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Abstract 
 
High performance computers currently under construction, such as IBM’s Blue Gene/L, 
consisting of large numbers (64K) of low cost processing elements with relatively small 
local memories (256MB) connected via relatively low bandwidth (0.0625 Bytes/FLOP) 
low cost interconnection networks promise exceptional cost-performance for some 
scientific applications. Due to the large number of processing elements and adaptive 
routing networks in such systems, performance analysis of meaningful application 
kernels requires innovative methods. This paper describes a method that combines 
application analysis, tracing and parallel discrete event simulation to provide early 
performance prediction. Specifically, results of performance analysis of a Lennard-Jones 
Spatial (LJS) Decomposition molecular dynamics benchmark code for Blue Gene/L are 
given. 

1. Introduction 
 
Caltech’s Center for Advanced Computing Research (CACR) is conducting application 
and simulation analyses of Blue Gene/L[1] in order to establish a range of effectiveness 
of the architecture in performing important classes of computations and to determine the 
design sensitivity of the global interconnect network in support of real world ASCI 
application execution.  
 
Due to the large number (64K) of processing elements and adaptive routing networks in 
Blue Gene/L, performance analysis of meaningful application kernels requires innovative 
methods. This paper describes a method that combines application analysis, tracing and 
parallel discrete event simulation to provide early performance prediction. Specifically, 
results of performance analysis of a Lennard-Jones Spatial (LJS) Decomposition 
molecular dynamics benchmark code for Blue Gene/L are given. 
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Cycle-by-cycle level simulation a 64K node system running parallel applications is 
necessary for detailed machine design and IBM has done this, but runtimes are too long 
for spanning a number of applications at application iteration level. In lieu of this, our 
team is taking a statistical approach using parameterized models of the applications 
(workloads) and statistical (queuing) models of processing node message traffic derived 
from traces produced by the computational experiments. All 64K nodes of BG/L are 
explicitly represented, but the model is not cycle-by-cycle accurate although effects of 
adaptive routing and network contention are of necessity reliably modeled. For a further 
increase in simulation performance, an optimistic parallel discrete event simulation 
(PDES) framework is employed. 
 
Our methodology was applied to select ASCI applications in order to provide statistical 
workloads for performance analysis using the parallel BG/L simulator. These 
applications stress load balancing, multiple languages, and dynamic behavior with respect 
to CPU/memory/communications usage throughout execution. 

2. Approach 
A benchmark code for an important class of applications, Lennard-Jones Spatial 
Decomposition (LJS) molecular dynamics [2], was selected as an example of an 
important class of numerical problems and a methodology of algorithm analysis, tracing 
and simulation was used to produce performance estimates for a 64K node Blue Gene/L. 
 
LJS is an example of a fast parallel algorithm for short range molecular dynamics 
applications simulating Newtonian interactions in large groups of atoms. Such 
simulations are large in two dimensions: number of atoms and number of time steps. The 
spatial decomposition case was selected where each processing node keeps track of the 
positions and movement of the atoms in a 3-D box. Since the simulations model 
interactions on an atomic scale, the computations carried out in a single time step 
(iteration) correspond to femto-seconds of real time. Hence, a meaningful simulation of 
the evolution of the system’s state typically requires a large number (thousands) of time 
steps. Point-to-point MPI messages are exchanged across each of the 6 sides of the box at 
each time step. The code is written in Fortran and MPI. 
 
Application analysis played a major role in characterization of LJS to determine BG/L 
expected performance. Traces on a small number of nodes were used to identify phases 
of execution and resource consuming compute kernels and mix of MPI messages. 
Analysis however was necessary to derive the relationship between: 
 

1. number of application “grid elements”/node vs. # physical BG/L nodes 
2. communications vs. mapping onto BG/L physical nodes 
3. number of application “grid elements”/node vs. physical node memory required 
4. compute time vs. #”grid elements”/node vs. #BG/L physical nodes 
5. comms distribution (type, length) vs. #”grid elements” vs. #BG/L physical nodes 
6. i/o vs. #”grid elements”/node vs. # BG/L physical nodes 
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Algorithm analysis coupled with simulation results will also enable evaluation of 
potential application design enhancements to take advantage of BG/L’s specific 
architectural strengths.  
 
Application tracing of LJS is used to: 
 

1. Gain insight into scaling up to 65K nodes and to verify application algorithm and 
code analysis – although it is very limited in scope (up to 1024 nodes, less than 
1/60th of BG/L’s expected size) 

2. Collect statistical data (via use of trace analysis tools) on message distribution, 
length, compute times etc. and give insight into statistical variation for application 
execution phases 

 
And finally a parallel BG/L simulation model is used to estimate LJS performance on 
BG/L for a variety of mappings to various numbers of BG/L compute nodes. 
Performance metrics including: time to solution; network utilization and scalability are 
reported. 

3 The Molecular Dynamics (MD) Problem 
 
The basic computational problem is the evaluation of the total force on a particle, written 
as a sum over pair-wise forces arising from all other particles in an ensemble: 

Fj = Σi≠j Fij 
The pairwise force Fij is provided by some dynamical model (e.g., described by a 
Lennard-Jones potential). It depends on the positions of the two particles involved and 
possibly on other state variables of the physics model. 
 
The kinematic state of an individual particle at a time t is specified by the particle’s 
position and velocity. The force equation gives the acceleration that is used to update the 
particle’s state through some small time step ∆T. (“Real” MD codes generally use more 
sophisticated integrators. This is a per-particle computational cost and does not affect the 
scaling discussions of this paper.) 
 
The essential simplifying assumption for MD models is limited range of the pairwise 
forces: 

Fij = 0,   |rij| > rC 
 
The force cutoff rC is a parameter of the model. Given this assumption, the total 
computational cost for a single update cycle is approximately 

Cost = NTOT∗( α + β∗NNBD + δ ) 
Where 

1. NTOT is the total number of particles 
2. NNBD is the (typical) number of particles in the force neighborhood of an 

individual particle 
3. α is the cost of integrating the equation of motion for an individual particle over 

the (small) time step. 
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4. β is the cost of computing a single inter-particle force Fij 
5. δ is the cost of finding/enumerating particles in the neighborhood of the current 

particle of interest. 
 
The coefficients ‘α’ and ‘β’ are fairly straightforward and could presumably be measures 
by profiles of single-processor executions of an actual code. The “finding” coefficient ‘δ’ 
is a bit more complicated and will be discussed in more detail below.  

3.1 Spatial Decomposition Algorithm: Qualitative Overview 
 
The Spatial Decomposition (SD) algorithm for parallel MD can be described as follows: 

1. The physical volume is divided into a (regular) grid.  
2. Each grid cell (see Figure 1) is assigned to a processor, and a processor is 

responsible for performing the force calculations and state updates for all particles 
(nominally) within the cell. 

3. Force computation requires state information for some particles owned by other 
processors – the lightly shaded area in Figure 1. These are acquired by a 
communications phase at the start of each computational step. 

4. Particles will occasionally drift across processor boundaries. These processors 
remain the responsibility of the original parent processor during the basic 
(Communicate,Update) cycle outlines in steps 2 and 3. Reassignment of particles 
to processors according to the cell boundaries is done periodically but (far) less 
frequently than the basic update cycle. 

 
The communications for the data sharing of Step 2 are straightforward and involve 
synchronized messaging within the grid. The communications phase is a number of 
pairwise data exchanges between (logically) neighboring processors. The step are as 
follows (see Figure 2): 

1. Processors send all particles within the interaction of a horizontal boundary to the 
other processor at that boundary, at the same time accepting particles from that 
processor.  

2. The “vertical” sharing in step (1) is then repeated in the other physical 
dimensions. 

 
During the second/horizontal sharing, a processor will generally send some particles it 
received during the preceding vertical sharing. This is the mechanism for acquiring 
relevant data from the “diagonal neighbors”. 
 
3.2 Complications and Simplifications 
 
Ignoring the periodic, lower frequency reassignments of ownership of particles that drift 
across cell/processor boundaries, the basic update cycle for any one processor has two 
parts: 
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1. Communications: Retrieve current positions of “boundary” particles assigned to 
neighboring processors. Send current state of boundary particles known by this 
processor to neighbors 

2. Computation: Perform the force evaluation and state update calculation for all 
particles owned by the processor. 

 
The amount of communications depends on the relative magnitudes of the force range 
(rS) and the width (d) of a physical grid cell assigned to a given processor. If d < rS, then 
the current positions must be exchanged across multiple hops in the communications 
scheme of shown in Figure 2. In the other cases, we can approximate 
 

NCOMM = λ NTOT 
 
For some scale factor λ, 
 

λ= Fraction of local particles interesting across a single boundary. 
 
The analysis here makes this assumption, ignoring the more complex d < rS case. 
 
The low frequency rearrangement of particles across cell boundaries will also typically 
involve some (smaller) fraction of the local particles. It is during this lower frequency 
exchange that Plimpton recommends reconstruction of the the data structures used for 
efficient near neighbor searches in the force computation loop. For now, the scaling 
behaviors and expectations for this low-frequency particle migration and search tree 
reconstruction are ignored. 
 

 3.3 Parameterized Model: Performance and Scaling 
 
The activity of an individual processor for a single computational cycle can be modeled 
by a simple “time line”, as shown in Figure 3. The activities and expected costs/times 
for these components are as follows: 

 
1. Communication 

 
In each of three dimensions and two directions per dimension, the processor 
exchanges data with its neighbor. The amount of data exchanged is 
 

Data = λ*NLOC*(Individual Datum Size) 
 
A typical datum size would be three doubles for position and one int for particle 
ID. This gives the size of the message. Actual communications costs will depend 
on the location of the logically adjacent processor within the communications 
network. 
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2. Computation 
 

As described above in Section I, the cost/time for the computational phase can be 
written as 
 

Cost = NLOC ( α + γ NLOC) 
 

Where, for simplicity, the data structure maintenance cost (δ) has been ignored. 
 

3. Synchronization/Waiting 
 

The pairwise data exchanges of Figure 2 are synchronized. This will introduce 
various communications delays that have been collectively lumped into a single 
Wait Time before the start of the next simulation step. 
 

In the above, 
NLOC = NTOT/NP 

 
Is the “local” particle count – the number of particles out of NTOT total particles owned by 
one of NP total processors. The NNBD “force neighborhood” count from Section I has 
been estimated as some fraction of the Local count – essentially an assumption of 
approximately uniform particle densities across the system. 
 
The overall scaling behavior will clearly depend on which of the parameters NTOT, NLOC, 
NP are held fixed. 
 
This provides a simple three parameter model for approximating the LJS algorithm in a 
Speedes-based simulation. The various points on the time axes of Figure 3 are the 
discrete events for the simulation. The communications message size estimates the total 
byte count for each message in terms of one parameter (λ) and the Computation cost is a 
simple two-parameter representation.  
 
4 Tracing Overview 
 
LJS (Lennard-Jones with Spatial decomposition) target code is a molecular dynamics 
application developed by Steve Plimpton at Sandia National Laboratories [2]. It performs 
thermodynamic simulations of a system containing fixed large number (millions) of 
atoms or molecules confined within a regular, three-dimensional domain. Since the 
simulations model interactions on atomic scale, the computations carried out in a single 
timestep (iteration) correspond to femtoseconds of real time. Hence, a meaningful 
simulation of the evolution of the system’s state typically requires a large number 
(thousands and more) of timesteps. 
 
The particles in LJS are represented as material points subjected to forces resulting from 
interactions with other particles. While the general case involves N-body solvers, LJS 
implements only pair-wise material point interactions using the derivative of Lennard-
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Jones potential energy for each particle pair to evaluate the acting forces. The velocities 
and positions of particles are updated by integrating Newton’s equations (classical 
molecular dynamics). The interaction range depends on the modeled problem type; LJS 
focuses on short-range forces, implementing a cutoff distance rc outside which the 
interactions are ignored. The computational complexity of O(N2), characteristic for 
systems with long-range interactions, is therefore substantially reduced. 
 
LJS deploys spatial decomposition of the domain volume to distribute the computations 
across the available processors on a parallel computer. The decomposition process 
uniformly divides a parallelepiped containing all particles into volumes equal in size and 
as close in shape to a cube as possible, assigning each of such formed cells to a CPU. The 
correctness of computations requires the positions of some particles (depending on the 
value of rc) residing in the neighboring cells to be known to the local process. This 
information is exchanged in every timestep via explicit communication with the neighbor 
nodes in all three dimensions (for details see [3]). LJS also takes the advantage of 
Newton’s third law to calculate the force only once per particle pair; if the involved 
particles belong to cells located on different processors, the results are forwarded to the 
other node in a “reverse communication” phase. 
 
Besides communications occurring for each iteration, additional messages are sent once 
every preset number of timesteps. Their purpose is to adjust cell assignments of particles 
due to their movement. To minimize the overhead of the construction of particle neighbor 
lists, LJS replaces rc with an extended cutoff radius rs (rs > rc), which accounts for 
possible particle movement before any list updates need to be carried out. Due to a 
relatively small impact of that phase on the overall behavior of the application, it is 
ignored it in this analysis. 
 
4.1 LJS Benchmark Experiment Configuration 
 
The runtime parameters of the simulation along with their values are listed in Table 1. 
 
The total number of particles, N, is given as 

N = 4 nx ny nz , 
 
where ni are integers (there is a fixed average of four particles per unit cube). The 
problem is executed on a grid of P processors, such that 
 

P =  px py pz, with pi = ni/ki where ki are integers. 
 
In the benchmarks ki = 50, hence the problem size was 50x50x50 (or 500,000 particles) 
on a single, 100x100x50 on four, 100x100x100 on eight and 200x200x200 on 64 
processors. Such configurations require approximately 200MB of memory per CPU for 
all LJS data structures well within expected user memory for Blue Gene/L. Note that the 
cutoff distances are significantly smaller than the linear dimensions of the domain 
fragment assigned to a single processor (50⋅alat ≅ 84), hence the spatial decomposition 
algorithm is performing efficiently (time spent in all communication phases is 
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significantly smaller than the total computation time and didn’t exceed 15% of the 
application runtime in the experiments). 
 
LJS initializes its data structures by assigning particle positions on a regular 3-D mesh 
(thus emulating a crystal lattice) and computing velocity vectors to satisfy the initial 
temperature requirement. The velocities are otherwise random in magnitude and 
direction. In the next few time steps of the simulation the particles move from their 
positions on the grid (the crystal melts). Therefore, to capture the application behavior as 
close to the average (no imbalances of particle counts between processors), tracing was 
limited to the first five iterations. 
 
4.2 ETF Instrumentation 
 
In order to extract more detailed runtime information, ETF (Extensible Tracing Facility) 
[4] was used to instrument the application code. The instrumentation’s goal was to 
provide low-level instruction counts executed at the user level, obtain timing information, 
register parameters used by MPI routines for message passing and mark starting and 
ending points of important execution phases. 
  
4.2.1 ETF Counters and Timers 
 
ETF is capable of accessing high-resolution timers and hardware event counters on select 
platforms. Currently, such support exists for IBM SP2 (Power processors) via a PMAPI 
interface. Using Power architecture in our experiments is convenient, as BG/L processors 
are based on a modified version of the PowerPC core, which shares significant elements 
of ISA and hardware features with the Power processor line. PMAPI supports up to eight 
64-bit event counters, however, they cannot be assigned to counters arbitrarily and that 
limits the effective number of events monitored concurrently. Another constraint is 
caused by OS overhead (1200..1500 cycles per readout of a counter set), which may 
produce skewed results if the counters are accessed too frequently. In our experiments we 
decided to restrict the monitoring to the execution in user mode only, as the kernel mode 
offers little insight into application behavior and cannot be properly verified due to lack 
of the source code. The events of interest included: the number of CPU cycles spent 
executing the code, the number of instructions completed and the cumulative count of all 
FPU operations (this required summing the counts of instructions retired by both floating 
point units of the processor). 
 
4.3 MPI Communication 
 
LJS uses a small subset of MPI-1 calls for message passing. The collective calls (Barrier, 
Bcast, Allreduce) are invoked only during the setup phase and when computing the 
thermodynamic state of the system (typically at the end of execution). Throughout the 
simulation, the bulk of data is transferred by point-to-point calls (blocking Send and non-
blocking Irecv, which enable overlapping of bi-directional transmissions). For the 
parameter set listed above, the messages originating from each node are emitted to its six 
nearest neighbor (in a 3-D grid) nodes only. Due to the use of a periodic Cartesian 
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communicator, particles migrating outside the domain from boundary cells in any 
dimension, appear in the opposite boundary cell in that dimension. 
 
To simplify the trace analysis, ETF was configured to register the message sizes and 
destination nodes of point-to-point communications. Memory reference tracking, which 
includes message buffer pointers and maps of MPI datatypes in the trace, was disabled. 
 
4.4 LJS Execution Phases 
 
The source code of LJS was augmented with calls injecting markers at the endpoints of 
the following phases: 

• Setup and initialization (procedures: input, setup_general, setup_memory, 
setup_comm, setup_neigh, setup_atom, scale_velocity, exchange, borders, 
neighbor) 

• Iteration of the main loop (integrate): 
o Calculation of the new positions of particles 
o Communication: update of the positions of remote particles 

(communicate) 
o Computation of forces (force_newton) 
o Reverse communication: propagation of forces (reverse_comm.) 
o Calculation of particle velocities 

• Final thermodynamics evaluation and printout (thermo, output) 
 
4.5 Computational Profile 
 
The computational workload was very consistent from iteration to iteration and across the 
nodes. This is expected due to uniform initial distribution of particles and symmetric 
neighborhoods of each cell. Table 2 shows counter values collected for the setup, 
intermediate phases of the fourth time step of the simulation (which is representative for 
other iterations as well) and finalization phase for different number of processors. 
 
The only significant inconsistencies are variances in event counts for the communication 
phases. This is understandable, since the message passing is inherently non-deterministic. 
For example, messages of identical sizes can be split into different number of packets 
depending on the transient condition of the interconnect network and hence the overhead 
of message fragmentation and reassembly may not be identical. Note that even though the 
network traversal time should be excluded from timings in user mode, the actual behavior 
is strongly implementation dependent; if the MPI library uses busy waiting to poll for 
incoming messages, this fact will be reflected in counts. The global trend of increasing 
the overhead with the problem size is, however, sustained. 
 
LJS deploys a “leapfrog” integrator, whose operation is expressed as (only position 
computation shown; velocity calculation is identical in complexity with properly adjusted 
dt): 

xi(t+1) = xi(t)+vi(t+1/2) dt, for dimension i = 1, 2, 3 in iteration t. 
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This is in nearly perfect agreement with the FPU counts: 500,000 particles per CPU with 
3 dimensional components yield 1.5 million operations. The compiler takes advantage of 
the fact that the Power ISA includes a multiply-add instruction; otherwise the FPU counts 
would be twice as high. The number of cycles spent in velocity calculation phase is 
higher than that of position integration, since the previous values of velocity vectors need 
to be preserved for thermodynamic state computations, while the old position vectors are 
simply overwritten. The copy operation doesn’t use the FPU, hence the additional 
overhead manifests itself only in increased instruction/cycle counts. Still, by far the most 
dominant portion of each time step is devoted to the force computation, thus justifying 
the presence of reverse communication step. 
 
4.6 Communication Profile 
 
Due to symmetry of the problem decomposition and repeatability of parameters passed to 
MPI calls, only one-iteration behavior on a single processor was analyzed. The results are 
collected in Table 3 listing destinations and sizes of messages transmitted from rank 0. 
The send order in each communication phase is reflected by the row position (entries 
closer to the top of the table are sent earlier). 
 
This scheme is repeated in every time step. Differences across the nodes are relevant only 
to destination rank numbers, but they stay fixed throughout the execution for a given 
sender node. Note that the number of messages is reduced when running on less than 8 
processors. This is because 23 CPUs is the smallest configuration where the 
computational domain can be decomposed into at least two partitions along each 
dimension. A small inefficiency of LJS may be observed when running on less than 64 
processors: the messages within the same communication phase are emitted to repeated 
destinations. When scaling beyond 64 CPUs, message sizes and number of destinations 
stay fixed as long as the size of local grid on every processor is preserved. 
 
4.7 Algorithm Scaling 
 
To verify the characteristics of program execution for other problem sizes, LJS was 
traced with reduced grid size of nx = ny = nz = 100 on 64 processors. The computational 
workload parameters (fourth iteration only) and message sizes are given in Table 4. 
 
As can be easily seen, the computational workload decreased proportionally to the 
problem volume (23 times, as the problem size in each dimension was halved). The 
memory allocation for LJS data arrays was 26.5MB per processor, again – roughly 1/8 of 
that required for 200x200x200 configuration. Message sizes were reduced approximately 
four times, what agrees well with the assumption of communication volume being 
proportional to the cell surface area. Note that the ideal ratio of four is observed only for 
the exchanges along the first dimension. This figure is distorted for transmissions along 
the second and third dimension due to the fact that the presence of volume characteristic 
increases in subsequent data sends. 
 

10 



The spatial decomposition algorithm implemented in LJS behaves consistently over a 
wide range of grid sizes. The anomalies resulting from the cutoff distance rs being 
comparable with the physical dimensions of a sub-grid assigned to a single processor 
arise for relatively small problem sizes, for which the communication overhead nearly 
always exceeds the cumulative duration of computations. To investigate such a case, the 
program was configured to run a 20x20x20 problem (on 64 CPUs this yields a 5x5x5 grid 
per processor) with artificially increased values of rc = 10 and rs = 11.2. The 
communication characteristics are given in Table 5 with the “reverse” communication 
phase omitted for brevity. 
 
Since rs is longer than the linear dimension of the local sub-domain (d = 5⋅alat ≅ 8.4), the 
communication must involve not only the immediate neighbors of a processor, but also 
cells located one more grid “hop” away (because d < rs < 2d). As LJS processes don’t 
communicate with the remote neighbors directly, the data are passed in multiple steps 
through the immediate neighbors’ buffers. Unlike in the typical scenario described in 
section 4.2, the ratio of communication volume along the third dimension (the last four 
entries in the table) to that of the first dimension (the first four entries) is significantly 
larger due to much larger final volume of data accumulated from neighboring cells within 
the cutoff distance in all three dimensions compared to that for just one dimension. The 
memory consumption, 10.7MB per processor, also deviates from the simplistic estimates, 
most likely due to excessive buffer space required for communication. However, such 
situations arise rarely in practical short-range problems when executed on machines with 
sufficient amount of memory per node. 

5 BG/L Parallel Simulation Overview 
In order to simulate the full size Blue Gene/L system of 64K processing nodes for 
meaningful portions of ASCI applications, it has been necessary to resort to parallel 
discrete event simulation methods to produce models that can themselves run on parallel 
machines. Our goal is to extract as much parallelism as possible from the simulation. This 
goal has led to the use of optimistic simulation management methods. 
 
In a discrete event simulation, care must be taken that all events are executed in the 
proper time order.  In a sequential implementation a simple sorted global event list 
satisfies this requirement.  In a parallel discrete event simulation while individual event 
lists on each simulation node are ordered in time, there is no global event list. Two events 
executed on separate nodes must be coordinated in order to avoid a causality error. 
 
Mechanisms that address causality errors fall into two categories:  conservative and 
optimistic [5].  Conservative algorithms avoid causality errors by constraining the 
operation of the simulation so that events that could possibly cause causality errors are 
properly serialized. Optimistic algorithms fully exploit available parallelism by allowing 
causality errors to occur, but detect this situation and force event rollbacks. Additional 
overhead is incurred  but practice has shown that this cost is generally offset by the extra 
parallelism extracted. 
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It is expected for BG/L simulation that a PDES using optimistic time management will be 
more efficient than conservative methods at handling workloads involving uneven 
workload distributions, especially for the case where the load imbalances may exist at 
any instant in simulation time, but that over the course of the entire simulation the total 
loads on each node balance.  This is because optimistic methods allow for temporal load 
balancing.  Nodes are allowed to run at different rates, so that if a node temporarily has a 
heavier load, it is allowed to fall back in simulation time, and can catch up later when its 
load is eased. 
 
A BG/L model was developed using SPEEDES, an optimistic parallel simulation 
framework developed in the early 1990’s by Steinman [6].  By default, SPEEDES uses a 
synchronization algorithm called breathing time warp based on the concept of virtual 
time developed by Jefferson [7].  SPEEDES modifies Jefferson’s original time warp 
concept by placing a limitation on the number of rollbacks that may occur in the course 
of the simulation.  This algorithm uses a time window to prevent runaway objects from 
generating excessive numbers of rollbacks.  However the choice of algorithm is governed 
by a runtime parameter that may be modified to remove any such limitations, allowing a 
pure Time Warp based algorithm to be use. 
 
When it came time to install SPEEDES the decision of whether to install it on an SGI 
Origin 2000, or a Beowulf cluster had to be taken.  Steinman recommended the Origin 
because it uses a shared memory model for communications between processors, which, 
for SPEEDES, is much more efficient than using a message passing model such as MPI 
found on the cluster. In addition, SPEEDES has been used for a battlefield simulation that 
handled 1,000,000 simulation objects running on 100 Origin nodes.  This indicated 
feasibility that SPEEDES would scale efficiently on the Origin to handle the 64K nodes 
of BG/L.  Because SPEEDES had previously been ported to the Origin, it was fairly 
straightforward to install on the 128 node Origin 2000 at JPL. 

5.1  Model Development 
 
Blue Gene/L uses a 3-D torus based network for point-to-point communications between 
nodes[1][8].  The torus router that exists on each BG/L node is modeled including the 6 
injection FIFOs, as well as FIFOs associated with the 6 input and output network links at 
each node.  Each link has associated with it two virtual channels that are used for 
adaptive routing, and 1 virtual channel used for deterministic routing.  The latter is used 
for deadlock avoidance, and only when congestion prevents a packet from being 
adaptively routed.  Tokens are used for flow control between routers.  Virtual cut-through 
routing is used to minimize latencies. 
 
The fundamental programming construct in SPEEDES is the simulation object.  Each 
such object communicates to other objects by sending and receiving time-stamped 
messages.  Receipt of a message eventually triggers the receiving object to process that 
message.  The simulation time of the received message becomes the simulation time 
associated with the corresponding object when it executes.  If an object executes during a 
certain time slice and is not rolled back, that event is said to be committed. 
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Each network node as a unique SPEEDES object and each network packet is modeled as 
a message in the simulation.  This level of granularity is needed because of the 
complexity involved in the adaptive routing being used by the network.  As congestion 
builds up in one part of the network, traffic patterns change in an attempt to route 
messages around the congested area. 
 
Simulation messages are small, and only contain information relating to the transfer 
process, such as the origination node, destination node, and time of origination.  When a 
message is sent from one object to another, it triggers an arbitration process in the 
receiving object that determines whether the message needs to be sent on, and if so, what 
route it should take.  In parallel with this, the same object is examining its workload 
queue to determine whether new messages are being generated.  Information about 
congestion on that node is sent back to the originating node to assist in flow control and 
the adaptive routing algorithm. 
 
Each message injected in the simulation resulted in an event.  An event was also 
generated each time the message was received, whether it was received on the originating 
node when it was first injected, or received by a destination or intermediate node.  The 
network in our model is a three dimensional torus that allows packets to be sent in either 
direction for each dimension.  If x, y, and z represent the size of the network in each 
dimension, each packet requires at most 1/2 * (x + y + z) hops to reach its destination. On 
the average, a randomly generated packet will require 1/4 * (x + y + z) hops.  Using this 
information it became fairly easy to calculate the approximate number of total events.  If 
m is the total number of messages, the expected number of events is close to m * [1 + 1/4 
* (x + y + z)]. 
 
5.2 Random Workload Scaling Experiment 
 
A simple base case experiment was performed to determine the performance, scaling, and 
use of SPEEDES.  This case, while modeling the BG/L nodes and network, did not 
exercise BG/L message flow control or adaptive routing but instead used simple 
dimension ordered routing.  The experimental workload consisted of a uniform burst of 
256 byte packets injected at each BG/L node at simulation start time destined for 
randomly chosen nodes in the network. Results of this experiment are shown in Table 6. 
 
With the large numbers of real messages being sent between physical nodes and a small 
amount of computation used to process each message, good simulation speedup was not 
expected. The focus has been on scaling the size of the simulation to 64K nodes.  
Nevertheless a small series of speedup tests, yielded a pleasant surprise. A speedup of  
3.9 was measured when going from 4 physical processors to 16 physical processors for 
simulating 4096 BG/L nodes. Additionally, the simulation scaling performance was 
within about 10% of ideal, except for the 128 Origin processor case (see Figure 4).  
Because the 128 processor case used all available nodes of the Origin, one of the 
processors was busy running some of the standard O/S tasks as well as the simulation and 
possibly this caused the deviation shown in Figure 4. 
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5.3 LJS Molecular Dynamics Experiment 
 
This experiment was driven a statistical workload generated from the message passing 
pattern from the LJS molecular dynamics application.  Full support for adaptive routing 
and flow control was built into the software.  The application is comprised of a number of 
cycles, with each cycle consisting of a compute stage and a communication stage. During 
each communication stage, a message is sent from each cell to its six immediate 
neighboring cells in three dimensional space.  Messages average about 1750 packets in 
size, with each packet holding 256 bytes.  The model maps a single cell to a single BG/L 
node, and only simulates a single communication stage, because of the repetitive nature 
of the communication and computation cycles. 
 
The BG/L simulations were run on an SGI Origin 2000 with 128 R12000 processors 
available, each running at 300 MHz.  These are configured as 2 processors per node.  
With each node containing 1 GB of RAM, it has a total of 64 GB of RAM. 
 
Two cases were modeled.  In the first case, ideal placement of cells is assumed, i.e. 
nearest neighbor cells are located on the physical nearest neighbor BG/L nodes.  The 
second case assumes cells are mapped randomly to BG/L nodes. In the ideal first case, all 
messages move only one hop, from the originating cell to its nearest neighbor.  Under 
this scenario, no flow control is needed:  packets are collected on the receiving node as 
soon as they arrive, and need not be passed on.  Maximum use of the bandwidth, and  
good scaling were observed.  The model sizes used were 4K, 8K, 16K, 32K, and 64K 
BG/L nodes, with the ratio of one application cell per BG/L node remaining constant.  
These were run on 8, 16, 32, 64, and 128 Origin 2000 processors, respectively.  Because 
not all messages were exactly the same size, the upper limit of bandwidth utilization one 
could expect to see was 82%.  For each model size, 81%  or better (see Figure 5) was 
observed.  
 
Scaling was fairly flat, except for the 64K node case running on 128 Origin nodes, which 
was again attributed to system overhead (see Figure 6).  For the largest size simulated 
transmission of almost 700 million packets was completed. 
 
For the second case, random mapping of application to BG/L nodes,  model sizes of 64 
and 512 BG/L nodes, both run on 8 nodes of the Origin have been run.  Because of the 
high volume of packets sent, and the multiple hops required for each delivery, one can 
see the effects of congestion in the network.  Again using the figure of a maximum 
possible bandwidth utilization of 82%, we see 58% and 54% usage respectively (see 
Figure 7). 
 
For BG/L  the workload is specified for an average iteration by 1.48 seconds compute 
time, 3 ms of communications time for the “best” case independent of the number of 
nodes (not so for the random case which is 13 ms for 64 nodes and rises to 25 ms for 512 
nodes) for sending 3.6Mbytes of data/node. These numbers are for the problem size 
defined and traced where there are 503 x 4 atoms/processing node (or 500,000 
atoms/node). Results shown in Figures 5 and  6 are for the case where the problem size is 
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scaled with the number of nodes so that the number of atoms/node remains constant. For 
example the total problem size for 512 nodes is 512 x 500,000 atoms or approximately 
2.56x108 atoms. 
 
Table 7 shows a comparison between cases (both best case mapping to BG/L nodes) 
where the problem size was kept fixed at 500,000 atoms/processor and a fixed problem 
size of 500,000 atoms. Figure 8 shows the preliminary results for another case where the 
problem size was held constant at a larger number of atoms than 500,000 (at 3.2x107 
atoms) and the number of processing elements were scaled. A crossover point at 32 nodes 
is seen where communications begins to dominate for the random distribution case. No 
such point is seen for the “best” nearest neighbor mapping. Table 8 shows a comparison 
of BG/L single node estimated performance with some other parallel machines. Data for 
the other machines comes from Plimpton [9]. 
 
A further experiment was conducted in which the injection of packets was throttled by a 
delay in the model at each node. Since all application nodes synchronize the exchange of 
data with their nearest neighbors, there is a burst of messages injected. In the case where 
cells are mapped randomly, this burst generates significant conjection in the torus as  
shown in Figure 7. Table 9 shows that slightly better performance can be obtained by 
“throttling” the injection of packets into the network. 

6. Conclusions and Future Work 
 
Several observations can be made from the experiments: 

• SPEEDES has shown itself to be a valuable tool for the purposes of simulating a 
massively parallel machine. 

• PDES enabled simulation of the full set of 64K BG/L nodes for full application 
workloads 

• placement of application nodes on the torus to reduce hops can result in 
significant communications performance increase 

• throttling injection of packets into the torus for highly bursty traffic appears 
attractive in order to increase overall communications performance 

  Planned future work includes: 
• Investigate additional applications, including Quantum Monte Carlo (QMC) [10]; 

3-D Adaptive Mesh Refinement (AMR3D) [11]; Magnetic Hydro Dynamics 
(MHD) [12]; multiscale polycyrstalline [13]; a new Lagrangian-Eulerian Shell-
Fluid coupling algorithm, CONTACT [14] 

• Add Checkpoint and restart capabilities to further extend simulation capabilities 
• Explore various optimistic time management techniques to determine the effect 

on simulation performance, especially for unbalanced workloads 
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Name Value Description 

Physics 
Dt 0.00442 Timestep size in reduced units 
T0 1.444 Initial temperature in reduced units 
� 0.8442 Density in reduced units 
rc 2.5 Cutoff distance in reduced units 
rs 2.8 Extended cutoff distance in reduced units 

Problem definition and execution control 
nx, ny, nz 50, 50, 50 

(per CPU) 
Dimensions of domain bounding box (integer units) 

alat (4/�)1/3≅1.68 Linear scaling factor 
T 5 Number of simulation timesteps 
nneigh 20 Number of timesteps between re-binning 
nbinx, 
nbiny,  
nbinz 

0.6 nx,  
0.6 ny,  
0.6 nz 

Number of cells per each dimension of the domain 

 

Table 1. LJS Experiment Runtime Parameters 
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1 CPU, grid: 50x50x50 Cycles Instructions FPU ops 
Setup 5052199616 4429953927 1770200815
Position computation 10177454 6250758 1500002
Communication 5773665 1296831 337623
Compute force 906525552 646414360 311087829
Reverse communication 3984631 1633667 337586
Velocity computation 24412276 8750806 1500003
Statistics and output 1582670466 1108981709 543052406
 
4 CPUs, grid: 100x100x50 Cycles Instructions FPU ops 
Setup 5221111514 4511174346 1778322208
Position computation 14830811 6250758 1500004
Communication 10173647 3452399 247947
Compute force 919677779 642524200 309253334
Reverse communication 20714843 17943413 403433
Velocity computation 28379907 8750806 1500002
Statistics and output 1629528274 1127778373 539980682
 
8 CPUs, grid: 100x100x100 Cycles Instructions FPU ops 
Setup 5219709948 4559748718 1778872028
Position computation 19109039 6250758 1500012
Communication 12344903 3682710 193669
Compute force 904651811 642808360 309405641
Reverse communication 69268341 71835364 383606
Velocity computation 33611634 8750806 1500004
Statistics and output 1611655969 1126834265 540171202
 
64 CPUs, grid: 200x200x200 Cycles Instructions FPU ops 
Setup 8482763222 7700183441 1782447444
Position computation 18828594 6250744 1500010
Communication 21939538 14506940 197011
Compute force 905015895 642808346 309131305
Reverse communication 79774656 72790176 362519
Velocity computation 33838233 8750792 1500003
Statistics and output 1778038079 1283720429 540689376
 

Table 2. Operation Counts for Various Numbers of CPU’s 
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Configuration Comm. phase Destination rank Message size (bytes) 

2 496800
2 372600
1 1063152

Forward 

1 797352
1 797352
1 1063152
2 372600

4 CPUs 

Reverse 

2 496800
4 480000
4 360000
2 513600
2 385200
1 549552

Forward 

1 412152
1 412152
1 549552
2 385200
2 513600
4 360000

8 CPUs 

Reverse 

4 480000
48 480000
16 360000
12 513600
4 385200
3 549552

Forward 

1 412152
3 412152
1 549552

12 385200
4 513600

48 360000

64 CPUs 

Reverse 

16 480000
 

Table 3. Communications Profile 
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64 CPUs, grid: 100x100x100 Cycles Instructions FPU ops 
Setup 4518993233 4403610464 224582074
Compute positions 1130213 781994 187500
Communication 4574366 3009445 52475
Compute force 109366444 79949995 38478599
Reverse communication 7547645 6008098 92208
Compute velocities 3222944 1094542 187501
Statistics and output 206037876 148078372 67258754
 
Configuration Comm. phase Destination rank Message size 

(bytes) 
Ratio to msg. size 
for 2003 grid 

48 120000 1:4
16 90000 1:4
12 136800 1:3.75
4 102600 1:3.75
3 155952 1:3.52

Forward 
 

1 116952 1:3.52
3 116952 1:3.52
1 155952 1:3.52

12 102600 1:3.75
4 136800 1:3.75

48 90000 1:4

64 CPUs, 
100x100x100 
grid 

Reverse 

16 120000 1:4
 

Table 4. Tracing Results for  nx = ny = nz = 100 on 64 CPU’s 
 

Configuration Destination rank Message size (bytes) 
48 12000
16 12000
48 4800
16 3600
12 44400

4 44400
12 17760

4 13320
3 164280
1 164280
3 65712

64 CPUs, 
20x20x20 grid 

1 49272
 

Table 5. Tracing Results for  nx = ny = nz = 20 on 64 CPU’s 
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Configuration BG/L 
nodes 

SGI 2000 
Physical 
Processors 

Total Injected 
Packets 

Average 
hops/pkt 

16x16x16 4K 8 400K 12 

16x16x32 8K 16 800K 16 

16x32x32 16K 32 1.6M 20 

32x32x32 32K 64 3.2M 24 

32x32x64 64K 128 6.4M 32 

Table 6.  Benchmark Problem Sizes 

 
 

SPEEDES Performance

0

200

400

600

800

1000

1200

1400

1600

16x16x16
(8 SGI)

16x16x32
(16 SGI)

16x32x32
(32 SGI)

32x32x32
(64 SGI)

32x32x64
(128 SGI)

Configuration

S
e
co

n
d
s

Best Case
Measured

Figure 4. Scaling Results – Random Workload Case 
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Figure 7. Best vs. Random Distribution of Cells 

 
Scaled Size    

N (atoms) BG/L Nodes Compute Time (ms) 
Communications 
Time (ms) 

500,000 1 1480 3 
256,000,000 512 1480 3 
512,000,000 1024 1480 3 

1,024,000,000 2048 1480 3 
2,048,000,000 4096 1480 3 
4,096,000,000 8192 1480 3 
8,192,000,000 16384 1480 3 

16,384,000,000 32768 1480 3 
32,768,000,000 65536 1480 3 

    
Fixed Size    

N (atoms) BG/L Nodes Compute Time (ms) 
Communications 
Time (ms) 

500,000 1 1480 3.00E+00 
500,000 512 2.89E+00 1.88E+00 
500,000 1024 1.45E+00 1.17E+00 
500,000 2048 7.23E-01 7.32E-01 
500,000 4096 3.61E-01 4.58E-01 
500,000 8192 1.81E-01 2.86E-01 
500,000 16384 9.03E-02 1.79E-01 
500,000 32768 4.52E-02 1.12E-01 
500,000 65536 2.26E-02 6.98E-02 

 
Table 7. Fixed vs. Scaled Problem Size 

25 



 

0.01

0.10

1.00

10.00

8 16 32 64 128 256 512

Number of Nodes

C
om

pu
te

 T
im

e 
(s

ec
s)

0.0001

0.001

0.01

0.1

1

C
om

m
un

ic
at

io
ns

 T
im

e 
(s

ec
s)

Compute
Comms (best)
Comms (random)

 
 
 

Figure 8. Fixed Problem Size Mapped to Increasing Number of BG/L Nodes 
 
 

Processor Machine CPU sec/atom/timestep 
333 MHZ Pentium* Intel Tflops 1.67E-5 

500 MHZ DEC Alpha EV6* Sandia CPlant 7.03E-6 

450 MHZ DEC Alpha EV5* Cray T3E 1.7E-5 
195 MHZ MIPS R10000* SGI Origin 1.49E-5 
700 MHZ BG/L Processor Blue Gene/L 2.96E-6 
 

Table 8. CPU secs/time step Comparisons (*from Plimpton [99]) 
 
 
 

Packet Delay 
(us) 

Flush Time 
(ms) 

Escapes Avg Transit Time 
(us) 

Bandwidth 
Utilization 

0 24.9 10.20% 85.6 54.10% 
3 24.4 9.70% 81.4 55.10% 
6 25 8.90% 74.3 53.80% 
9 24.2 3.60% 33.5 55.80% 
10 21.5 0.50% 10.9 62.80% 
11 23.6 0% 7.4 57.10% 
 

Table 9. Throttling Effects for Random Distribution Case on 512 BG/L Nodes 
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