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Abstract— This paper presents both necessary and sufficient
conditions for the stability of Zeno equilibria in Lagrangian
hybrid systems, i.e., hybrid systems modeling mechanical sys-
tems undergoing impacts. These conditions for stability are
motivated by the sufficient conditions for Zeno behavior in
Lagrangian hybrid systems obtained in [11]—we show that the
same conditions that imply the existence of Zeno behavior near
Zeno equilibria imply the stability of the Zeno equilibria. This
paper, therefore, not only presents conditions for the stability
of Zeno equilibria, but directly relates the stability of Zeno
equilibria to the existence of Zeno behavior.

I. I NTRODUCTION

Zeno behavior occurs in a hybrid system when an infinite
number of discrete transitions occur in a finite amount
of time. Despite the simplicity of the definition of Zeno
behavior, understanding this behavior on a fundamental level
presents difficult and intriguing problems in hybrid systems.
Can simple conditions for the existence of Zeno behavior be
obtained? How does the existence of Zeno behavior relate to
the convergence properties, or stability, of hybrid systems? In
order to obtain an intuitive understanding of this phenomena,
and help to answer some of the fundamental questions that
arise when studying Zeno behavior, it is useful to study it in
the context of hybrid systems that model real world systems.

In this paper, we study hybrid systems modeling mechani-
cal systems undergoing impacts:Lagrangian hybrid systems.
In particular, we consider a configuration space, a Lagrangian
modeling a mechanical systems, and aunilateral constraint
function that gives the set of admissible configurations for
this system. From this data, we obtain a Lagrangian hybrid
system. Moreover, hybrid systems of this form commonly
display Zeno behavior (when an infinite number of collisions
occur in a finite amount of time), and therefore provide
the ideal class of systems in which to gain an intuitive
understanding of Zeno behavior.

In [11], sufficient conditions for the existence of Zeno be-
havior in Lagrangian hybrid systems were presented. These
conditions were obtained by consideringZeno equilibria—
subsets of the continuous domains of a hybrid system that are
fixed points of the discrete dynamics but not the continuous
dynamics. It was shown that one need only check the sign
of the second derivative of the unilateral constraint function
evaluated at a Zeno equilibria to verify the existence of Zeno
behavior. These conditions, and the framework in which they
were presented, naturally raises the question: can similar
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conditions for the stability of Zeno equilibria in Lagrangian
hybrid systems be obtained?

The main result of this paper are both necessary and
sufficient conditions for the stability of Zeno equilibria in
Lagrangian hybrid systems. Moreover, the sufficient condi-
tions that we obtain areexactly that same as the conditions
for the existence of Zeno behavior presented in [11]. That
is, given a Zeno equilibrium point of a Lagrangian hybrid
system, if the second derivative of the unilateral constraint
function evaluated as this point is negative, then this point is
stable and the hybrid system is Zeno. This result is appealing
not only because it presents conditions for the stability of
Zeno equilibria, but relates the stability of such equilibria to
Zeno behavior and vice versa. That is, this paper allows for a
deeper insight into the relationship between stability of Zeno
equilibria and Zeno behavior in hybrid systems modeling
mechanical systems undergoing impacts.

Due to the subtle and complex nature of Zeno behavior,
it has been studied in many forms and from many different
perspectives. Most of the conditions for Zeno behavior are
necessary and tend to be very conservative; see [20] for
general hybrid systems, and [7], [19] for linear comple-
mentarity systems. Until recently, sufficient conditions for
Zeno behavior were more rare [2]. Necessary and sufficient
conditions for Zeno behavior in a significantly different class
of controlled hybrid systems were found in [9]. We also note
that this paper studies Zeno behavior in Lagrangian hybrid
systems, which were studied in [1], [3] and [4] as motivated
by [6].

II. L AGRANGIAN HYBRID SYSTEMS

In this section, we introduce the notion of a hybrid
Lagrangian and the associated Lagrangian hybrid system.
Hybrid Lagrangians of this form have been studied in the
context of Zeno behavior and reduction; see [1], [3], [4] and
[10]. First, we review the notion of a simple hybrid system.

Definition 1: A simple hybrid systemis a tuple:

H = (D, G, R, f),

where

• D is a smooth manifold called thedomain,
• G is an embedded submanifold ofD called theguard,
• R is a smooth mapR : G → D called thereset map,
• f is a vector field on the manifoldD.

This paper focuses onsimple hybrid systems, having
a single domain, guard and reset map. A general hybrid
system (see [13]), which is not discussed here, consists of a



collection of domains, guards, reset maps and vector fields
as indexed by an oriented graph.

Hybrid executions. An executionof a simple hybrid system
H is a tupleχH = (Λ, I,C), where

• Λ = {0, 1, 2, . . .} ⊆ N is an indexing set.
• I = {Ii}i∈Λ is a hybrid interval whereIi = [τi, τi+1]

if i, i+1 ∈ Λ andIN−1 = [τN−1, τN ] or [τN−1, τN ) or
[τN−1,∞) if |Λ| = N , N finite. Here,τi, τi+1, τN ∈ IR
andτi ≤ τi+1.

• C = {ci}i∈Λ is a collection of integral curves off , i.e.,
ċi(t) = f(ci(t)) for t ∈ Ii, i ∈ Λ,

And the following conditions hold for everyi, i + 1 ∈ Λ:

(i) ci(τi+1) ∈ G,
(ii) R(ci(τi+1)) = ci+1(τi+1),
(iii) τi+1 = min{t ∈ Ii : ci(t) ∈ G}.

The initial condition for the execution isc0(τ0).
Lagrangians. Let Q be then-dimensionalconfiguration
space for a mechanical system (assumed to be a smooth
manifold) andTQ the tangent bundle ofQ. In this paper,
we will consider Lagrangians,L : TQ → IR, describing
mechanical, or robotic, systems, which are Lagrangians of
the form

L(q, q̇) =
1
2
q̇T M(q)q̇ − V (q), (1)

where M(q) is the (positive definite) inertial matrix,
1
2 q̇T M(q)q̇ is the kinetic energy andV (q) is the potential
energy. In this case, the Euler-Lagrange equations yield the
(unconstrained) equations of motion for the system:

M(q)q̈ + C(q, q̇)q̇ + N(q) = 0, (2)

whereC(q, q̇) is the Coriolis matrix (cf. [15]) andN(q) =
∂V
∂q (q). Settingx = (q, q̇), the Lagrangian vector field,fL,
associated toL takes the familiar form:

ẋ = fL(x) =
(

q̇
M(q)−1(−C(q, q̇)q̇ −N(q))

)
. (3)

This process of associating a dynamical system to a La-
grangian will be mirrored in the setting of hybrid systems.
First, we introduce the notion of a hybrid Lagrangian.

Definition 2: A simple hybrid Lagrangianis defined to
be a tuple

L = (Q,L, h),

where

• Q is the configuration space,
• L : TQ → IR is a hyperregular Lagrangian,
• h : Q → IR provides a unilateral constraint on the

configuration space; we assume thath−1(0) is a smooth
manifold.

Simple Lagrangian hybrid systems. For a Lagrangian (1),
there is an associated dynamical system (3). Similarly, given
a hybrid LagrangianL = (Q, L, h) the simple Lagrangian
hybrid system(SLHC) associated toL is the simple hybrid
system:

HL = (DL, GL, RL, fL).

Fig. 1. (a) The bouncing ball on a sinusoidal surface (b) The double
pendulum

First, we define

DL = {(q, q̇) ∈ TQ : h(q) ≥ 0},
GL = {(q, q̇) ∈ TQ : h(q) = 0 and dh(q)q̇ ≤ 0},

where

dh(q) =
(

∂h

∂q
(q)

)T

=
(

∂h
∂q1

(q) · · · ∂h
∂qn

(q)
)

.

In this paper, we adopt the reset map ([6]):

RL(q, q̇) = (q, PL(q, q̇)),

which based on theimpact equation

PL(q, q̇) =

q̇ − (1 + e) dh(q)q̇
dh(q)M(q)−1dh(q)T M(q)−1dh(q)T , (4)

where 0 ≤ e ≤ 1 is the coefficient of restitution, which
is a measure of the energy dissipated through impact. This
reset map corresponds to rigid-body collision law under
the assumption offrictionless impact. Examples of more
complicated collision laws that account for friction can be
found in [6], [8].

Finally, fL = fL is the Lagrangian vector field associated
to L in (3).

Example 1 (Ball): The first running example of this pa-
per is a planar model of a ball bouncing on a sinusoidal
surface (cf. Fig. 1(a)). The ball is modelled as a point mass
m. In this case

B = (QB, LB, hB),

whereQB = IR2, and the configuration is the position of
the ballq = (x, y),

LB(x, ẋ) =
1
2
m‖q̇‖2 −mgy.

Finally, we make the problem interesting by considering the
sinusoidal constraint function

hB(q) = y − sin(x) ≥ 0.

So, for this example, there are trivial dynamics and a
nontrivial constraint function.

Example 2 (Double Pendulum):Our second running ex-
ample is a constrained double pendulum with a mechanical
stop (cf. Fig. 1(b)). The double pendulum consists of two



rigid links of massesm1, m2, lengthsL1, L2, and uniform
mass distribution, which are attached by passive joints, while
a mechanical stop dictates the range of motion of the second
link.

The example serves as a simplified model of a leg with
a passive knee and a mechanical stop, which is widely
investigated in the robotics literature in the context of passive
dynamics of bipedal walkers (cf. [18], [14]). In this case

P = (QP, LP, hP),

whereQP = S1 × S1, q = (θ1, θ2), and

LP(q, q̇) = 1
2 q̇T M(q)q̇ + ( 1

2m1L1 + m2L1)g cos θ1

+ 1
2m2L2g cos(θ1 + θ2),

with the elements of the2×2 inertia matrixM(q) given by

M11 = m1L
2
1/3 + m2(L2

1 + L2
2/3 + L1L2 cos θ2)

M12 = M21 = m2(3L1L2 cos θ2 + 2L2
2)/6

M22 = m2L
2
2/3.

Finally, the constraint that represents the mechanical stop is
given by hP(q) = θ2 ≥ 0. So, for this example, there are
nontrivial dynamics and a trivial constraint function.

III. Z ENO BEHAVIOR AND ZENO EQUILIBRIA

This section discusses Zeno behavior and the correspond-
ing notion of Zeno equilibria. More importantly, we state
the sufficient conditions for Zeno behavior that will motivate
the main result of this paper in that our sufficient conditions
for the stability of Zeno equilibria utilize exactly the same
conditions; that is, in Lagrangian hybrid systems, the exis-
tence of Zeno behavior and the stability of Zeno equilibria
can be detected with the same simple and easily verifiable
conditions.

Zeno behavior. An executionχH is Zeno if Λ = N and

lim
i→∞

τi = τ∞ < ∞.

Hereτ∞ is called theZeno time. If χHL is a Zeno execution
of a Lagrangian hybrid systemHL, then itsZeno pointis
defined to be

x∞ = (q∞, q̇∞) = lim
i→∞

ci(τi) = lim
i→∞

(qi(τi), q̇i(τi)).

These limit points are intricately related to a type of equilib-
rium point that are unique to hybrid systems: Zeno equilibria.

Definition 3: A Zeno equilibrium point of a simple hybrid
systemH is a pointx∗ ∈ G such that
• R(x∗) = x∗,
• f(x∗) 6= 0.

Zeno equilibria. If HL is a Lagrangian hybrid system,
then due to the special form of these systems we find that
the point (q∗, q̇∗) is a Zeno equilibria iffq̇∗ = PL(q, q̇∗),
with PL given in (4). In particular, the special form ofPL

implies that this hold iffdh(q∗)q̇∗ = 0. Therefore the set of
all Zeno equilibria for a Lagrangian hybrid system is given
by the hypersurfaces inGL:

Z = {(q, q̇) ∈ GL : dh(q)q̇ = 0}.

Note that ifdim(Q) > 1, the Zeno equilibria in Lagrangian
hybrid systems are always non-isolated (see [10])—this
motivates the study of such equilibria.

Sufficient conditions for Zeno behavior. Let ḧ(q, q̇) be the
acceleration ofh(t) along trajectories of the unconstrained
dynamics (2), given by:

ḧ(q, q̇) =
q̇T H(q)q̇ + dh(q)M(q)−1(−C(q, q̇)q̇ −N(q)),

(5)

whereH(q) is the Hessian ofh at q. The following theorem,
which was proven in [11], provides sufficient conditions
for existence of Zeno executions in the vicinity of a Zeno
equilibrium point.

Theorem 1 ([11]): Let HL be a simple Lagrangian hy-
brid system and Let(q∗, q̇∗) be a Zeno equilibrium point
of HL. Then if e < 1 and ḧ(q∗, q̇∗) < 0, there exists
a neighborhoodW ⊂ DL of (q∗, q̇∗) such that for every
(q0, q̇0) ∈ W , there is a unique Zeno executionχHL of HL

with c0(τ0) = (q0, q̇0).

IV. STABILITY OF ZENO EQUILIBRIA

In this section, we present and prove the main result of
this paper: sufficient conditions for the stability of Zeno
equilibria. In particular, we introduce a type of stability that
Zeno equilibria inSLHS can display: bounded-time local
stability (BTLS). We show that the same conditions on the
coefficient of restitution and the second derivative of the
unilateral constraint function implies this type of stability.
Conversely, if these conditions are not satisfied, the Zeno
equilibrium point isnot BTLS.

Definition 4: Let x∗ = (q∗, q̇∗) be a Zeno equilibrium
point of a simple Lagrangian hybrid systemHL. Then x∗

is defined asbounded-time locally stableif for each open
neighborhoodU ⊆ TQ of x∗ andεt > 0, there exists another
open neighborhoodW of x∗, such that for every initial
conditionsc0(τ0) ∈ W ∩ DL, the corresponding execution
χHL is Zeno, and satisfiesci(t) ∈ U for all t ∈ Ii andi ∈ Λ,
while its Zeno time satisfiesτ∞ − τ0 < εt.

A. Statement of Main Result

We now present the main result of the paper: conditions
for BTLS of Zeno equilibria ofSLHS.

Theorem 2: Let x∗ = (q∗, q̇∗) be a Zeno equilibrium
point of a simple Lagrangian hybrid systemHL. Then the
following two conditions hold:

(i) If e < 1 and ḧ(q∗, q̇∗) < 0, thenx∗ is BTLS.

(ii) If ḧ(q∗, q̇∗) > 0, thenx∗ is not BTLS.

For part (i), we not only prove the existence of the
neighborhoodW for given U , but also provide an explicit
relation betweenW and U . For the sake of concreteness
and simplicity, we use alocal coordinate chartfor small
neighborhoods ofx∗. Therefore, we can identify bothq and
q̇ with elements ofIRn, and use the induced Euclidean norm
‖ · ‖ to define neighborhoods ofx∗ = (q∗, q̇∗) as

N(εq, εv) = {(q, q̇) ∈ DL : ‖q − q∗‖ < εq, ‖q̇ − q̇∗‖ < εv}



Fig. 2. Illustration of the neighborhoodsU, V, W andW ′ of x∗.

Using this notation, for a givenU there existεq andεv such
thatU ⊆ N(εq, εv). Assuming thate < 1 andḧ(q∗, q̇∗) < 0,
our goal is to construct a neighborhoodW = N(δq, δv) that
satisfies the requirements given in Definition 4.

B. Proof of Main Result

The rest of this section proves Theorem 2 in stages through
a series of lemmas. Before presenting these lemmas, we will
first give a general outline of the proof. In particular, the
proof of part (i) of Theorem 2 is divided into three steps:

1) We define an intermediate neighborhoodV ⊂ U , such
that any execution that stays withinV at all times is
guaranteed to be Zeno.

2) We define another neighborhoodW ′ ⊂ GL∩V , which
lies on the guardGL, such that any execution whose
first discrete eventc0(τ1) lies within W ′ is guaranteed
to stay withinV .

3) We construct the neighborhoodW , such that any exe-
cution with initial conditions withinW is guaranteed
to pass through a point ofW ′ at timeτ1, and thus it is
a Zeno execution that stays within U, as required. An
illustration of these neighborhoods appear in Fig. 2.

We now formally proceed through these steps in order to
establish the main result of the paper.

Step 1. We begin by defining the intermediate neighborhood
V = N(ε′q, ε

′
v), whereε′q < εq and ε′v < εv are chosen so

that for

amin = − max
(q,q̇)∈V

ḧ(q, q̇),

amax = − min
(q,q̇)∈V

ḧ(q, q̇),

The following conditions hold:

amax > amin > 0 and e
amax

amin
< 1. (6)

Note that the fact thate < 1 and ḧ(q∗, q̇∗) < 0, along with
the continuity ofḧ(q, q̇), imply that suchε′q, ε

′
v exist. This

definition of V implies that when(q(t), q̇(t)) ∈ V , h(q(t))
satisfies the second-order differential inclusion

ḧ(q(t), q̇(t)) ∈ [−amax,−amin]. (7)

For simplicity of notation, for an executionχHL , let

v−i = dh(qi−1(τi))q̇i−1(τi),
v+

i = dh(qi(τi))q̇i(τi).

Note that (4) implies thatv+
i = −ev−i . Also, let Ti =

τi − τi−1, which is the time difference between consecutive
collisions. The following lemma states that any execution
which is bounded withinV is guaranteed to be Zeno.

Lemma 1: Let x∗ = (q∗, q̇∗) be a Zeno equilibrium point
of a simple Lagrangia hybrid system such thatḧ(q∗, q̇∗) < 0
and e < 1, and let V = N(ε′q, ε

′
v) be a neighborhood of

x∗ that satisfies (6). Then for any executionχHL such that
ci(t) ∈ V for all t ∈ Ii and i ∈ Λ, the discrete-time series
of v+

i and Ti satisfy:

e
√

amin

amax
≤ v+

i+1

v+
i

≤ e
√

amax

amin
, (8)

Ti+1
Ti

≤ eamax

amin
. (9)

Therefore,χHL is Zeno.

Setup for Lemma 1. In order to prove Lemma 1, we will
utilize methods from optimal control. (The idea of using
results from optimal control to analyze stability of differ-
ential inclusions also appears in the work of Liberzon and
Margaliot [12].) We, therefore, briefly review the basic form
of Pontryagin’s maximum principle based on its presentation
in [5], though we adopt a slightly different notation.

Consider a control system

ẋ = f(x, u), (10)

wherex ∈ IRn andu ∈ Ω ⊆ IRm, whereΩ is a convex set
of admissible controls. A solution to (10) on a time interval
[t0, tf ] is a pair(x(t), u(t)) satisfying (10) andu(t) ∈ Ω for
all t ∈ [t0, tf ]; the initial and final conditions ofx(t) are
denotedx0 = x(t0) and xf = x(tf ). The design goal is to
find a solution to (10) that minimizes a given cost function
P (xf , tf ) 1; note that the end conditionxf and the end time
tf , may be either specified or “free”.

Using calculus of variations techniques, the solution of this
problem is given as follows. First, define theHamiltonian,
given by H(x, u, λ, t) = λ(t)T f(x, u), whereλ ∈ IRn is
calledthe co-state vector. The co-state dynamic equations are
then given byλ̇ = −∂H

∂x , and the optimal control satisfies
u∗(t) = argminH. The end condition is given by[ ∂P

∂xf
−

λ(tf )]T δxf = 0, where if a particular state variablexi is
specified, then its variationδxi(tf ) vanishes, and if it is not
specified, then it gives an end condition for the corresponding
co-state variableλi(tf ). In case where the terminal timetf
is not specified, an additional condition onH(tf ) is given
by ∂P

∂tf
+ H(tf ) = 0.

Proof: [of Lemma 1] We begin by proving (8). LetχHL

be an execution such thatci(t) = (qi(t), q̇i(t)) ∈ V for all
t ∈ Ii = [τi, τi+1] and i ∈ Λ. Moreover,

ḧ(qi(t), q̇i(t)) ∈ [−amax,−amin] (11)

1Many textbooks also consider an integral cost function of the formJ =R tf
t0

g(x, u, t)dt. This cost function can be incorporated into the formulation
here by using an additional state variablez, whose dynamics is given by
ż = g(x, u, t). The cost function is then simply given byP = z(tf ).



for all t ∈ Ii. The main idea of this proof is that, choosing
a state vectorx = (x1, x2) = (h(q), ḣ(q, q̇)), (11) can be
stated as a control system

ẋ1 = x2 (12)

ẋ2 = u

whereu ∈ [−amax,−amin].
To prove (8), consider the cost function:P (xf , tf ) =

(xf )2 for the control system (12). The Hamiltonian is given
by H = λ1x2+λ2u. The co-state dynamic equations are then
λ̇1 = 0 and λ̇2 = λ1, indicating thatλ1(t) is constant and
λ1(t) is a linear function. The end condition givesλ2(t) = 1.
The maximum principle then implies that the optimal input
u∗(t) is either amin or amax, and depends solely on the
sign ofλ2(t), which is a linear function that has at most one
zero-crossing point. Therefore,u∗ is a piecewise-constant
function with at most one switching point, and we can set
u∗(t) = −u1 for t ∈ [t0, ts] andu∗(t) = −u2 for t ∈ [ts, tf ],
wherets is the switching time, andu1, u2 ∈ {amax, amin}.

Now, for the executionχHL and takingt0 = τi and tf =
τi+1, direct integration of̈h(qi(t), q̇i(t)) = u(t) gives

ḣ(qi(τi+1), q̇i(τi+1)) =

−
√

(v+
i − u1ts)2 + 2u2(v+

i ts − u1t2s/2),

whose critical value is attained att∗s = v+
i /u1, i.e. it satisfies

ḣ(qi(ts), q̇i(ts)) = 0. It then follows that the minimum and
maximum values oḟh(qi(τi+1), q̇i(τi+1)) are given by

−
√

amax

amin
v+

i < ḣ(qi(τi+1), q̇i(τi+1)) = v−i+1 < −
√

amin

amax
v+

i .

Using the fact thatv+
i = −ev−i , one obtains (8).

To prove (9), consider the differential inclusion (11) for
two consecutive time intervalsIi−1 = [τi−1, τi] and Ii =
[τi, τi+1]. That is, we consider two control systems as defined
in (12). The initial conditions and final conditions for the first
control system are given by:

x1(τi−1) = h(qi−1(τi−1)) = 0.

x2(τi−1) = ḣ(qi−1(τi−1), q̇i−1(τi−1)) = v+
i−1

x1(τi) = h(qi(τi)) = 0.

x2(τi) = ḣ(qi−1(τi), q̇i−1(τi)) = v−i

where v−i and τi are not specified. The initial and final
conditions for the second control system are:

x1(τi) = h(qi(τi)) = 0.

x2(τi) = ḣ(qi(τi), q̇i(τi)) = v+
i = −ev−i

x1(τi+1) = h(qi(τi+1)) = 0.

x2(τi+1) = ḣ(qi(τi+1), q̇i(τi+1)) = v−i+1

whereτi+1 andv−i+1 are not specified.
The goal is to find a solution to the two control systems in

which Ti+1/Ti is maximized where, again,Ti = τi − τi−1.
It is easy to see that for a givenv+

i , Ti+1 is maximized by
simply takingu(t) = −amin for t ∈ Ii, and its maximum
value is given byT ∗i+1 = 2v+

i /amin. The problem then

reduces to maximizing the ratiov+
i /Ti for a solution to

the second control system. Note that the definition of the
HamiltonianH and the derivation of the co-state dynamic
equation forλ(t) are also identical to those derived in the
proof of (8). Settingt0 = τi−1 = 0, the cost function to be
minimized in this problem is given byP (xf , tf ) = (xf )2/tf
where heretf = τi. As before, the maximum principle
implies that the optimal inputu∗(t) is eitheramin or amax,
and depends solely on the sign ofλ2(t). Using the end
condition for λ2 gives λ2(tf ) = 1/tf , which implies that
λ1(t) = c1 and λ2(t) = 1/tf + c1(tf − t). The additional
condition onH(tf ) givesx2(tf )(c1−1/t2f )+u(tf )/tf = 0.
Sincex2(tf ) andu(tf ) are both negative, we conclude that
c1 − 1/t2f < 0. This implies thatλ2(t) does not cross
zero, and is positive fort ∈ [0, tf ]. Therefore, minimization
of the cost function is obtained by takingu(t) = −amax

for t ∈ [0, tf ], and the maximum value forTi+1/Ti is
consequentlyeamax

amin
.

Step 2. As the next step towards computing the neighbor-
hood W, we compute the neighborhoodW ′ ⊂ GL ∩ V , of
initial conditionson the guardGL (i.e. corresponding to a
collision), such that any execution with initial conditions in
W ′ stays withinV .

In order to constructW ′ for given neighborhoodsU and
V , we first define the following scalars:

e′ = e
amax

amin

e′′ = e

√
amax

amin

β = ‖q̇∗‖+ ε′v

η = max
(q,q̇)∈V

‖M−1(q)dh(q)T ‖
dh(q)M(q)dh(q)T

ζ = max
(q,q̇)∈V

∥∥M−1(q) (C(q, q̇)q̇ + N(q))
∥∥ . (13)

The following lemma completes the definition ofW ′.
Lemma 2: Let x∗ = (q∗, q̇∗) be a Zeno equilibrium

point of a simple Lagrangian hybrid systemHL such that
ḧ(q∗, q̈∗) < 0 and e < 1, and let V = N(ε′q, ε

′
v) be a

neighborhood ofx∗ that satisfies (6). For a givenε′t > 0, let
W ′ be the neighborhood defined as follows:

W ′ = {(q, q̇) ∈ TQ : h(q) = 0, ‖q − q∗‖ < δ′q, (14)

‖q̇ − q̇∗‖ < δ′v and dh(q)q̇ < −v1max < 0}.
such thatδ′q, δ

′
v and v1max satisfy the conditions:

δ′q < ε′q, δ′v < ε′v and v1max < min {c1, c2, c3} (15)

where

c1 = amin(1−e′)
2e ε′t

c2 =
amin(1−e′)

2eβ (ε′q − δ′q)

c3 =
(
ε′v − δ′v

) / (
(1+e)η
1−e′′ + 2eζ

amin(1−e′)

)
.

Then each executionχHL such thatc0(τ1) ∈ W ′ is Zeno
and satisfiesci(t) ∈ V for all t ∈ Ii and i ≥ 1. Moreover,



the corresponding Zeno time satisfies

τ∞ − τ1 < ε′t. (16)

Proof: It is easy to see that (14) implies thatW ′ ⊂ V .
Treatingτ1 as the initial time, the initial conditions ofχHL

are thus lying insideV . In the following, we first assume that
χHL stays withinV , and thus the differential inclusion (11)
for h(qi(t)) holds for alli ∈ Λ, then we show that conditions
(15) imply that(qi(t), q̇i(t)) actually stays withinV for all
t ∈ Ii and i ∈ Λ. First, we assume that the execution
χHL stays withinV , and show that its Zeno time satisfies
(16). By assumption, during the time intervalt ∈ [τ1, τ2],
h(q1(t)) satisfies the differential inclusion (11) (withi = 1)
with initial conditionsh(τ1) = 0, ḣ(τ1) = v+

1 and an end
conditionh(τ2) = 0. It is easily shown thatT2 = τ2 − τ1 is
bounded by

T2 ≤ 2v+
1

amin
≤ 2ev1max

amin
.

Using Lemma 1, the sequenceTi satisfies (9), and is thus
bounded by a geometric series with the factore′. Since
conditions (6) imply thate′ < 1, the total execution time
is bounded byτ∞− τ1 =

∑
Ti ≤ T2

1−e′ . Combining the two
inequalities above, one gets

τ∞ − τ1 ≤ 2ev1max

amin(1−e′) . (17)

Settingv1max < c1 in (15) then verifies that the bound (16)
is satisfied.

Next, letq(t) = qi(t) for t ∈ [τi, τi+1]; this is well defined
since qi(τi+1) = qi+1(τi+1) for all i ∈ Λ, i.e., q(t) does
not change through the collisions. Since(qi(t), q̇i(t)) are
assumed to remain withinV for all t ∈ Ii and i ∈ Λ, i.e.,
during the duration of the executiont ∈ [τ1, τ∞], the change
in q(t) is bounded by‖q∞ − q1(τ1)‖ ≤ β(t − τ1) where
β, defined in (13), is the maximum norm ofq̇ in V . Using
the bound (17) and the triangle inequality‖q(t)− q∗‖ ≤
‖q1(τ1)− q∗‖ + ‖q(t)− q1(τ1)‖, the conditionv1max < c2

in (15) then verifies that‖q(t)− q∗‖ ≤ ε′q for all t ∈ [τ1, τ∞],
and theq-component ofci(t) is guaranteed to stay withinV .

Finally, the change in the velocitẏq during the execu-
tion is decomposed into its dicrete and continuous parts,
as follows. Let us denote∆(1)

i = q̇i(τi) − q̇i−1(τi) and
∆(2)

i = q̇i(τi+1) − q̇i(τi). The total change inq̇ is thus
bounded by‖q̇∞ − q̇1(τ1)‖ ≤ ∆(1) + ∆(2), where∆(j) =∑∞

i=1 ‖∆(j)
i ‖ for j = 1, 2. Assume that(qi(t), q̇i(t)) ∈ V

for all t ∈ Ii andi ∈ Λ. The velocity change due to a single
collision at timeτi is given in (4), and is thus bounded by
‖∆(1)

i ‖ ≤ (1 + e)η
∣∣v−i

∣∣, whereη is defined in (13). Using
Eq. (8) in Lemma 1 along with the relationv+

i = −ev−i , the
sequence

∣∣v−i
∣∣ is bounded by

∣∣v−i
∣∣ ≤ (e′′)i−1

∣∣v−1
∣∣ < v1max.

Thus,∆(1) is bounded by the sum of a geometric series as
∆(1) < (1+e)η

1−e′′ v1max.
The continuous part is bounded by∆(2) ≤ ζ(τ∞ − τ1),

where ζ, defined in (13), is the maximum norm of̈q in
V , and τ∞ − τ1 is bounded according to (17). Using the
bounds obtained on∆(1),∆(2) and the triangle inequality
‖q̇∞ − q̇∗‖ ≤ ∆(1) +∆(2) +δ′v, the conditionv1max < c3 in
(15) then verifies that‖q̇∞ − q̇∗‖ ≤ ε′v. By our construction,

it is clear that this inequality also holds when replacingq̇∞
with q̇i(t) for all t ∈ Ii andi ∈ Λ, and thus thėq-component
of ci(t) is guaranteed to stay withinV .

Step 3. At this final stage, for a givenε′′t > 0, we define
the neighborhoodW as

W = N(δq, δv),

whereδq < δ′q andδq < δ′q satisfy:

(i) dh(q)q̇+
√

(dh(q)q̇)2−aminh(q)

amin
< min{δ′q−δq

β ,
δ′v−δv

ζ , ε′′t }
(ii)

(
2h(q) + (dh(q)q̇)2

amin

)
amax < (v1max)2

(18)
for all (q, q̇) ∈ N(δq, δv) ∩DL.

Note that sinceh(q∗) = 0 and dh(q∗)q̇∗ = 0, continuity
of h(q) anddh(q) imply that suchδq, δv exist. The following
lemma states that if the initial condition are withinW , then
at the first collision timeτ1, (q, q̇) are withinW ′.

Lemma 3: Let x∗ = (q∗, q̇∗) be a Zeno equilibrium
point of a simple Lagrangian hybrid systemHL such that
ḧ(q∗, q̈∗) < 0 and e < 1, and let V, W ′ and W be the
neighborhoods ofx∗ defined in (6), (14) and (18) respec-
tively. Then each executionχHL such thatc0(τ0) ∈ W ∩DL

satisfiesc0(t) ∈ V for t ∈ I0, and c0(τ1) ∈ W ′ and
τ1 − τ0 < ε′′t .

Proof: From the definition ofW and V , it is clear
that the initial condition satisfiesc0(τ0) ∈ V . We first
assume thatc0(t) stays within V for t ∈ I0, therefore
h(q0(t)) satisfies the differential inclusion (11) (fori = 0).
Then we prove that under the conditions onW in (18), a
finite τ1 does exist, andc0(t) actually remains withinV for
t ∈ [τ0, τ1]. Since c0(τ0) ∈ V , the differential inclusion
implies ḧ(q0(t), q̇0(t)) < 0 Therefore, there exists some
finite τ1 such thath(q0(τ1)) = 0.

Assume thath(q0(t)) satisfies the differential inclusion
(11) for t ∈ [τ0, τ1], with initial conditions h(q0(τ0)) =
h0 ≥ 0 and ḣ(q0(τ0), q̇0(τ0))) = v+

0 , and the end condition
h(q0(τ1)) = 0. It is easy to show (even without using Pon-
tryagin’s maximum principle) that the “free” end conditions
for τ1 and ḣ(q0(τ1), q̇0(τ1)) are bounded by

τ1 − τ0 <
dh(q0(τ0))q̇0(τ0)+

√
(dh(q0(τ0))q̇0(τ0))2−aminh(q0(τ0))

amin

(19)∣∣∣ḣ(q0(τ1), q̇0(τ1))
∣∣∣ <

√(
2h0 + (v+

0 )2

amin

)
amax. (20)

Assuming that(q0(t), q̇0(t)) ∈ V , the total change inq0(t)
and q̇0(t) for t ∈ [τ0, τ1] are bounded by

‖q0(t)− q∗‖ < β(t− τ0), ‖q̇0(t)− q̇∗‖ < ζ(t− τ0).

Using the bound onτ1−τ0 in (19) and the triangle inequality,
item (i) in (18) then implies that both(q0(t), q̇0(t)) actually
stays withinV for t ∈ [τ0, τ1]. Moreover, the bound in (20),
along with item (ii) in (18) imply that(q0(τ1), q̇0(τ1)) ∈ W ′.
Finally, condition (i) in (18) also implies thatτ1 − τ0 < ε′′t .
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Fig. 3. Simulation results for the ball example with initial velocitiesvx(0) = 1.8 andvy(0) = 0.
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Fig. 4. Simulation results for the ball example with initial velocitiesvx(0) = 2.5 andvy(0) = 0.

We now combine the results above to complete the proof
of Theorem 2.

Proof: [of Theorem 2] First, we prove part (i). Assume
that e < 1 and ḧ(q∗, q̈∗) < 0. For the given neighborhood
U and εt > 0, pick εq, εt such thatU ⊆ N(εq, εt). Next,
chooseε′q < εq and ε′v < εv such that the neighborhood
V = N(ε′q, ε

′
v) satisfies (6). Next, chooseε′t < εt andδ′q, δ

′
v

andv1max such that (15) is satisfied. The neighborhoodW ′

is then defined in (14). Finally, chooseε′′t < εt−ε′t, andδq <
δ′q, δv < δ′v that satisfy (18), and defineW = N(δq, δv).
Consider an executionχHL with initial conditionsc0(τ0) ∈
W ∩DL. Lemma 3 implies thatc0(t) ∈ V for t ∈ I0, and
c0(τ1) ∈ W ′ and τ1 − τ0 < ε′′t . Lemma 2 then implies that
ci(t) ∈ V for all t ∈ Ii and i ≥ 1, that χHL is Zeno, and
that τ∞ − τ1 < ε′t. Therefore,χHL is Zeno, stays within
V ⊂ U , and its Zeno time satisfiesτ∞ − τ0 < εt.

We now prove part (ii) of the theorem in case where
ḧ(q∗, q̇∗) > 0. First, choose0 < a0 < ḧ(q∗, q̇∗). Next,
choose an open neighborhoodŪ of x∗ such thaẗh(q, q̇) > a0

for any (q, q̇) ∈ Ū , and define

hmax = max{h(q)|(q, q̇) ∈ Ū}.
Choose any initial condition(q0, q̇0) ∈ Ū ∩ DL such
that dh(q0)q̇0 > 0, and assume that the corresponding
executionχHL satisfiesc0(t) ∈ Ū for all t ∈ I0. Then
by construction,h(q0(t)) satisfiesḧ(q0(t), q̇0(t)) > a0 for
all t ∈ I0, and its initial conditions areh(q0(τ0)) ≥ 0 and
ḣ(q0(τ0), q̇0(τ0)) > 0. It is easily seen that there exists a time
t′ ≥ τ0 +

√
2a0hmax such thath(q0(t′)) > hmax, and thus

(qi(t′), q̇i(t′)6 ∈Ū . Therefore, the executionχHL cannot be
bounded withinŪ by setting the initial conditions arbitrarily
close tox∗, in contradiction with the assumption and with
the definition of stability.

V. SIMULATION RESULTS

In this section, we present numerical simulations of the
first example considered at the beginning of this paper.

Example 3 (Ball): Continuing with Example 1, by direct
computation the condition for stability of a Zeno equilibrium
point (q, q̇) in this system as given in Theorem 2 is:

ḧ(q, q̈) = v2
x sin(x)− g < 0

where we denotėq = (vx, vy). This indicates that Zeno
equilibrium points that satisfysin(x) < 0 (i.e. near the min-
ima) are more likely to attract Zeno executions. Moreover,
setting the horizontal velocityvx sufficiently small increases
the chances of exhibiting Zeno convergence even at points
such thatsin(x) > 0 (i.e. near the maxima). For the sake of
simplicity, we takem = 1, g = 1 ande = 0.5.

We simulate this system under two different sets of initial
conditions, where in both cases the initial conditions att = 0
are chosen such that att1 = 0.05, a first collision occurs at
x(t1) = 0.3, y(t1) = sin(0.3). In the first case, the initial
velocities are chosen asvx(0) = 1.8 and vy(0) = 0. The
execution was simulated until a collision timeτk at which
the collision velocity dh(q(τk))q̇(τk) is less than10−10.
Figures 3(a)-(f) show the simulation results of this running
example. Figures 3(a),(b),(c),(d),(e) show the time plots of
x(t), y(t), vx(t), vy(t) and h(q(t)), respectively. The points
of collision events are marked with squares (“¥”). Figure 3(f)
plots x(t) vs. y(t), with the constraint surfacey = sin(x)
appearing as a dashed curve. This simulation results in a
Zeno execution that converges at a Zeno timet∞ = 3.761
to the Zeno equilibrium pointq∗ = (1.337, 0.973) and
q̇∗ = (−0.121,−0.028). This Zeno point is close to a
maximum point of the surface; note that the horizontal



velocity vx is significantly decreased from its initial value,
so thaẗh(q∗, q̈∗) = −0.986 < 0 and the stability condition is
satisfied. Note, too, that the motion ofh(q(t)) in the vicinity
of the Zeno point is remarkably similar to that of a simple
bouncing ball (cf. Figure 3(e)).

In the second case, the initial velocities are chosen as
vx(0) = 2.5 and vy(0) = 0. Figures 4(a)-(f) show the
simulation results under these initial conditions. This sim-
ulation results in a Zeno execution that converges at a Zeno
time t∞ = 5.0731 to the Zeno equilibrium pointq∗ =
(5.114,−0.920) and q̇∗ = (2.023, 0.791). One can see that
the trajectory is initially “repelled” from the maximum point
due to the large horizontal velocity, and attracted towards
the next minimum point, while the horizontal velocity is
increased, such thaẗh(q∗, q̈∗) = −4.766 satisfies the stability
condition in Theorem 2.

Example 4 (Double Pendulum):In the second running
example (Example 2) consisting of a double pendulum with a
mechanical stop, the condition for stability of Zeno equilibria
given in Theorem 2 is

ḧ(q, q̇) = g sin θ1

L̃
< 0, whereL̃ = (4m1+3m2)L1L2

3(m1(L1+2L2)m2L2)
.

This indicates that only points at whichsin θ1 < 0 (i.e. the
link L1 is inclined to the left) can be stable Zeno equilibria.
Simulation results of this system, which are not shown here
due to space limitations, are quite similar to those of the ball
example. The reader is referred to [16] for simulation results
of thecompleted double-pendulum system(i.e. executions are
also carriedbeyondthe Zeno points).

VI. CONCLUSION

In this paper we analyzed the stability of Zeno equilibria
of simple Lagrangian hybrid systems, deriving sufficient
conditions for stability and for instability of such equilibria.
The stability conditions presented are analogous to determin-
ing the local stability of equilibrium points of a nonlinear
continuous system by computing the eigenvalues of the
linearization. This paper providesalmost necessary and suf-
ficient conditionsfor stability of Zeno equilibria, where the
exceptional intermediate case ofḧ(q∗, q̇∗) = 0 is analogous
to the case where the linearization of a continuous system
has eigenvalues on the imaginary axis, and stability cannot be
determined via linearization. This analogy motivates future
investigation of techniques forglobal stability analysis of
Zeno equilibria, where a promising direction is the use of
Lyapunov-like functions as was already done in the analysis
of isolated Zeno equilibrium points [10].

The fact that Zeno behavior is fundamentally a modeling
phenomena indicates that the conditions used to detect Zeno
behavior can be used to “complete” the hybrid system
model. That is, carry an execution past the Zeno point by
switching to a holonomically constrained dynamical system.
This has been studied to a limited degree in [4], but the
result presented in this paper can be used to complete hybrid
systems in a formal manner. This is the subject of the
companion paper [16].

Finally, the paper analyzes stability only forsimple La-
grangian hybrid systems, i.e. systems with a single domain
and a single guard. The extension to mechanical systems
with multiple unilateral constraints is still a challenging open
problem, although preliminary results for stability of a spe-
cific two-constraint mechanical system were obtained in [17].
This extension, along with the completion process described
above, will enable the analysis of complex mechanical and
robotic systems with intermittent contacts, such as bipedal
walkers with knees (e.g. [18] and [14]), under a unified
framework of Lagrangian hybrid systems.
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