
Performance Analysis of
Blue Gene/L

Using Parallel Discrete Event Simulation

Ed Upchurch
Paul L. Springer

Maciej Brodowicz
Sharon Brunett

T. D. Gottschalk

Center for Advanced Computing Research
California Institute of Technology

Abstract

High performance computers currently under construction, such as IBM’s Blue Gene/L,
consisting of large numbers (64K) of low cost processing elements with relatively small
local memories (256MB) connected via relatively low bandwidth (0.0625 Bytes/FLOP)
low cost interconnection networks promise exceptional cost-performance for some
scientific applications. Due to the large number of processing elements and adaptive
routing networks in such systems, performance analysis of meaningful application
kernels requires innovative methods. This paper describes a method that combines
application analysis, tracing and parallel discrete event simulation to provide early
performance prediction. Specifically, results of performance analysis of a Lennard-Jones
Spatial (LJS) Decomposition molecular dynamics benchmark code for Blue Gene/L are
given.

1. Introduction

Caltech’s Center for Advanced Computing Research (CACR) is conducting application
and simulation analyses of Blue Gene/L[1] in order to establish a range of effectiveness
of the architecture in performing important classes of computations and to determine the
design sensitivity of the global interconnect network in support of real world ASCI
application execution.

Due to the large number (64K) of processing elements and adaptive routing networks in
Blue Gene/L, performance analysis of meaningful application kernels requires innovative
methods. This paper describes a method that combines application analysis, tracing and
parallel discrete event simulation to provide early performance prediction. Specifically,
results of performance analysis of a Lennard-Jones Spatial (LJS) Decomposition
molecular dynamics benchmark code for Blue Gene/L are given.

1

Cycle-by-cycle level simulation a 64K node system running parallel applications is
necessary for detailed machine design and IBM has done this, but runtimes are too long
for spanning a number of applications at application iteration level. In lieu of this, our
team is taking a statistical approach using parameterized models of the applications
(workloads) and statistical (queuing) models of processing node message traffic derived
from traces produced by the computational experiments. All 64K nodes of BG/L are
explicitly represented, but the model is not cycle-by-cycle accurate although effects of
adaptive routing and network contention are of necessity reliably modeled. For a further
increase in simulation performance, an optimistic parallel discrete event simulation
(PDES) framework is employed.

Our methodology was applied to select ASCI applications in order to provide statistical
workloads for performance analysis using the parallel BG/L simulator. These
applications stress load balancing, multiple languages, and dynamic behavior with respect
to CPU/memory/communications usage throughout execution.

2. Approach
A benchmark code for an important class of applications, Lennard-Jones Spatial
Decomposition (LJS) molecular dynamics [2], was selected as an example of an
important class of numerical problems and a methodology of algorithm analysis, tracing
and simulation was used to produce performance estimates for a 64K node Blue Gene/L.

LJS is an example of a fast parallel algorithm for short range molecular dynamics
applications simulating Newtonian interactions in large groups of atoms. Such
simulations are large in two dimensions: number of atoms and number of time steps. The
spatial decomposition case was selected where each processing node keeps track of the
positions and movement of the atoms in a 3-D box. Since the simulations model
interactions on an atomic scale, the computations carried out in a single time step
(iteration) correspond to femto-seconds of real time. Hence, a meaningful simulation of
the evolution of the system’s state typically requires a large number (thousands) of time
steps. Point-to-point MPI messages are exchanged across each of the 6 sides of the box at
each time step. The code is written in Fortran and MPI.

Application analysis played a major role in characterization of LJS to determine BG/L
expected performance. Traces on a small number of nodes were used to identify phases
of execution and resource consuming compute kernels and mix of MPI messages.
Analysis however was necessary to derive the relationship between:

1. number of application “grid elements”/node vs. # physical BG/L nodes
2. communications vs. mapping onto BG/L physical nodes
3. number of application “grid elements”/node vs. physical node memory required
4. compute time vs. #”grid elements”/node vs. #BG/L physical nodes
5. comms distribution (type, length) vs. #”grid elements” vs. #BG/L physical nodes
6. i/o vs. #”grid elements”/node vs. # BG/L physical nodes

2

Algorithm analysis coupled with simulation results will also enable evaluation of
potential application design enhancements to take advantage of BG/L’s specific
architectural strengths.

Application tracing of LJS is used to:

1. Gain insight into scaling up to 65K nodes and to verify application algorithm and
code analysis – although it is very limited in scope (up to 1024 nodes, less than
1/60th of BG/L’s expected size)

2. Collect statistical data (via use of trace analysis tools) on message distribution,
length, compute times etc. and give insight into statistical variation for application
execution phases

And finally a parallel BG/L simulation model is used to estimate LJS performance on
BG/L for a variety of mappings to various numbers of BG/L compute nodes.
Performance metrics including: time to solution; network utilization and scalability are
reported.

3 The Molecular Dynamics (MD) Problem

The basic computational problem is the evaluation of the total force on a particle, written
as a sum over pair-wise forces arising from all other particles in an ensemble:

Fj = Σi≠j Fij
The pairwise force Fij is provided by some dynamical model (e.g., described by a
Lennard-Jones potential). It depends on the positions of the two particles involved and
possibly on other state variables of the physics model.

The kinematic state of an individual particle at a time t is specified by the particle’s
position and velocity. The force equation gives the acceleration that is used to update the
particle’s state through some small time step ∆T. (“Real” MD codes generally use more
sophisticated integrators. This is a per-particle computational cost and does not affect the
scaling discussions of this paper.)

The essential simplifying assumption for MD models is limited range of the pairwise
forces:

Fij = 0, |rij| > rC

The force cutoff rC is a parameter of the model. Given this assumption, the total
computational cost for a single update cycle is approximately

Cost = NTOT∗(α + β∗NNBD + δ)
Where

1. NTOT is the total number of particles
2. NNBD is the (typical) number of particles in the force neighborhood of an

individual particle
3. α is the cost of integrating the equation of motion for an individual particle over

the (small) time step.

3

4. β is the cost of computing a single inter-particle force Fij
5. δ is the cost of finding/enumerating particles in the neighborhood of the current

particle of interest.

The coefficients ‘α’ and ‘β’ are fairly straightforward and could presumably be measures
by profiles of single-processor executions of an actual code. The “finding” coefficient ‘δ’
is a bit more complicated and will be discussed in more detail below.

3.1 Spatial Decomposition Algorithm: Qualitative Overview

The Spatial Decomposition (SD) algorithm for parallel MD can be described as follows:

1. The physical volume is divided into a (regular) grid.
2. Each grid cell (see Figure 1) is assigned to a processor, and a processor is

responsible for performing the force calculations and state updates for all particles
(nominally) within the cell.

3. Force computation requires state information for some particles owned by other
processors – the lightly shaded area in Figure 1. These are acquired by a
communications phase at the start of each computational step.

4. Particles will occasionally drift across processor boundaries. These processors
remain the responsibility of the original parent processor during the basic
(Communicate,Update) cycle outlines in steps 2 and 3. Reassignment of particles
to processors according to the cell boundaries is done periodically but (far) less
frequently than the basic update cycle.

The communications for the data sharing of Step 2 are straightforward and involve
synchronized messaging within the grid. The communications phase is a number of
pairwise data exchanges between (logically) neighboring processors. The step are as
follows (see Figure 2):

1. Processors send all particles within the interaction of a horizontal boundary to the
other processor at that boundary, at the same time accepting particles from that
processor.

2. The “vertical” sharing in step (1) is then repeated in the other physical
dimensions.

During the second/horizontal sharing, a processor will generally send some particles it
received during the preceding vertical sharing. This is the mechanism for acquiring
relevant data from the “diagonal neighbors”.

3.2 Complications and Simplifications

Ignoring the periodic, lower frequency reassignments of ownership of particles that drift
across cell/processor boundaries, the basic update cycle for any one processor has two
parts:

4

1. Communications: Retrieve current positions of “boundary” particles assigned to
neighboring processors. Send current state of boundary particles known by this
processor to neighbors

2. Computation: Perform the force evaluation and state update calculation for all
particles owned by the processor.

The amount of communications depends on the relative magnitudes of the force range
(rS) and the width (d) of a physical grid cell assigned to a given processor. If d < rS, then
the current positions must be exchanged across multiple hops in the communications
scheme of shown in Figure 2. In the other cases, we can approximate

NCOMM = λ NTOT

For some scale factor λ,

λ= Fraction of local particles interesting across a single boundary.

The analysis here makes this assumption, ignoring the more complex d < rS case.

The low frequency rearrangement of particles across cell boundaries will also typically
involve some (smaller) fraction of the local particles. It is during this lower frequency
exchange that Plimpton recommends reconstruction of the the data structures used for
efficient near neighbor searches in the force computation loop. For now, the scaling
behaviors and expectations for this low-frequency particle migration and search tree
reconstruction are ignored.

 3.3 Parameterized Model: Performance and Scaling

The activity of an individual processor for a single computational cycle can be modeled
by a simple “time line”, as shown in Figure 3. The activities and expected costs/times
for these components are as follows:

1. Communication

In each of three dimensions and two directions per dimension, the processor
exchanges data with its neighbor. The amount of data exchanged is

Data = λ*NLOC*(Individual Datum Size)

A typical datum size would be three doubles for position and one int for particle
ID. This gives the size of the message. Actual communications costs will depend
on the location of the logically adjacent processor within the communications
network.

5

2. Computation

As described above in Section I, the cost/time for the computational phase can be
written as

Cost = NLOC (α + γ NLOC)

Where, for simplicity, the data structure maintenance cost (δ) has been ignored.

3. Synchronization/Waiting

The pairwise data exchanges of Figure 2 are synchronized. This will introduce
various communications delays that have been collectively lumped into a single
Wait Time before the start of the next simulation step.

In the above,
NLOC = NTOT/NP

Is the “local” particle count – the number of particles out of NTOT total particles owned by
one of NP total processors. The NNBD “force neighborhood” count from Section I has
been estimated as some fraction of the Local count – essentially an assumption of
approximately uniform particle densities across the system.

The overall scaling behavior will clearly depend on which of the parameters NTOT, NLOC,
NP are held fixed.

This provides a simple three parameter model for approximating the LJS algorithm in a
Speedes-based simulation. The various points on the time axes of Figure 3 are the
discrete events for the simulation. The communications message size estimates the total
byte count for each message in terms of one parameter (λ) and the Computation cost is a
simple two-parameter representation.

4 Tracing Overview

LJS (Lennard-Jones with Spatial decomposition) target code is a molecular dynamics
application developed by Steve Plimpton at Sandia National Laboratories [2]. It performs
thermodynamic simulations of a system containing fixed large number (millions) of
atoms or molecules confined within a regular, three-dimensional domain. Since the
simulations model interactions on atomic scale, the computations carried out in a single
timestep (iteration) correspond to femtoseconds of real time. Hence, a meaningful
simulation of the evolution of the system’s state typically requires a large number
(thousands and more) of timesteps.

The particles in LJS are represented as material points subjected to forces resulting from
interactions with other particles. While the general case involves N-body solvers, LJS
implements only pair-wise material point interactions using the derivative of Lennard-

6

Jones potential energy for each particle pair to evaluate the acting forces. The velocities
and positions of particles are updated by integrating Newton’s equations (classical
molecular dynamics). The interaction range depends on the modeled problem type; LJS
focuses on short-range forces, implementing a cutoff distance rc outside which the
interactions are ignored. The computational complexity of O(N2), characteristic for
systems with long-range interactions, is therefore substantially reduced.

LJS deploys spatial decomposition of the domain volume to distribute the computations
across the available processors on a parallel computer. The decomposition process
uniformly divides a parallelepiped containing all particles into volumes equal in size and
as close in shape to a cube as possible, assigning each of such formed cells to a CPU. The
correctness of computations requires the positions of some particles (depending on the
value of rc) residing in the neighboring cells to be known to the local process. This
information is exchanged in every timestep via explicit communication with the neighbor
nodes in all three dimensions (for details see [3]). LJS also takes the advantage of
Newton’s third law to calculate the force only once per particle pair; if the involved
particles belong to cells located on different processors, the results are forwarded to the
other node in a “reverse communication” phase.

Besides communications occurring for each iteration, additional messages are sent once
every preset number of timesteps. Their purpose is to adjust cell assignments of particles
due to their movement. To minimize the overhead of the construction of particle neighbor
lists, LJS replaces rc with an extended cutoff radius rs (rs > rc), which accounts for
possible particle movement before any list updates need to be carried out. Due to a
relatively small impact of that phase on the overall behavior of the application, it is
ignored it in this analysis.

4.1 LJS Benchmark Experiment Configuration

The runtime parameters of the simulation along with their values are listed in Table 1.

The total number of particles, N, is given as

N = 4 nx ny nz ,

where ni are integers (there is a fixed average of four particles per unit cube). The
problem is executed on a grid of P processors, such that

P = px py pz, with pi = ni/ki where ki are integers.

In the benchmarks ki = 50, hence the problem size was 50x50x50 (or 500,000 particles)
on a single, 100x100x50 on four, 100x100x100 on eight and 200x200x200 on 64
processors. Such configurations require approximately 200MB of memory per CPU for
all LJS data structures well within expected user memory for Blue Gene/L. Note that the
cutoff distances are significantly smaller than the linear dimensions of the domain
fragment assigned to a single processor (50⋅alat ≅ 84), hence the spatial decomposition
algorithm is performing efficiently (time spent in all communication phases is

7

significantly smaller than the total computation time and didn’t exceed 15% of the
application runtime in the experiments).

LJS initializes its data structures by assigning particle positions on a regular 3-D mesh
(thus emulating a crystal lattice) and computing velocity vectors to satisfy the initial
temperature requirement. The velocities are otherwise random in magnitude and
direction. In the next few time steps of the simulation the particles move from their
positions on the grid (the crystal melts). Therefore, to capture the application behavior as
close to the average (no imbalances of particle counts between processors), tracing was
limited to the first five iterations.

4.2 ETF Instrumentation

In order to extract more detailed runtime information, ETF (Extensible Tracing Facility)
[4] was used to instrument the application code. The instrumentation’s goal was to
provide low-level instruction counts executed at the user level, obtain timing information,
register parameters used by MPI routines for message passing and mark starting and
ending points of important execution phases.

4.2.1 ETF Counters and Timers

ETF is capable of accessing high-resolution timers and hardware event counters on select
platforms. Currently, such support exists for IBM SP2 (Power processors) via a PMAPI
interface. Using Power architecture in our experiments is convenient, as BG/L processors
are based on a modified version of the PowerPC core, which shares significant elements
of ISA and hardware features with the Power processor line. PMAPI supports up to eight
64-bit event counters, however, they cannot be assigned to counters arbitrarily and that
limits the effective number of events monitored concurrently. Another constraint is
caused by OS overhead (1200..1500 cycles per readout of a counter set), which may
produce skewed results if the counters are accessed too frequently. In our experiments we
decided to restrict the monitoring to the execution in user mode only, as the kernel mode
offers little insight into application behavior and cannot be properly verified due to lack
of the source code. The events of interest included: the number of CPU cycles spent
executing the code, the number of instructions completed and the cumulative count of all
FPU operations (this required summing the counts of instructions retired by both floating
point units of the processor).

4.3 MPI Communication

LJS uses a small subset of MPI-1 calls for message passing. The collective calls (Barrier,
Bcast, Allreduce) are invoked only during the setup phase and when computing the
thermodynamic state of the system (typically at the end of execution). Throughout the
simulation, the bulk of data is transferred by point-to-point calls (blocking Send and non-
blocking Irecv, which enable overlapping of bi-directional transmissions). For the
parameter set listed above, the messages originating from each node are emitted to its six
nearest neighbor (in a 3-D grid) nodes only. Due to the use of a periodic Cartesian

8

communicator, particles migrating outside the domain from boundary cells in any
dimension, appear in the opposite boundary cell in that dimension.

To simplify the trace analysis, ETF was configured to register the message sizes and
destination nodes of point-to-point communications. Memory reference tracking, which
includes message buffer pointers and maps of MPI datatypes in the trace, was disabled.

4.4 LJS Execution Phases

The source code of LJS was augmented with calls injecting markers at the endpoints of
the following phases:

• Setup and initialization (procedures: input, setup_general, setup_memory,
setup_comm, setup_neigh, setup_atom, scale_velocity, exchange, borders,
neighbor)

• Iteration of the main loop (integrate):
o Calculation of the new positions of particles
o Communication: update of the positions of remote particles

(communicate)
o Computation of forces (force_newton)
o Reverse communication: propagation of forces (reverse_comm.)
o Calculation of particle velocities

• Final thermodynamics evaluation and printout (thermo, output)

4.5 Computational Profile

The computational workload was very consistent from iteration to iteration and across the
nodes. This is expected due to uniform initial distribution of particles and symmetric
neighborhoods of each cell. Table 2 shows counter values collected for the setup,
intermediate phases of the fourth time step of the simulation (which is representative for
other iterations as well) and finalization phase for different number of processors.

The only significant inconsistencies are variances in event counts for the communication
phases. This is understandable, since the message passing is inherently non-deterministic.
For example, messages of identical sizes can be split into different number of packets
depending on the transient condition of the interconnect network and hence the overhead
of message fragmentation and reassembly may not be identical. Note that even though the
network traversal time should be excluded from timings in user mode, the actual behavior
is strongly implementation dependent; if the MPI library uses busy waiting to poll for
incoming messages, this fact will be reflected in counts. The global trend of increasing
the overhead with the problem size is, however, sustained.

LJS deploys a “leapfrog” integrator, whose operation is expressed as (only position
computation shown; velocity calculation is identical in complexity with properly adjusted
dt):

xi(t+1) = xi(t)+vi(t+1/2) dt, for dimension i = 1, 2, 3 in iteration t.

9

This is in nearly perfect agreement with the FPU counts: 500,000 particles per CPU with
3 dimensional components yield 1.5 million operations. The compiler takes advantage of
the fact that the Power ISA includes a multiply-add instruction; otherwise the FPU counts
would be twice as high. The number of cycles spent in velocity calculation phase is
higher than that of position integration, since the previous values of velocity vectors need
to be preserved for thermodynamic state computations, while the old position vectors are
simply overwritten. The copy operation doesn’t use the FPU, hence the additional
overhead manifests itself only in increased instruction/cycle counts. Still, by far the most
dominant portion of each time step is devoted to the force computation, thus justifying
the presence of reverse communication step.

4.6 Communication Profile

Due to symmetry of the problem decomposition and repeatability of parameters passed to
MPI calls, only one-iteration behavior on a single processor was analyzed. The results are
collected in Table 3 listing destinations and sizes of messages transmitted from rank 0.
The send order in each communication phase is reflected by the row position (entries
closer to the top of the table are sent earlier).

This scheme is repeated in every time step. Differences across the nodes are relevant only
to destination rank numbers, but they stay fixed throughout the execution for a given
sender node. Note that the number of messages is reduced when running on less than 8
processors. This is because 23 CPUs is the smallest configuration where the
computational domain can be decomposed into at least two partitions along each
dimension. A small inefficiency of LJS may be observed when running on less than 64
processors: the messages within the same communication phase are emitted to repeated
destinations. When scaling beyond 64 CPUs, message sizes and number of destinations
stay fixed as long as the size of local grid on every processor is preserved.

4.7 Algorithm Scaling

To verify the characteristics of program execution for other problem sizes, LJS was
traced with reduced grid size of nx = ny = nz = 100 on 64 processors. The computational
workload parameters (fourth iteration only) and message sizes are given in Table 4.

As can be easily seen, the computational workload decreased proportionally to the
problem volume (23 times, as the problem size in each dimension was halved). The
memory allocation for LJS data arrays was 26.5MB per processor, again – roughly 1/8 of
that required for 200x200x200 configuration. Message sizes were reduced approximately
four times, what agrees well with the assumption of communication volume being
proportional to the cell surface area. Note that the ideal ratio of four is observed only for
the exchanges along the first dimension. This figure is distorted for transmissions along
the second and third dimension due to the fact that the presence of volume characteristic
increases in subsequent data sends.

10

The spatial decomposition algorithm implemented in LJS behaves consistently over a
wide range of grid sizes. The anomalies resulting from the cutoff distance rs being
comparable with the physical dimensions of a sub-grid assigned to a single processor
arise for relatively small problem sizes, for which the communication overhead nearly
always exceeds the cumulative duration of computations. To investigate such a case, the
program was configured to run a 20x20x20 problem (on 64 CPUs this yields a 5x5x5 grid
per processor) with artificially increased values of rc = 10 and rs = 11.2. The
communication characteristics are given in Table 5 with the “reverse” communication
phase omitted for brevity.

Since rs is longer than the linear dimension of the local sub-domain (d = 5⋅alat ≅ 8.4), the
communication must involve not only the immediate neighbors of a processor, but also
cells located one more grid “hop” away (because d < rs < 2d). As LJS processes don’t
communicate with the remote neighbors directly, the data are passed in multiple steps
through the immediate neighbors’ buffers. Unlike in the typical scenario described in
section 4.2, the ratio of communication volume along the third dimension (the last four
entries in the table) to that of the first dimension (the first four entries) is significantly
larger due to much larger final volume of data accumulated from neighboring cells within
the cutoff distance in all three dimensions compared to that for just one dimension. The
memory consumption, 10.7MB per processor, also deviates from the simplistic estimates,
most likely due to excessive buffer space required for communication. However, such
situations arise rarely in practical short-range problems when executed on machines with
sufficient amount of memory per node.

5 BG/L Parallel Simulation Overview
In order to simulate the full size Blue Gene/L system of 64K processing nodes for
meaningful portions of ASCI applications, it has been necessary to resort to parallel
discrete event simulation methods to produce models that can themselves run on parallel
machines. Our goal is to extract as much parallelism as possible from the simulation. This
goal has led to the use of optimistic simulation management methods.

In a discrete event simulation, care must be taken that all events are executed in the
proper time order. In a sequential implementation a simple sorted global event list
satisfies this requirement. In a parallel discrete event simulation while individual event
lists on each simulation node are ordered in time, there is no global event list. Two events
executed on separate nodes must be coordinated in order to avoid a causality error.

Mechanisms that address causality errors fall into two categories: conservative and
optimistic [5]. Conservative algorithms avoid causality errors by constraining the
operation of the simulation so that events that could possibly cause causality errors are
properly serialized. Optimistic algorithms fully exploit available parallelism by allowing
causality errors to occur, but detect this situation and force event rollbacks. Additional
overhead is incurred but practice has shown that this cost is generally offset by the extra
parallelism extracted.

11

It is expected for BG/L simulation that a PDES using optimistic time management will be
more efficient than conservative methods at handling workloads involving uneven
workload distributions, especially for the case where the load imbalances may exist at
any instant in simulation time, but that over the course of the entire simulation the total
loads on each node balance. This is because optimistic methods allow for temporal load
balancing. Nodes are allowed to run at different rates, so that if a node temporarily has a
heavier load, it is allowed to fall back in simulation time, and can catch up later when its
load is eased.

A BG/L model was developed using SPEEDES, an optimistic parallel simulation
framework developed in the early 1990’s by Steinman [6]. By default, SPEEDES uses a
synchronization algorithm called breathing time warp based on the concept of virtual
time developed by Jefferson [7]. SPEEDES modifies Jefferson’s original time warp
concept by placing a limitation on the number of rollbacks that may occur in the course
of the simulation. This algorithm uses a time window to prevent runaway objects from
generating excessive numbers of rollbacks. However the choice of algorithm is governed
by a runtime parameter that may be modified to remove any such limitations, allowing a
pure Time Warp based algorithm to be use.

When it came time to install SPEEDES the decision of whether to install it on an SGI
Origin 2000, or a Beowulf cluster had to be taken. Steinman recommended the Origin
because it uses a shared memory model for communications between processors, which,
for SPEEDES, is much more efficient than using a message passing model such as MPI
found on the cluster. In addition, SPEEDES has been used for a battlefield simulation that
handled 1,000,000 simulation objects running on 100 Origin nodes. This indicated
feasibility that SPEEDES would scale efficiently on the Origin to handle the 64K nodes
of BG/L. Because SPEEDES had previously been ported to the Origin, it was fairly
straightforward to install on the 128 node Origin 2000 at JPL.

5.1 Model Development

Blue Gene/L uses a 3-D torus based network for point-to-point communications between
nodes[1][8]. The torus router that exists on each BG/L node is modeled including the 6
injection FIFOs, as well as FIFOs associated with the 6 input and output network links at
each node. Each link has associated with it two virtual channels that are used for
adaptive routing, and 1 virtual channel used for deterministic routing. The latter is used
for deadlock avoidance, and only when congestion prevents a packet from being
adaptively routed. Tokens are used for flow control between routers. Virtual cut-through
routing is used to minimize latencies.

The fundamental programming construct in SPEEDES is the simulation object. Each
such object communicates to other objects by sending and receiving time-stamped
messages. Receipt of a message eventually triggers the receiving object to process that
message. The simulation time of the received message becomes the simulation time
associated with the corresponding object when it executes. If an object executes during a
certain time slice and is not rolled back, that event is said to be committed.

12

Each network node as a unique SPEEDES object and each network packet is modeled as
a message in the simulation. This level of granularity is needed because of the
complexity involved in the adaptive routing being used by the network. As congestion
builds up in one part of the network, traffic patterns change in an attempt to route
messages around the congested area.

Simulation messages are small, and only contain information relating to the transfer
process, such as the origination node, destination node, and time of origination. When a
message is sent from one object to another, it triggers an arbitration process in the
receiving object that determines whether the message needs to be sent on, and if so, what
route it should take. In parallel with this, the same object is examining its workload
queue to determine whether new messages are being generated. Information about
congestion on that node is sent back to the originating node to assist in flow control and
the adaptive routing algorithm.

Each message injected in the simulation resulted in an event. An event was also
generated each time the message was received, whether it was received on the originating
node when it was first injected, or received by a destination or intermediate node. The
network in our model is a three dimensional torus that allows packets to be sent in either
direction for each dimension. If x, y, and z represent the size of the network in each
dimension, each packet requires at most 1/2 * (x + y + z) hops to reach its destination. On
the average, a randomly generated packet will require 1/4 * (x + y + z) hops. Using this
information it became fairly easy to calculate the approximate number of total events. If
m is the total number of messages, the expected number of events is close to m * [1 + 1/4
* (x + y + z)].

5.2 Random Workload Scaling Experiment

A simple base case experiment was performed to determine the performance, scaling, and
use of SPEEDES. This case, while modeling the BG/L nodes and network, did not
exercise BG/L message flow control or adaptive routing but instead used simple
dimension ordered routing. The experimental workload consisted of a uniform burst of
256 byte packets injected at each BG/L node at simulation start time destined for
randomly chosen nodes in the network. Results of this experiment are shown in Table 6.

With the large numbers of real messages being sent between physical nodes and a small
amount of computation used to process each message, good simulation speedup was not
expected. The focus has been on scaling the size of the simulation to 64K nodes.
Nevertheless a small series of speedup tests, yielded a pleasant surprise. A speedup of
3.9 was measured when going from 4 physical processors to 16 physical processors for
simulating 4096 BG/L nodes. Additionally, the simulation scaling performance was
within about 10% of ideal, except for the 128 Origin processor case (see Figure 4).
Because the 128 processor case used all available nodes of the Origin, one of the
processors was busy running some of the standard O/S tasks as well as the simulation and
possibly this caused the deviation shown in Figure 4.

13

5.3 LJS Molecular Dynamics Experiment

This experiment was driven a statistical workload generated from the message passing
pattern from the LJS molecular dynamics application. Full support for adaptive routing
and flow control was built into the software. The application is comprised of a number of
cycles, with each cycle consisting of a compute stage and a communication stage. During
each communication stage, a message is sent from each cell to its six immediate
neighboring cells in three dimensional space. Messages average about 1750 packets in
size, with each packet holding 256 bytes. The model maps a single cell to a single BG/L
node, and only simulates a single communication stage, because of the repetitive nature
of the communication and computation cycles.

The BG/L simulations were run on an SGI Origin 2000 with 128 R12000 processors
available, each running at 300 MHz. These are configured as 2 processors per node.
With each node containing 1 GB of RAM, it has a total of 64 GB of RAM.

Two cases were modeled. In the first case, ideal placement of cells is assumed, i.e.
nearest neighbor cells are located on the physical nearest neighbor BG/L nodes. The
second case assumes cells are mapped randomly to BG/L nodes. In the ideal first case, all
messages move only one hop, from the originating cell to its nearest neighbor. Under
this scenario, no flow control is needed: packets are collected on the receiving node as
soon as they arrive, and need not be passed on. Maximum use of the bandwidth, and
good scaling were observed. The model sizes used were 4K, 8K, 16K, 32K, and 64K
BG/L nodes, with the ratio of one application cell per BG/L node remaining constant.
These were run on 8, 16, 32, 64, and 128 Origin 2000 processors, respectively. Because
not all messages were exactly the same size, the upper limit of bandwidth utilization one
could expect to see was 82%. For each model size, 81% or better (see Figure 5) was
observed.

Scaling was fairly flat, except for the 64K node case running on 128 Origin nodes, which
was again attributed to system overhead (see Figure 6). For the largest size simulated
transmission of almost 700 million packets was completed.

For the second case, random mapping of application to BG/L nodes, model sizes of 64
and 512 BG/L nodes, both run on 8 nodes of the Origin have been run. Because of the
high volume of packets sent, and the multiple hops required for each delivery, one can
see the effects of congestion in the network. Again using the figure of a maximum
possible bandwidth utilization of 82%, we see 58% and 54% usage respectively (see
Figure 7).

For BG/L the workload is specified for an average iteration by 1.48 seconds compute
time, 3 ms of communications time for the “best” case independent of the number of
nodes (not so for the random case which is 13 ms for 64 nodes and rises to 25 ms for 512
nodes) for sending 3.6Mbytes of data/node. These numbers are for the problem size
defined and traced where there are 503 x 4 atoms/processing node (or 500,000
atoms/node). Results shown in Figures 5 and 6 are for the case where the problem size is

14

scaled with the number of nodes so that the number of atoms/node remains constant. For
example the total problem size for 512 nodes is 512 x 500,000 atoms or approximately
2.56x108 atoms.

Table 7 shows a comparison between cases (both best case mapping to BG/L nodes)
where the problem size was kept fixed at 500,000 atoms/processor and a fixed problem
size of 500,000 atoms. Figure 8 shows the preliminary results for another case where the
problem size was held constant at a larger number of atoms than 500,000 (at 3.2x107
atoms) and the number of processing elements were scaled. A crossover point at 32 nodes
is seen where communications begins to dominate for the random distribution case. No
such point is seen for the “best” nearest neighbor mapping. Table 8 shows a comparison
of BG/L single node estimated performance with some other parallel machines. Data for
the other machines comes from Plimpton [9].

A further experiment was conducted in which the injection of packets was throttled by a
delay in the model at each node. Since all application nodes synchronize the exchange of
data with their nearest neighbors, there is a burst of messages injected. In the case where
cells are mapped randomly, this burst generates significant conjection in the torus as
shown in Figure 7. Table 9 shows that slightly better performance can be obtained by
“throttling” the injection of packets into the network.

6. Conclusions and Future Work

Several observations can be made from the experiments:

• SPEEDES has shown itself to be a valuable tool for the purposes of simulating a
massively parallel machine.

• PDES enabled simulation of the full set of 64K BG/L nodes for full application
workloads

• placement of application nodes on the torus to reduce hops can result in
significant communications performance increase

• throttling injection of packets into the torus for highly bursty traffic appears
attractive in order to increase overall communications performance

 Planned future work includes:
• Investigate additional applications, including Quantum Monte Carlo (QMC) [10];

3-D Adaptive Mesh Refinement (AMR3D) [11]; Magnetic Hydro Dynamics
(MHD) [12]; multiscale polycyrstalline [13]; a new Lagrangian-Eulerian Shell-
Fluid coupling algorithm, CONTACT [14]

• Add Checkpoint and restart capabilities to further extend simulation capabilities
• Explore various optimistic time management techniques to determine the effect

on simulation performance, especially for unbalanced workloads

15

Acknowledgments
This work was performed under contract with Lawrence Livermore National Laboratory,
Contract No. B520721 (Applications Requirements Machine Model Simulator). Time on
the SGI Origin 2000 was provided by JPL Institutional Computing and Information
Services and the NASA Offices of Earth Science, Aeronautics, and Space Science.

References
[1] Adiga, NR, et al, “An Overview of the BlueGene/L Supercomputer.” In Proceedings
of SC2002, November, 2002.

[2] Plimpton, S., “Fast Parallel Algorithms for Short-Range Molecular Dynamics”,
Journal of Computational Physics 117, 1-19 (1995)

[3] Gottschalk, T., “Scaling and Complexity: Spatial Decomposition Molecular
Dynamics”, CACR-2003-193, Center for Advanced Computing Research, California
Institute of Technology, Pasadena, CA, May 2003

[4] Brodowicz, M., Brunett, S., “Blue Gene/L: Applications and Tracing”,Applications,
Algorithms, and Architectures Workshop, Lake Tahoe, 13-14 August 2002.

[5] Fujimoto, Richard M., “Parallel Discrete Event Simulation.” Communications of the
ACM, Vol. 33, No. 10 (October 1990), pp. 30–53.

[6] Steinman, Jeffrey, “SPEEDES: Synchronous Parallel Environment for Emulation and
Discrete-Event Simulation.” In Proceedings of the SCS Western Multiconference on
Advances in Parallel and Distributed Simulation (PADS91), vol 23, 1 (1991), 95-103.

[7] Jefferson, D., “Virtual Time.” ACM Trans. Prog. Lang. and Syst. 7, 3 (July 1985),
pp. 404-425.

[8] Heidelberger, P., and Steinmacher-Burow, B., “Overview of the BG/L Torus
Network.” http://www.llnl.gov/asci/platforms/bluegene/talks/heidelberger.pdf.

[9] Plimpton, S., home web page: www.cs.sandia.gov/~sjplimp/md.html, May 2003.

[10] Feldmann, M., Kent IV, D., Cummings, J., Muller, R., and Goddard
III,W.,“Manager-Worker Based Model for the Parallelization of Quantum Monte Carlo
on Heterogeneous and Homogeneous Networks”, Internal Technical Report for
Materials and Process Simulation Center, Beckman Institute (139-74), Division of
Chemistry and Chemical Engineering, California Institute of Technology, Pasadena,
California, 92215.

[11] Parashar, M., and Browne, J., “System Engineering for High Performance
Computing Software: The HDDA/DAGH Infrastructure for Implementation of Parallel
Structured Adaptive Mesh Refinement,” IMA Volume 117: Structured Adaptive Mesh

16

http://www.cs.sandia.gov/~sjplimp/md.html

Refinement (SAMR) Grid Methods, Editors: S. B. Baden, N. P. Chrisochoides, D. B.
Gannon, and M. L. Norman, Springer-Verlag, pp. 1 – 18, January 2000.

 [12] Cummings, J., Aivazis, M., Samtaney, R., Mauch, S., and Meiron, D., “A Virtual
Test Facility for the Simulation of Dynamic Response in Materials”, LACSI Symposium
2001, Santa Fe, NM (October 2001).

[13] Cuitino A., Stainier L., Wang G, Strachan A., Cagin T., Goddard W.A., and Ortiz
M., “ A multiscale approach for modeling crystalline solids”, Journal of Computer Aided
Material Design, 2001.

[14] Cirak, F., Ortiz, M., and Schroder, P., “Subdivision Surfaces: A New Paradigm for
Thin-Shell Finite-Element Analysis,” Int’l. J. Numer. Methods Eng., Vol. 47, No. 12,
2000, pp. 2039-2072.

17

rc

Figure 1. Typical Grid Cell and Cutoff Radius

Figure 2. Communication Steps

Figure 3. Computational Cycle Model

(1) (2)

Time tSYNCH

 Comms Comp Wait

18

Name Value Description

Physics
Dt 0.00442 Timestep size in reduced units
T0 1.444 Initial temperature in reduced units
� 0.8442 Density in reduced units
rc 2.5 Cutoff distance in reduced units
rs 2.8 Extended cutoff distance in reduced units

Problem definition and execution control
nx, ny, nz 50, 50, 50

(per CPU)
Dimensions of domain bounding box (integer units)

alat (4/�)1/3≅1.68 Linear scaling factor
T 5 Number of simulation timesteps
nneigh 20 Number of timesteps between re-binning
nbinx,
nbiny,
nbinz

0.6 nx,
0.6 ny,
0.6 nz

Number of cells per each dimension of the domain

Table 1. LJS Experiment Runtime Parameters

19

1 CPU, grid: 50x50x50 Cycles Instructions FPU ops
Setup 5052199616 4429953927 1770200815
Position computation 10177454 6250758 1500002
Communication 5773665 1296831 337623
Compute force 906525552 646414360 311087829
Reverse communication 3984631 1633667 337586
Velocity computation 24412276 8750806 1500003
Statistics and output 1582670466 1108981709 543052406

4 CPUs, grid: 100x100x50 Cycles Instructions FPU ops
Setup 5221111514 4511174346 1778322208
Position computation 14830811 6250758 1500004
Communication 10173647 3452399 247947
Compute force 919677779 642524200 309253334
Reverse communication 20714843 17943413 403433
Velocity computation 28379907 8750806 1500002
Statistics and output 1629528274 1127778373 539980682

8 CPUs, grid: 100x100x100 Cycles Instructions FPU ops
Setup 5219709948 4559748718 1778872028
Position computation 19109039 6250758 1500012
Communication 12344903 3682710 193669
Compute force 904651811 642808360 309405641
Reverse communication 69268341 71835364 383606
Velocity computation 33611634 8750806 1500004
Statistics and output 1611655969 1126834265 540171202

64 CPUs, grid: 200x200x200 Cycles Instructions FPU ops
Setup 8482763222 7700183441 1782447444
Position computation 18828594 6250744 1500010
Communication 21939538 14506940 197011
Compute force 905015895 642808346 309131305
Reverse communication 79774656 72790176 362519
Velocity computation 33838233 8750792 1500003
Statistics and output 1778038079 1283720429 540689376

Table 2. Operation Counts for Various Numbers of CPU’s

20

Configuration Comm. phase Destination rank Message size (bytes)

2 496800
2 372600
1 1063152

Forward

1 797352
1 797352
1 1063152
2 372600

4 CPUs

Reverse

2 496800
4 480000
4 360000
2 513600
2 385200
1 549552

Forward

1 412152
1 412152
1 549552
2 385200
2 513600
4 360000

8 CPUs

Reverse

4 480000
48 480000
16 360000
12 513600
4 385200
3 549552

Forward

1 412152
3 412152
1 549552

12 385200
4 513600

48 360000

64 CPUs

Reverse

16 480000

Table 3. Communications Profile

21

64 CPUs, grid: 100x100x100 Cycles Instructions FPU ops
Setup 4518993233 4403610464 224582074
Compute positions 1130213 781994 187500
Communication 4574366 3009445 52475
Compute force 109366444 79949995 38478599
Reverse communication 7547645 6008098 92208
Compute velocities 3222944 1094542 187501
Statistics and output 206037876 148078372 67258754

Configuration Comm. phase Destination rank Message size

(bytes)
Ratio to msg. size
for 2003 grid

48 120000 1:4
16 90000 1:4
12 136800 1:3.75
4 102600 1:3.75
3 155952 1:3.52

Forward

1 116952 1:3.52
3 116952 1:3.52
1 155952 1:3.52

12 102600 1:3.75
4 136800 1:3.75

48 90000 1:4

64 CPUs,
100x100x100
grid

Reverse

16 120000 1:4

Table 4. Tracing Results for nx = ny = nz = 100 on 64 CPU’s

Configuration Destination rank Message size (bytes)
48 12000
16 12000
48 4800
16 3600
12 44400

4 44400
12 17760

4 13320
3 164280
1 164280
3 65712

64 CPUs,
20x20x20 grid

1 49272

Table 5. Tracing Results for nx = ny = nz = 20 on 64 CPU’s

22

Configuration BG/L
nodes

SGI 2000
Physical
Processors

Total Injected
Packets

Average
hops/pkt

16x16x16 4K 8 400K 12

16x16x32 8K 16 800K 16

16x32x32 16K 32 1.6M 20

32x32x32 32K 64 3.2M 24

32x32x64 64K 128 6.4M 32

Table 6. Benchmark Problem Sizes

SPEEDES Performance

0

200

400

600

800

1000

1200

1400

1600

16x16x16
(8 SGI)

16x16x32
(16 SGI)

16x32x32
(32 SGI)

32x32x32
(64 SGI)

32x32x64
(128 SGI)

Configuration

S
e
co

n
d
s

Best Case
Measured

Figure 4. Scaling Results – Random Workload Case

23

Application Bandwidth Utilization
(Best Distribution)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4K 8K 16K 32K 64K

BG/L Node Count

P
e

rc
e

n
t

U
s
a

g
e

Percent Bandwidth
Utilization
Best Possible Application
BW Utilization

Figure 5. Simulation Results for Best (Physical Nearest Neighbor) Distribution

SPEEDES Performance

0

20

40

60

80

100

120

140

160

180

200

4K 8K 16K 32K 64K

BG/L Node Count

R
u
n
 T

im
e
 (

M
in

u
te

s
)

Run Time
Ideal Run Time

Figure 6. SPEEDES Scaling Performance

24

LJS 3-D Torus Bandwidth Utilization
(Physical Nearest Neighbor vs Random Distribution)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

64 512

Number of Blue Gene/L Nodes

P
e
rc

e
n

t
U

ti
li

za
ti

o
n

Random
Physical Nearest Neighbor

Figure 7. Best vs. Random Distribution of Cells

Scaled Size

N (atoms) BG/L Nodes Compute Time (ms)
Communications
Time (ms)

500,000 1 1480 3
256,000,000 512 1480 3
512,000,000 1024 1480 3

1,024,000,000 2048 1480 3
2,048,000,000 4096 1480 3
4,096,000,000 8192 1480 3
8,192,000,000 16384 1480 3

16,384,000,000 32768 1480 3
32,768,000,000 65536 1480 3

Fixed Size

N (atoms) BG/L Nodes Compute Time (ms)
Communications
Time (ms)

500,000 1 1480 3.00E+00
500,000 512 2.89E+00 1.88E+00
500,000 1024 1.45E+00 1.17E+00
500,000 2048 7.23E-01 7.32E-01
500,000 4096 3.61E-01 4.58E-01
500,000 8192 1.81E-01 2.86E-01
500,000 16384 9.03E-02 1.79E-01
500,000 32768 4.52E-02 1.12E-01
500,000 65536 2.26E-02 6.98E-02

Table 7. Fixed vs. Scaled Problem Size

25

0.01

0.10

1.00

10.00

8 16 32 64 128 256 512

Number of Nodes

C
om

pu
te

 T
im

e
(s

ec
s)

0.0001

0.001

0.01

0.1

1

C
om

m
un

ic
at

io
ns

 T
im

e
(s

ec
s)

Compute
Comms (best)
Comms (random)

Figure 8. Fixed Problem Size Mapped to Increasing Number of BG/L Nodes

Processor Machine CPU sec/atom/timestep
333 MHZ Pentium* Intel Tflops 1.67E-5

500 MHZ DEC Alpha EV6* Sandia CPlant 7.03E-6

450 MHZ DEC Alpha EV5* Cray T3E 1.7E-5
195 MHZ MIPS R10000* SGI Origin 1.49E-5
700 MHZ BG/L Processor Blue Gene/L 2.96E-6

Table 8. CPU secs/time step Comparisons (*from Plimpton [99])

Packet Delay
(us)

Flush Time
(ms)

Escapes Avg Transit Time
(us)

Bandwidth
Utilization

0 24.9 10.20% 85.6 54.10%
3 24.4 9.70% 81.4 55.10%
6 25 8.90% 74.3 53.80%
9 24.2 3.60% 33.5 55.80%
10 21.5 0.50% 10.9 62.80%
11 23.6 0% 7.4 57.10%

Table 9. Throttling Effects for Random Distribution Case on 512 BG/L Nodes

26

	Ed Upchurch
	Maciej Brodowicz
	T. D. Gottschalk
	Center for Advanced Computing Research
	
	Abstract

	Introduction
	2. Approach
	3 The Molecular Dynamics (MD) Problem
	3.1 Spatial Decomposition Algorithm: Qualitative Overview
	3.3 Parameterized Model: Performance and Scaling
	
	5 BG/L Parallel Simulation Overview

	5.1 Model Development
	6. Conclusions and Future Work
	References

	Name
	Value
	Description
	Physics
	Problem definition and execution control

	Table 1. LJS Experiment Runtime Parameters
	
	
	1 CPU, grid: 50x50x50
	4 CPUs, grid: 100x100x50
	64 CPUs, grid: 200x200x200

	Table 2. Operation Counts for Various Numbers of
	
	
	Configuration
	Comm. phase
	4 CPUs
	8 CPUs
	64 CPUs

	Table 3. Communications Profile
	
	
	64 CPUs, grid: 100x100x100
	Configuration
	Comm. phase
	64 CPUs, 100x100x100 grid
	Configuration
	64 CPUs, 20x20x20 grid
	BG/L nodes
	SGI 2000
	Physical Processors

	Figure 4. Scaling Results – Random Workload Case

