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Abstractl was that Java was lacking performance, because it was an
2 interpreted language.
In this paper an overview is given of the “Have Java”
pap 9 Eecently, however, work at IBM and elsewhere [1], [2],
i

project to attain a pure Java parallel Navier-Stokes flo

solver gParNS$ based on the thread concept and remot . ) .
rough careful relaxation of Java’'s careful exception

method invocation (RMI). The goal of this project is to X .

produce an industrial flow solver running on an arbitrar;b1andllng and transformations of the bytecode. .
sequential or parallel architecture, utilizing the Internetin early 1997, JavaSoft [4] released a major upgrade to
capable of handling the most complex 3D geometries akva, called Java 1.1, that proved to be far superior in
well as flow physics, and also linking to codes in othepverall performance and speed than its predecessor,
areas such as aeroelasticity etc. because of the introduction of advanced concepts (e.g.
Since Java is completely object oriented the code has be%\ﬁent handling) as well as the JIT (Just In Time) compiler.

. : . ; . In the meantime, Java 1.2 has been released, and Java 2.0
written in an object-oriented programming (OOP) style.SS expected for early 1999. Java 1.1 is a powerful OOP

The code also mcludes a graphics user interface (GUI) grogramming language that addresses every kind of

rogramming the (aerospace) engineer might need. In
ddition, in 1997 the Java Workshop version 2.0 was
as well as reusability and maintainability. OOP allow eleased by Sun Microsystems, one of an Increasing

umber of Java development environments providing a

code construction similar to the aerodynamic desigH latform develooment environment alona with
process because objects can be software coded a(f{gbss piatio cevelopment environment along

integrated, reflecting actual design procedures. Iﬂe ugging tools, editor and project management. The

addition, Java is the programming language of the Interngajor advantage is, however, that an interactive graphical

and thus Java objects on disparate machines or evel :/i(?rapthr:cst udsier mttenl‘(ac?) ')f’ Ilinii:Udedditr?at gr(re]atlz
separate networks can be connected. alleviates the tedious task of explicilly coding such a

interface. The user graphical input is directly converted
We explain the motivation for the design dParNSS into Java code that can be combined with the engineering
along with its capabilities that set it apart from otherjava code. Furthermore, Java WorkShop also allows
solvers. In the first two sections we present a discussion efeation of Internet applications and web pages.

the Java language as the programming tool for aerospE}e

] has shown that Java can provide high performance,

architecture. The Java OOP approach provides profoun
improved software productivity, robustness, and securit

applications. In section three the objectives of the Hav N llaeheve tthf’ﬂ iﬁva W'”. prof_oundly change .Zogw?r:et
Java project are presented. In the next section the la pvelopment [in the: engineernng area, provide a
structures ofParNSSare discussed with emphasis on th engineers are able to tap the vast resources of Java and to

parallelization and client-server (RMI) layer3dParNS$ %ar_ne_ss _advanced concepts  like  classes, - threads,
like its predecessoParNSS(ANSI-C), is based on the serialization, or remote method invocation. The reasons

multiblock idea, and allows for arbitrarily complex why Java should be considered a leapfrog technology for
topologies Grids are accepted @ridPro or Plot3D aerospace software development are discussed in the

format. UsingGridPro property settings, grids of any size following section.

or block number can be directly read BarNSSwithout

any further modifications, requiring no additional] 1 Java for Aerospace App”caﬁons
preparation time for the solver input. In the last section,

computational results are presented, with emphasis &fD along with wind tunnel and flight testing is a

multiprocessor Pentium and Sun parallel systems run pgspected analysis tool in many areas of aerospace design.
the Solaris operating system (OS). CFD is of particular importance for high speed flows

where wind tunnel data are difficult to obtain, or when the
impact of a single physical phenomenon has to be
; ; investigated. Aerospace design of today is marked by
1. ‘Java a_S a Programmmg TOOI In diminishing margins that can make or break a design. For
Englneerlng instance, the X-33 vehicle, a technology demonstrator for
the next generation space transportation system, does not
Java, introduced in late 1995, was an instant success Witve to reach LEO (Low Earth Orbit). Therefore, weight
the Internet programming community. However, Java wassues for the X-33 are not as critical as for the full scale
not considered to be a suitable language for softwa®STO (Single Stage To Orbit) vehicle, the Venture Star.
engineering in aerospace, and in particular foConsequently, CFD calculations for X-33 can be
computational fluid dynamics (CFD). The reason simplyninimized, concentrating on TPS (Thermal Protection
System) design and the aerospike propulsion unit.
However, even with the successful demonstration of X-33,
1. The title page shows the Ma number distribution computethere is no guarantee that Venture Star will be a successful
by the C-code ParNSS. The JParNSS code is currentpacecraft. Design margins have to be cut to the bare
restricted to 2D. minimum in order to reach LEO with an advertised
2. The HavaJava project aims at a pure Java parallel 3D flopayload of some 25 metric tons.
solver and is supported by the Ministry of Science and Cul-
ture, Hannover, Lower Saxony, Germany.
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Here, in our opinion, CFD will have a crucial role to avoids the obscurity of the C++ language. The error prone
optimize a given configuration with regard toconcept of pointers to pointers to pointers is not present,
aerodynamic stability and heat load. Many computer rurend Java has an effective dynamic memory management.
have to be performed for the Venture Star configuration,

necessitating the handling of very complex grids .

requiring short turn around times from CAD to visualized:I--3 Java TeChnO|Og|eS

flow solution. In order to reduce computing time, parallek-or our objectives, we need certain software technologies,

taking human interaction out of the loop, starting with the;ymmarizes some of the terminology:
CAD data, generating the grid, producing a CFD solution,

visualizing the flow solution, and finally attaining the ) ) ]
modified CAD data. 1.3.1 Object-Oriented Programming

One of the most important factors is the construction of
1.2 “Have Java’ Objectives classgs and objects. A class is a template, or blgeprint for

an object: thus there may be many objects of a given class.
So far, software for computational aerodynamics has beeq class is the combination of data structures, methods
written mainly in Fortran, and in recent years the morgfunctions in Fortran and C) that perform operations on
advanced C programming language has been employg@ data structures and fields (variables in Fortran and C),
for visualization tasks. Unfortunately these proceduraind the fields (variables) of this class. Objects provide
languages force the programmer to think like a computeifheritance given an object ‘Engine’, for example, with
breaking the problem down into a set of basic data typesertain properties and methods, we can define a new class
Object-oriented languages, on the other hand, alloWetEngine’ that inherits from Engine (after all, a Jet
programmers not only to think more efficiently, but also teengine is a type of Engine). All the properties and
collaborate more effectively with others. Aerospacenethods for Engine work just as well for JetEngine,
engineers are dealing with components like wingthough some may be implemented differently. Another
fuselage, nacelle, pylon, engine etc. These componenigiuable property of objects imformation-hiding the
and their properties are difficult to represent in a languagsomplexity of an object may be only exposed through a
like Fortran that only knows integers and reals. This isimple interface, so that the object is easy to use and
definitely not the way designers think as they conceivanderstand. A wristwatch is like this -- it has a complex
new aircraft or spacecratft. internal structure, but the display of the time is a simple

With the increasing size of aerodynamic codes, robustne&¢erface.

and security of the software has become an issue. The

recent Ios_s of Ariane 5, flight 501, was attribute_d to 4 .3.2 Robustness

programming snag, based on a lack of code security, or, in . ] )

OOP terminology, the lack ofencapsulation i.e. Inevitably, things sometimes go wrong during the flow

values of variables that should be outside their range. Unphysical values, dropped network connections, etc. etc.
Java has a rigorous way to classify and handle such

Some of the problems thqt are inhergnt in Fortran and toé?}(ceptions, coercing the programmer to think about these
somewhat lesser degree in C, are: high software cost, lctWings while writing the code.

software  productivity, insecure code, reduced
maintainability, low reusability, poor portability, lack of o
architecture independence, and clumsy and unfriend.3.3 Concurrent, distributed, parallel

user interfaces. Moreover, to produce these Iarg%onnecting Java objects across disparate machines and

integrated applications in a reasonable time and CoRbtworks or running Java code on sequential or parallel

requires collaborative engineering effort, involving Many, chitectures is essential to provide the raw computing
companies. We now discuss the features of a compu

| that should alleviat fh bl bwer needed in the analysis as well as in the design
anguage that should alleviate some of these problems. cycles for new air- or spacecraft. Location and type of

A key component in reaching these objectives is aomputer hardware as well as operating system issues
programming language reflecting the design process, ighould be totally irrelevant to the user, and he should not
that allows for the creation of objects that are stand-alonbge even aware of the kind of architecture being used as
dedicated to a single task and can be replaced withol@ing as the necessary computing power is provided.
affecting the rest of the code. The Java programming

language can be used for this kind of problem, on an .
kind of sequential or parallel architecture, and providing{'3'4 Portability

independence of the underlying operating system (OS): Most languages are compiled directly to the machine code
can express the mathematical formulas of Fortramf the machine on which they are to run, meaning that
improve on the functionality of C, provide the high-levelthere can be many versions of the executable, one for each
“object oriented” abstractions of Smalltalk, and Javanachine. The addition of software and compiler versions
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to this can make distribution quite difficult. The Javaobjects with a user interface, but the actions he performs
compiler, on the other hand, generates a neutral file forméhe method invocations are actually performed on
(extension .class), so call&yte codefrom the Java code objects on the supercomputer (the server). This
(extension .java) that is executable on any machine thaansparent distribution of the computation and steering
provides the Java Virtual Machine software, which isare vital if we are to provide both the immediacy of a
practically universally available, translating the bytecodaorkstation code with the computational power of the
in native machine code. supercomputer.

1.3.5 Leveraging Business Investment 2 Implementation of the Java
Programs written in Java can take advantage of the hu '

investment in the language by the commercial world. |,i’5arallel NaVier'StOkeS SOIVer

particular, there are high-quality, free security package
available to provide authentication and encryptio

services across a distributed network. We can u ted the client. th ) fills in the i ¢ dat
commercial Java-based collaboration tools to alloyPCat€d On the client, the engineer mils in the input data

geographically-distributed groups of engineers to workke freesiream values, the names of the geometry data

together. We can use web technology to allow engineersf['(l)es’ the g_”d topology etc. The client object _sends_a
run simulations on the supercomputer without the arca essage via a standard protocol to the appropriate object

knowledge of the system that is currently necessary. n the server_that starts the_ flow computation. The
computed solution, or part of it, is sent back to the server
to be processed locally. During the computation the client
1.3.6 Multithreading is informed about the computational progress. The GUI
. : . contains a monitor and property editor that allows to
In Java, concurrency is achieved via the thread concept. : :
. ) . uspend the computation on the server, i.e. to stop all

The thread concept is best explained by a simple examplse.
: focessors on the server, send new parameter values to the

consider a TV-screen that posts several channels at e

: . erver that forwards the information to all participating
same time, each shown in a separate small rectangular

window. Although these windows (threads) ard 1 0CeSSOrs and resumes the _comput_atl_on. As W'_”_ be
described in the following sections, this is not a trivial

!ndependent, they are part of the main screen (procesy ocess, but Java provides the model that enables
i.e. they share the same address space. Threads are fyn _, . - .
: w#erobject communication, and allows the generation of
concurrently, the mapping of threads to processors as well ibuted objects on a multi-processor machine
as the scheduling being done by Java and the OS. Thus wé ‘
have a way to get dynamic load-balancing of a paralldParallelization is based on the concept of multithreading,
application without explicitly assigning tasks tothat is, withinJParNSSt appears that multiple tasks are
processors: a threaded application is said tosk#- performed at the same time. Each task corresponds to a
scheduling Java also provides a mechanism foithread in Java. The solution domain comprises a set of
synchronizing threads and for sending messages betwdgacks and each block is iterated within a thread. When an
threads. Furthermore we no longer need message-passiegation has been performed, threads (blocks) exchange
libraries such as MPI and PVM to communicate betweeinformation with neighboring threads to update their
threads, but we can use shared memory or RMI (Remol®undaries. This involves some kind of a synchronization
Method Invocation) instead. operation for the threads. The parallelization strategy is

discussed in [7].

ParNSds based on the idea of collaborating objects that
n be located across the Net. Through the GUI layer,

1.3.7 Dynamic linking The f:ode comprises four layers: the GUI _Iayer, as

S - _ explained above; the Remote Method Invocation (RMI)
Dynamic linking is the ability for a program to link t0 that connects the client-side GUI to the high-performance
external code at runtime. For example, suppose we hav&grver in a transparent way; a layer for scheduling and
set of linear equation solvers: Gaussian eliminationsynchronization of the parallel threads; and then the solver
GMRES, Multigrid, LU-decomposition, etC. objects, each of which is responsible for numerical

file; whereas dynamic linking allows a new solver to be

linked at runtime. Besides reducing code size, this featuf8 this paper we will concentrate on the RMI and parallel
allows software components to be replaced anlgvers, because these concepts are somewhat alien to the

maintained without relinking the entire code. _non Java programmgr. We  have not_ completely
implemented the multiblock flow solver; instead the

_ objective has been to investigate Java and threading as a
1.3.8 Remote Method Invocation highly flexible, but also efficient, way to express a flow

With a distributed computing system, for example ar.?olver.

engineer at a workstation running a supercomputer

simulation, the engineer would like to see the computatio® 1 Remote Objects: Client and Server
just as if it were happening on the workstation. Java RMI

is one way to do this: the engineer (client) manipulates

4 of 13



Figure 1: A multiblock grid for the X-33 vehicle. Each block is run in its own thread. Grids may have
thousands of blocks, and thus the OS has to create the corresponding number of threads and is also
responsible for starting and stopping all threads.

The input data needed to rudParNSSs collected on the Since we want to send more than just a raw byte stream, a
client and sent across the Net to a server that processes sloeket connection is not useful. We are using Java's
computational request and starts the parallel code. Tlmplementation of remote objects that provides the
server is also responsible for sending back the specifignlotocol and takes care of all the encoding and decoding:
information to the client. The first question to bewe can invoke remote methods on the server from the
discussed is how to establish the connection betweeltient, asking the remote method to return an object to the
client and server. client. For remote method invocation (RMI) the client
A logical distinction has to be made between the code thgfachme calls a remote method of an object located on the
resides on the client and code that is on the server. ' e"

addition, the common classes that reside on both cliefthe JParNSScode comprises the moduléslient and

and server have to be identified. Furthermore, a decision$grver as illustrated in Figure 1. The programming on the

needed which of the methods should be local and which
have to be remote.

RMI Client RMI Server

) —
irtua Rea
Object network— - Object
— -

stub —_ - skeleton
methods s ™ methods
method

implementation

Figure 2. Client-Server communication through Java RMI (Remote Method Invocation). Each shared
object has an interface, common to client and server sides, that defines what methods are available. The

client can invoke methods on the object, but these are executed on the server where the object actually
resides.

50f 13



client side can manipulate and display objects as if thene object; but the client sees no distinction between
were local, allowing interactive steering of the code as itemote and local objects.

runs, and displays showing the progress of the simulation.

But in fact, the object is stored on another machine, th ..

high-performance server that is running the simulation. Té-z Dls_t”bUted and Shared-Memory
make this effective, it is important that client and serveParallelism

agree on what methods may be invoked on the object; this _ .
occurs because both see the samtrface file. An N the distributed memorymodel, parallel computation

interface, in Java, is simply a listing of what methodsinvoIved dividing the computation between the processors
: ' of the parallel machine. Each processor has its own

with what arguments and return values, can be invoked oori . S
the objects of that class; i.e. the name of the class alo@emory, and information is exchanged through messages.

with the signature(name and parameters) of the method% each processor has a predictable, static workload, such
is specified, but none of the methods is ac:tualIyC)"’I(j.'t)"’lI‘emCIng is relatively easy, and can be.don_e befpre
implemented, which is left to the server code. EachUntime. In a more pqmplex, dynamic _situation, it
interface for a remote object extends Remoténterface becomes much more difficult. Modern flow solvers, such

of thejava.rmipackage. Each method in such an interfac@S ParNSs, .SW'tCh on and off ph_yS|caI and.chem|cal
throws aRemoteExceptiorthat is an error condition is models, solution algorithms, and grid complexity as the

generated in case the remote call fails, for instancéhOCk moves through the domain. In this case, complex

because the network is down etc. This exception (erro%s/;am'C Ioa<t:i—tt)_alan|c||ngd ?Igonthms [19] tare needed to

has to be caught by all methods and appropriate action h Ve computational foad Irom processor to processor.

to be taken. Now, however, another approach is becoming viable: the

When the client process invokes a method on some objeB,ra”el processors run a mglhthreaded program, they
are memory, and the machinesmlf-schedulingEach

the Java system encodes the method name and d of ol i df i q
arguments into a byte-stream, and transfers the requestttféea ot controlis queued for execution, and a manager
ocess decides which thread can run when. To prevent

the server, where it is decoded and actually executed. TRE £t threads to th iable at th
communication between client and server is realized Bycc®SS O tWo or more threads (o the same variable at the

the concept of stub and skeleton. Because th me time Java provides an object lock mechanism using

communication process is complex, the meaning of st esynchronizedey word.
and skeleton objects is explicitly outlined below.

Stub object The stub object resides on the client. WherB Parallel Structure Of the
the client invokes a remote method on a remote object on’

the server, the stub provides the device independeJtParNSSCOde
encoding for the parameters to be sent, a process called _
parameter marsha”ing The stub also unmarshals theFlg. 4 shows the structure of the JParNSS code. A client

return value received form the skeleton code. process connects to the RMI registry on the server, and

S . . uses the string “JpMaster” to get an object of class
Skeleton objectThe skeleton object resides on the serve[]plvIaster . This object is used to generate multiple
It decodes the parameters, callecharameter

. sessions, so that several clients can be using the system at
unmarshalling and sends b_ack the return value of thefhe same time for independent computations. The code
remote method to the stub, in marshalled form. can be used by several users at the same time. The
In order to runJParNSSts client and server modules haveJpMaster has aew method that creates a new session and
to be set up. It should be noted that client and server magturns an integer sessionlD. This integer can be used to
be on the same machine. In other words, the proper Jayet ordestroy an old session.

codes must be running on both client and server. In ord
for client and server to communicate, the TCP/IP protoc
must be enabled, even on a single machine.

he session object now creates a multithreaded collection

f Node objects, which handle synchronization aspects of
the computation; each node is dynamically linked to a
Finally, we come to the question of how an RMI session iSolver object, which handles the numerics.
initiated. In order to allow remote method invocation, thel.
server must be running a demon process callelg
rmiregistry , that is listening for requests from clients.
In addition, a process must be running on the server th
registers certain objects with the registry by means of
text string. In the case of JParNSS, a single object of cla
JpMaster is registered (see Figure 2).

he remote Master object is obtained by looking up on the
MI registry on a machine (here called “servername”),
asking for an object whose name is “JpMaster”). The
ffaster object can create a new Session by invoking the
ﬁiewJpSession method; this is of course executed on the
Témote server because its parent object is remote:

mpMaster = (JpMaster)Nam-
ing.lookup(“rmi://servername/JpMaster”);
mpSessionld = mpMaster.newJpSession();

mpSession = mpMaster.getJpSession(
mpSessionid );

When a client request arrives, it contains a string that
identifies the object that the client is requesting; if this
string is in the registry, then the corresponding object is
returned to the client. As explained above, it is not the
complete object that is returned, but only a reference to

6 of 13



.-'.'-J_'_p-—"_ll_l R R
i I P ST
- aep T

SERL
e A, A
e )
e g e I
ot -
ey "’-"':..-"f-'
s

g
"".;- _..-':'_.-:‘.-"__.:h_:r-.":":-"_‘-' R
T .-'5" '.'-’.-"
g ..;_'f i ',

A

Figure 3. Every solver object contains the data of and the numerics for one block.The solver class is sent

from the client to the server that is, different users may use different solvers.

RMI over network RMI
. ——— registr
/‘ - IS O g y
* o0
/ | _
] Single object Multiple sessions
| in RMI registry for different users
i
Client GUI

Each Session controls
multiple Node threads

Each Node has a
dynamically-linked
Solver

RMI object, the Master, which can spawn Sessions so that multiple users can work. Each Sessio
spawn a number of Node threads, each of which can dynamically load a Solver, which is responsibl
computation in a single block of the grid.

Figure 4. The client controls remote objects by invoking methods on them. There is only one registered

h can
e for

In this code fragment, note that in addition to the Sessiodifferent machine, in order to check on the status
object itself, the Master provides an inte@assionld . running computation.

This is done so that the client can detach itself from the

server and close down, then at a later time, use the

Sessionld  to reattach to the Session, possibly from a
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Once the Session object is created, it is initialized and ifShe code above is a small part of the process of creating
execution begins, meaning that it spawns a number tifie array of solver threads. Once the arrays of nodes and

Node threads, each of which executes a Solver:
public class JpSessionimp extends Uni-
castRemoteObject implements JpSession {

private JpNodelmp nodeArray(];
private JpSolver solverArray[];

public void initSession(int number-
OfNodes, ...) {

nodeArray = new JpNodelmp[num-
berOfNodes];

solverArray = new
JpSolver[numberOfNodes];

solvers are created, each is initialized, and each is started.
The initialization of a node includes setting up
connections to its neighbors, initalizing the data array, and
setting up boundary conditions. When all the node threads
are ready to run their solvers, computation begins. The
solver object then does what we expect in a parallel
solver: it exchanges data with the solvers that surround it,
and computes the new solution for the next iteration.

3.1 Communication between blocks

Essentially, each block of the computation is alternating
between computation and data exchange. The compute
phase consists of computing fluxes at cell boundaries,
then adding (subtracting) the incoming (outgoing) flux
from the values of the primitive variables in each cell.

writing to face buffer

reading from face buffer

read

Node i, Face 1

Node i, Face 2

Node i, Face 3

Node i Node i, Face 4

Node j

copy

Node j, Face 1

Node j, Face 2

Node j, Face 3

Node j, Face 4

Node N, Face

4

Figure 5. Communication between blocks. Each b

buffer, and the flag is set to “ready” for that face, meaning that the neighbor block can read it. The neig
reads from the buffer into its halo layer. The word “Transform” refers to the difficult problem (in 3D)
mapping the face array to one face of the block, or other protocol translation from block to block.

ace
hbor
Df

lock copies the first layer of internal points into the f

3.2 Running JParNSS

In order to set up th@ParNSSode on both the client and
the server, the following stages are needed.

1. [Server: compile server program§ Compile (javac)

the java files (extension .java) of the server module on

the server.

[Client: compile client programs] Compile the java
files on the client.

[Server: generate stub and skeleton codes using
rmic compiler] Generate the stub (client) and skele-
ton (server) code by running the rmi compilenic)

on the server and copy the stub code to the client. The

stub code contains the signatures of the remote meth-
ods and provides the necessary information for the cli-
ent code.

4. [Server: registry setup Start theregistryto enlist all
remote objects on the server. A server object is regis-
tered by giving a reference and a name (unique string)
to theregistry.On the client thé&laming.lookup()

method of the stub code accesses the remote object on
the server by giving the server name&JRL format,
combined with the name of the server object, as has

been registered in thegistry.

5. [Server: object registration (binding)] Start the
code that registerdifpding) all objects of class imple-

mentation on the server, i.e. theMasterprocess.
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6. [Client: remote object lookup] Start a program that In a many-to-one implementation — also referred to as
looks up the registered remote server objects. The “user-level threads” — all thread activity is restricted to
JpClientcan then manipulate these remote objects byiser space. Additionally, at any given time, only one
invoking methods, and create new remote objects. thread can access the kernel, so only one schedulable

The interfaces, that are seen by both client and server, aer@t't_y IS kn(_an to the oper_atmg _sy_stem. As a result, this
stored in directoryShare. Client, Serverand Shareare multithreading model provides limited concurrency and

subdirectories of directoryParNSScontaining the make does not exploit multiprocessors.

file, the documentation etc. In the “one-to-one” thread model, the main problem is
that it places a restriction on the developer to be careful
and frugal with threads, as each additional thread adds

4. Implementation of Threads by more ‘“weight” to the process. Consequently, many

. implementations of the one-to-one model, such as
the Opefatlng SyStem) Windows NT and the OS/2® threads package, limit the

) ) . number of threads supported on the system. (i.e. 1024
There are three basic models of thread implementationg;.oads on Windows NT)

“many-to-one”, “one-to-one”, and “many-to-many”.

In the “many-to-many” model, a program can have as

é K %J 4
p O

Java Application

User Space

Native

Figure 6. The many-to-many model (many user-level threads to many kernel-level threads) avoids many of
the limitations of the one-to-one model, while extending multithreading capabilities even further. The many-
to-many model, also referred to as the two-level model, minimizes programming effort while reducing the
cost and weight of each thread.

many threads as are appropriate without making thexample the IBM Java compiler [1], [2] or the software
process too heavy or burdensome. In this model, a usaffered by [3]. Neither was there an attempt to replace
level threads library provides sophisticated scheduling &Ml by a faster communication module such as [18]. The
user-level threads above kernel threads. The kernel neattssign of JParNSS strictly follows Kernighan's rule
to manage only the threads that are currently active. AMake it right before you make it fastein reference [1]
many-to-many implementation at the user level reducespeeds between 80% and 90% of corresponding Fortran
programming effort as it lifts restrictions on the number oprograms were obtained and a compiler will be available
threads that can be effectively used in an application. soon.

A many-to-many multithreading implementation thusAs a test case, we have chosen to compute an Euler flow
provides a standard interface, a simpler programmingast a forward-facing step at Mach 3. The resulting mach-
model, and provides optimal performance for eachumber field is shown in Fig. 7.

process. The Java virtual machine with the Solaris

operating environment is the first many-to-many . .

commercial implementation of Java on a multithreade 1 Computlng Times for

OsS. Monoprocessors
In Table 1 computing times for various processors are
5 Computational Results given. As far as possible, the same version of JDK was
) used.

At present the solver class is implemented for 2D and for

Cartesian coordinate systems. In addition, the fu ; ;
multiblock layer has not been implemented. No attempt%/iﬁltig?orggggggsTlmes for

were made to reduce the computing time, using fo
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Figure 7. Euler flow past a forward-facing step at Mach 3. All computations are explicit and first order
accurate. Shown is the Mach-number distribution.

Table 1. JParNSS computing times for various monoprocessors

Number Number Computing | Memory JDK
Architecture of blocks | of cells time [s] [MB] version
PentiPentium 11 300 38 12000 331 256 1.1.6
AMD K6-2 300 MHz 38 12000 1045 64 1.1.7
Sun Ultra 10 38 12000 358 512 1.1.3
Sun E450 38 12000 237 2048 1.1.6
SGI R8000 38 12000 2678 3000 1.1.6
PentiPentium 11 300 148 12000 355 256 1.1.6
AMD K6-2 300 MHz 148 12000 1104 64 1.1.7
Sun Ultra 10 148 12000 354 512 113
Sun E450 148 12000 275 2048 1.1.6
SGI R8000 148 12000 2753 3000 1.1.6
In Table 2 JParNSS is run on a variety of architectures.
Table 2. JparNSS computing times for multiprocessor architectures

Number of Number Number | Computing | Memory | JDK

processors | Architecture of blocks | of cells time [s] [MB] version
2 Pentium Il 300 MHz 3 48000 1273 256 1.1.6
2 Sun Ultra 60 3 48000 787 512 | 1.2devo8
2 Sun E450 3 48000 1015 2048 1.1.6 [a]
3 Sun E450 3 48000 963 2048 1.1.6
4 Sun E450 3 48000 1044 2048 1.1.6
2 Pentium 1l 300 MHz 10 48000 708 256 1.1.6
2 Sun Ultra 60 10 48000 475 1152 1.2dev05
2 Sun E450 10 48000 563 2048 1.1.6
3 Sun E450 10 48000 472 2048 1.1.6
4 Sun E450 10 48000 455 2048 1.1.6
2 Pentium Il 300 MHz 38 48000 658 256 1.1.6
2 Sun Ultra 60 38 48000 417 1152 1.2dev05
2 Sun E450 38 48000 514 2048 1.1.6
3 Sun E450 38 48000 349 2048 1.1.6
4 Sun E450 38 48000 261 2048 1.1.6
2 Pentium 1l 300 MHz 148 48000 640 256 1.1.6
2 Sun Ultra 60 148 48000 421 1152 1.2dev(5
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Table 2. JparNSS computing times for multiprocessor architectures

Number of Number Number | Computing | Memory | JDK
processors | Architecture of blocks | of cells time [s] [MB] version

2 Sun E450 148 48000 529 2048 1.1.6

3 Sun E450 148 48000 343 2048 1.1.6

4 Sun E450 148 48000 260 2048 1.1.6

2 Pentium 11 300 MHz 38 192000 n.a. 256 1.1.6

2 Sun Ultra 60 38 192000 2926 1152 1.2devp5

2 Sun E450 38 192000 n.a. 2048 1.1.6

3 Sun E450 38 192000 n.a. 2048 1.1.6

4 Sun E450 38 192000 1743 2048 1.1.6

2 Pentium Il 300 MHz 148 192000 n.a. 256 1.1.6

2 Sun Ultra 60 148 192000 2833 1152 1.2devp5

2 Sun E450 148 192000 n.a. 2048 1.1.6

3 Sun E450 148 192000 n.a. 2048 1.1.6

4 Sun E450 148 192000 1539 2048 1.1.6

a. Solaris JDK 1.1.6 production release, native, sunwijit, Solaris 2.6
b. Java 2 Platform - Solaris JDK 1.2 01 dev05 production beta release, native, sunwijit, Solaris 2.6

with different numbers of processors. In all runs thewumber of processors is substantially smaller than the
number of threads equals the number of processors. Tiamber of blocks. As can be seen from Table 2, the
corresponds to the fact that a grid with several thousamtesent paper is restricted to architectures with a small
blocks has to be run on multiprocessor system whosamber of processors. In Fig. 8 is shown the compute

1100 = Simulation of forward facing step on
T Sun Enterprise 450, UltraSPARC Il 300 MHz,
-~ 3 blocks 2 GB Memory, Solaris 2.6
1000 |~|
o 192,000 cells in 38 blocks (38 native threads)
900 | |
o - ——FE1—— jdk1.1.6 production release
£ 800 | |
8 -
D -
[75) |
.= 700 =
= B
= -
= 600 |~
> =
= o
o -
g 500 |~
(=] - 310 blocks
400 |- S
300 |~ . 38blocks 148 blocks
- = =u |
| 1 1 ]
200O 50 100 150
number of blocks
Figure 8. Run time for JParNSS on the 4-processor Sun 450 vs. number of blocks used for the
computation. Full computational load for 4 processors is achieved with 38 threads (blocks).

times as the number of blocks of the multiblock grid iscomputational work associated with the block, and
varied. Here the number of active threads is the same afficiency drops.

the number of blocks. As blocks are split, we have more

threads than processors, so that each processor has enough

work to do: the computational efficiency increase§. Conclusions and Future Work

because the load-balance between the four processors

improves. For a much larger number of blocks, howeverhis prototype implementation of a multiblock solver
the thread overhead becomes larger than th@presents a first stage in the “Have Java” project. We have
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Figure 9. Processor utilization for the 4-processor Sun E450 running JParnss. This screenshot is obtained from
the Solaris tooproctool The bars from left to right denote CPU numbers 0 to 3, the rightmost bar shows the

average load of the CPUs. It is important that the thread scheduler generates a full computational load| for all
processors. If the number of threads is too small or threads of highly different compautational load have been
produced, parallel efficiency is reduced.

shown how a flexible, component-based architecture camd also the remote-invocation layer, which allows a
be used to create a fluid solver. In this paper, we hawemote client to initiate and steer a computation on a
shown the component that is responsible for parallelisnsupercomputer.

Simulation of forward facing step on
1000 |~ Sun Enterprise 450, UltraSPARC Il 300 MHz, 2 GB Memory, Solaris 2.6
E 48,000 cells in 38 blocks (38 native threads)
900 |-
B —— 1 jdk1.2 devO5 production beta release
§ 800|:7 — A jdk1.1.6 production release
S B
S B
8 L
e 700 |~
<) B
§= B
@ 600 |~
jun } = ..
g— - 75% efficiency
o 500 |~
QO -
400 |-
300 |-
[ ]
1 2
number of processors

Figure 10. Run time for JParNSS on the 4-processor Sun 450 vs. number of processors. The 38 block grid
comprising 48,000 cells was used for the simulations. The figure shows a substantial speedup for the 1 and 2
processor configurations for JDK1.2 over JDK1.1.6. However, when 3 and 4 procesors are used, JDK 1.2 does not
scale properly and parallel efficiency is lost.

In the component model, different parts of the code can ldmponents can be easily exchanged, upgraded, or
developed separately. In this contec@mponenimplies a worked-on by different parts of a collaboration.
well-defined interface with other components, so that
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The next component that we shall create in this program $1]
a multiblock component, allowing complex geometries
and topologies to be handled. The computational domain
is divided logically into a set of boxes, each with its own
local coordinate system. The boxes are then connectﬁg]
through the multiblock component.

We have provided a framework for a solver that is cast in
the form of general conservation laws. Another
component of the system is the expression of thﬁS]
conservation system that is being solved.
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