+ N(g) H - (13)

in (12). The initial conditions and final conditions for the first

. ) The following lemma completes the definition Gf’.
control system are given by:

Lemma 2: Let z* = (¢*,¢") be a Zeno equilibrium
ri(Tim1) = h(qz 1(7i-1)) = 0. point of a simple Lagrangian hybrid systes#;, such that
ra(ric1) = h(gi-1(7ie 1) Gi1(tio1)) = v, h(c_]*,ij*) < 0ande < 1,_apd letV = N(e,e,) be a

2(m) = hg(n) = neighborhood of:* that satisfies (6). For a givee > 0, let
! ! . W' be the neighborhood defined as follows:
vo(ri) = hlgi-1(m), di- 1(ﬂ)) =v;
W' = {(¢,9) €TQ: h(q) =0, [lg—q*[| <3, (14)

where v, and 7; are not specified. The initial and final

. ok ! .
conditions for the second control system are: lg = ¢"|| < &, and dh(g)q < ~vimas < O0}.

such thatd’ , 6/, and vi,,.4. satisfy the conditions:

ri(ri) = hlg(n)) = e
zo(ri) = (ql(ﬂ),ql(q—l)) — U;F = —ev; 5; < eq, 8! < € and vimae < min{cy,ca,c3} (15)
z1(rit1) = hqi(Titr)) = where
To(Tip1) = h(qi(Ti+1)in(Ti+1)) =Vip _ amm(=¢) s
1 = T
wherer;; andv,,, are not specified.  amin(1-¢) P
The goal is to find a solution to the two control systems in 2 = 2¢f8 (€g = 0g)
which T;41/T; is maximized where, agaiff; = 7, — 7,_1. s = (e,-4)/ (I+e)n 2¢¢ )
. L4 . L v v 1—e” Amin(1—e’)
It is easy to see that for a giver, T;,; is maximized by
simply takingu(t) = —am, for t € I, and its maximum Then each executiog”t such thatcy(r) € W’ is Zeno

value is given byT; |, = 20" /amin. The problem then and satisfies:;(t) € V for all t € I; andi > 1. Moreover,



the corresponding Zeno time satisfies it is clear that this inequality also holds when replacing
with ¢,(¢) for all ¢ € I; andi € A, and thus thg-component
of ¢;(t) is guaranteed to stay withiir. [ ]

Step 3. At this final stage, for a givem; > 0, we define
the neighborhoodV as

Too — T1 < €. (16)

Proof: It is easy to see that (14) implies that’ C V.
Treatingr; as the initial time, the initial conditions of 7t
are thus lying insidé’. In the following, we first assume that
Y7 stays withinV/, and thus the differential inclusion (11) W = N(6,,00),
for h(q;(t)) holds for alli € A, then we show that conditions
(15) imply that(g;(t), ¢;(t)) actually stays withini” for all ~whered, < &, andé, < &, satisfy:
t € I, andi € A. First, we assume that the execution ) _
X% stays withinV/, and show that its Zeno time satisfies (i) dh(q)q“/(dz(j?q)z7'1’“"“") < min{
(16). By assumption, during the time intervale [, ], . P
h(qi(t)) satisfies the differential inclusion (11) (vv[ithz 1]) (i) (Qh(q) + M) maz < (Vimaz)®

0,~0, §,-0,

a8t oy

with initial conditionsh(m) = 0, A(m) = v{ and an end _ (18)
condition 2(7) = 0. It is easily shown thaf, = 7, —r, is  for all (¢,¢) € N(dg,6,) N Dy.

bounded by Note that sincei(¢*) = 0 and dh(g*)¢* = 0, continuity

T, < 2v1‘+ < 26Vimas of h(g) anddh(q) im_ply thgtlgucmq,é.v.exist. Thg following

Gmin Amin lemma states that if the initial condition are withiti, then

Using Lemma 1, the sequendg satisfies (9), and is thus at the first collision timery, (¢, ¢) are within 17",
bounded by a geometric series with the factér Since Lemma 3: Let 2* = (¢*,¢*) be a Zeno equilibrium

conditions (6) imply thate’ < 1, the total execution time oint of a simple Lagrangian hvbrid svstes# such that
?s bounq_ed byree — 11 =>.T; < % Combining the two ;)i(q*,ij*) <0 gnd . i 1,gand I)e/t v I/IB;’ an;W be the
inequalities above, one gets neighborhoods ofc* defined in (6), (14) and (18) respec-
Too —T1 < % (17) tively. Then each executiop’”* such thatc(m9) € WN Dy,
- satisfiescy(t) € V for t € Iy, and ¢o(r1) € W’ and
T —To < €.

Proof: From the definition ofi¥’ and V, it is clear
that the initial condition satisfiegy() € V. We first
assume thatey(t) stays within V' for ¢ € I, therefore
h(qo(t)) satisfies the differential inclusion (11) (fér= 0).
Then we prove that under the conditions @n in (18), a
finite 7, does exist, and(t) actually remains withirfi” for
t € [r9,71]. Sincecy(ry) € V, the differential inclusion
implies h(qo(t),4o(t)) < 0 Therefore, there exists some
finite 7, such thati(go(m1)) = 0.

Assume thath(qo(t)) satisfies the differential inclusion
(11) for ¢t € [ro, 1], With initial conditions h(qo(70)) =

Finally, the change in the velocity during the execu- ho = 0 and (go(70), 4o(10))) = vy, and the end condition
tion is decomposed into its dicrete and continuous part@,(qo(,ﬁ,)) = 0. Itis easy to show (eveT W't?om using Pon-
as follows. Let us denotekgl) — .(n) — 4,1 (rs) and ]tcryagms?haxmum prmmple) thl;';\t thg ;rie end conditions
AEQ) = ¢;(141) — ¢;(7;). The total change in is thus or 71 andh(go(7), do(1)) are bounded by

bounded by, — (1)l < AV + AP, where AV = dh(a0(70))do (7o) /(@0 (70)) o (70))* — e (a0 (o)
S 1AD] for j = 1,2. Assume thata;(t),¢;(H) € VT o (19)
for all t € I; andi € A. The velocity change due to a single . S
collision at timer; is given in (4), and is thus bounded by ‘h(qO(Tl)7QO(T1))‘ < \/(Qho + (,fii)n ) Umaz-  (20)
IAM | < (1 + e)n |v;|, wheren is defined in (13). Using
Eg. (8) in Lemma 1 along with the relatiaf = —ev;, the Assuming that(go(t), ¢o(t)) € V, the total change iy (t)
sequen%¢v;| is bounded byv; | < (") vy | < Vimas. @NA4o(t) for t € [ro, 7] are bounded by

1) ; ;
XHJ)S;A(H!)SH bounded by the sum of a geometric series as”qo(t) — gl < Bt —0), ldo(t) = ¢* || < C(t = 70).

1—e’’ Ulmaw .

Settinguymqa. < 1 in (15) then verifies that the bound (16)
is satisfied.

Next, letq(t) = q;(¢) for t € [r;, 7;41]; this is well defined
since ¢;(i+1) = qi+1(1i41) for all i € A, i.e., ¢(t) does
not change through the collisions. Sin¢g(t),q,(t)) are
assumed to remain withifv for all t € I; andi € A, i.e.,
during the duration of the executiare |11, 7|, the change
in ¢(t) is bounded by||¢gs — q1(71)|| < B(t — 1) where
0, defined in (13), is the maximum norm ¢gfin V. Using
the bound (17) and the triangle inequality(t) — ¢*| <
llg1 (1) — ¢*|| + llg(t) — q1(m1)]|, the conditionvye. < co
in (15) then verifies thafq(t) — ¢*|| < ¢, forallt € [71, 7],
and theg-component of:;(t) is guaranteed to stay withiW.

The continuous part is bounded y?) < (T — 1), Using the bound om; —7q in (19) and the triangle inequality,
where ¢, defined in (13), is the maximum norm @f in  item (i) in (18) then implies that bottyy(¢), 4,(¢)) actually
V, and 7, — 71 is bounded according to (17). Using thestays withinV for ¢ € [ry, 71]. Moreover, the bound in (20),
bounds obtained om\("); A and the triangle inequality along with item (ii) in (18) imply that{qo(71), 4o (1)) € W,
ldoo — d*|| < AY +A® 1§ the conditionvyme, < csin  Finally, condition (i) in (18) also implies that, — 7o < €/’
(15) then verifies tha¢., — ¢*|| < €. By our construction, [ |
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Fig. 4. Simulation results for the ball example with initial velocitigs(0) = 2.5 and v, (0) = 0.
We now combine the results above to complete the proof V. SIMULATION RESULTS

of Theorem 2. In this section, we present numerical simulations of the

Proof: [of Theorem PFirst, we prove part (i). ASSume fjrst example considered at the beginning of this paper.

thate <1 andh(q",¢") < 0. For the given neighborhood Example 3 (Ball): Continuing with Example 1, by direct

U and “ > 0, pick AN such thatl/’ & N(eq’(:t)' Next, computation the condition for stability of a Zeno equilibrium
choosee/, < ¢, ande€, < ¢, such that the neighborhood ~ . IR . . .
? point (¢, ¢) in this system as given in Theorem 2 is:

V = N(e,,¢,) satisfies (6). Next, choosg < ¢, andd), ,,
andwvi,q. such that (15) is satisfied. The neighborhdéd }'L((L §) = visin(z) —g <0

is then defined in (14). Finally, choosg < ¢, —¢;, andd, <

&, 6, < &, that satisfy (18), and defind” = N(5,,0,). Where we denotej = (vg,vy). This indicates that Zeno
Consider an executiog”t with initial conditionsc,(rp) €  €quilibrium points that satisfyin(z) < 0 (i.e. near the min-

W N Dy. Lemma 3 implies thaty(t) € V for t € I, and ima) are more likely to attract Zeno executions. Moreover,
co(m1) € W andr — 19 < €/. Lemma 2 then implies that setting the horizontal velocity, sufficiently small increases
ci(t) e Vforall t € I; andi > 1, that 7% is Zeno, and the chances of exhibiting Zeno convergence even at points
that 7., — 71 < €. Therefore,xy”% is Zeno, stays within such thasin(z) > 0 (i.e. near the maxima). For the sake of
V C U, and its Zeno time satisfies, — 79 < €. simplicity, we takem =1, g = 1 ande = 0.5.

We now prove part (ii) of the theorem in case where We simulate this system under two different sets of initial
h(q*,¢*) > 0. First, choosed < ay < h(q*,¢*). Next, conditions, where in both cases the initial conditions &t0
choose an open neighborhobdof 2* such thaﬁ(% 4) > ap are chosen such that &t = 0.05, a first collision occurs at
for any (¢, ¢) € U, and define z(t1) = 0.3, y(t1) = sin(0.3). In the first case, the initial

. _ velocities are chosen as,(0) = 1.8 andv,(0) = 0. The

homaz = max{h(q)|(g,q) € U}. execution was simulated (uthiI a collision ytfn’z@ at which
Choose any initial condition(qo,d,) € U N Dy such the collision velocity dh(q(7:))q(m) is less than10719.
that dh(q0)¢, > 0, and assume that the correspondindrigures 3(a)-(f) show the simulation results of this running
execution y”“t satisfiescy(t) € U for all t € I,. Then example. Figures 3(a),(b),(c),(d),(e) show the time plots of
by construction,i(go(t)) satisfiesh(qo(t),do(t)) > ao for — x(t),y(t), va(t),v,(t) and h(q(t)), respectively. The points
all ¢ € I, and its initial conditions aré(qo(m0)) > 0 and of collision events are marked with squares’}: Figure 3(f)
h(qo(T0), do(70)) > 0. Itis easily seen that there exists a timeplots z(t) vs. y(t), with the constraint surfacg = sin(x)
t' > 70 + V2a0hmae such thath(qo(t')) > hmas, and thus appearing as a dashed curve. This simulation results in a
(q:(t),q,(t") £U. Therefore, the executiog”t cannot be Zeno execution that converges at a Zeno tige= 3.761
bounded withinU by setting the initial conditions arbitrarily to the Zeno equilibrium poiny* = (1.337,0.973) and
close toz*, in contradiction with the assumption and with¢* = (—0.121,-0.028). This Zeno point is close to a
the definition of stability. B maximum point of the surface; note that the horizontal



velocity v, is significantly decreased from its initial value,
so thath(q*, ")
satisfied. Note, too, that the motion kfq(t)) in the vicinity

Finally, the paper analyzes stability only feimple La-
—0.986 < 0 and the stability condition is grangian hybrid systems, i.e. systems with a single domain
and a single guard. The extension to mechanical systems

of the Zeno point is remarkably similar to that of a simplewith multiple unilateral constraints is still a challenging open

bouncing ball (cf. Figure 3(e)).

problem, although preliminary results for stability of a spe-

In the second case, the initial velocities are chosen adfic two-constraint mechanical system were obtained in [17].
v:(0) = 2.5 and v,(0) = 0. Figures 4(a)-(f) show the This extension, along with the completion process described
simulation results under these initial conditions. This simabove, will enable the analysis of complex mechanical and
ulation results in a Zeno execution that converges at a Zemabotic systems with intermittent contacts, such as bipedal

time t., = 5.0731 to the Zeno equilibrium poing*

walkers with knees (e.g. [18] and [14]), under a unified

(5.114,—-0.920) and ¢* = (2.023,0.791). One can see that framework of Lagrangian hybrid systems.

the trajectory is initially “repelled” from the maximum point
due to the large horizontal velocity, and attracted towards
the next minimum point, while the horizontal velocity is [1]
increasedsuch that(¢*, ¢*) = —4.766 satisfies the stability
A 2]
condition in Theorem 2.

Example 4 (Double Pendulum)in the second running 3
example (Example 2) consisting of a double pendulum with a{ ]
mechanical stop, the condition for stability of Zeno equilibria

given in Theorem 2 is (4]
7 -\ __ gsinf F o (4m1+3ma)Ly Lo
h(q,q) = =7+ <0, whereL = 3(m1(1L1+2LLz)m2L2)' [5]
This indicates that only points at whictin ¢; < 0 (i.e. the  [g]

link L, is inclined to the left) can be stable Zeno equilibria. [7]
Simulation results of this system, which are not shown here
due to space limitations, are quite similar to those of the balfg)
example. The reader is referred to [16] for simulation results
of thecompleted double-pendulum systém. executions are [9]
also carriedoeyondthe Zeno points).

VI. CONCLUSION [10]

In this paper we analyzed the stability of Zeno equilibria
of simple Lagrangian hybrid systems, deriving sufficien
conditions for stability and for instability of such equilibria.
The stability conditions presented are analogous to determi2l
ing the local stability of equilibrium points of a nonlinear
continuous system by computing the eigenvalues of thes3]
linearization. This paper providegdmost necessary and suf-
ficient conditionsfor stability of Zeno equilibria, where the |14
exceptional intermediate case kf¢*,¢*) = 0 is analogous
to the case where the linearization of a continuous systepl
has eigenvalues on the imaginary axis, and stability cannot B%]
determined via linearization. This analogy motivates future
investigation of techniques foglobal stability analysis of [17]
Zeno equilibria, where a promising direction is the use of
Lyapunov-like functions as was already done in the analysis
of isolated Zeno equilibrium points [10]. (18]

The fact that Zeno behavior is fundamentally a modeling
phenomena indicates that the conditions used to detect Zeno
behavior can be used to “complete” the hybrid systerfi9]
model. That is, carry an execution past the Zeno point by
switching to a holonomically constrained dynamical systemnj20]
This has been studied to a limited degree in [4], but the
result presented in this paper can be used to complete hybrid
systems in a formal manner. This is the subject of the
companion paper [16].
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