
The CMS Integration Grid Testbed
Gregory E. Graham, M. Anzar Afaq, Shafqat Aziz, L.A.T. Bauerdick, Michael Ernst, Joseph Kaiser,
Natalia Ratnikova, Hans Wenzel, Yujun Wu
Fermi National Accelerator Laboratory, Batavia, IL, 60510-0500
Erik Aslakson, Julian Bunn, Saima Iqbal, Iosif Legrand, Harvey Newman, Suresh Singh, Conrad
Steenberg
California Institute of Technology, Pasadena, CA, 91125
James Branson, Ian Fisk, James Letts
University of California, San Diego, CA, 92093
Adam Arbree, Paul Avery, Dimitri Bourilkov, Richard Cavanaugh, Jorge Rodriguez, Suchindra Kategari
University of Florida, Gainesville, FL, 32601
Peter Couvares, Alan DeSmet, Miron Livny, Alain Roy, Todd Tannenbaum
University of Wisconsin, Madison, WI, 57303

The CMS Integration Grid Testbed (IGT) comprises USCMS Tier-1 and Tier-2 hardware at the following sites:
the California Institute of Technology, Fermi National Accelerator Laboratory, the University of California at
San Diego, and the University of Florida at Gainesville. The IGT runs jobs using the Globus Toolkit with a
DAGMan and Condor-G front end. The virtual organization (VO) is managed using VO management scripts
from the European Data Grid (EDG). Gridwide monitoring is accomplished using local tools such as Ganglia
interfaced into the Globus Metadata Directory Service (MDS) and the agent based Mona Lisa. Domain specific
software is packaged and installed using the Distribution After Release (DAR) tool of CMS, while middleware
under the auspices of the Virtual Data Toolkit (VDT) is distributed using Pacman. During a continuous two
month span in Fall of 2002, over 1 million official CMS GEANT based Monte Carlo events were generated and
returned to CERN for analysis while being demonstrated at SC2002. In this paper, we describe the process
that led to one of the world’s first continuously available, functioning grids.

1. Introduction

The CMS Integration Grid Testbed (IGT) was com-
missioned by USCMS in the Fall of 2002 in order
to provide a stable platform for integration testing
of Grid middleware with the existing CMS Monte
Carlo production environment. CMS (Compact Muon
Solenoid) is a high energy physics detector planned
for the Large Hadron Collider (LHC) at CERN, just
outside of Geneva, Switzerland. While CMS will not
begin taking data until after 2007, hundreds of physi-
cists around the world are taking part in Monte Carlo
simulation studies of the detector and its potential for
discovering physics.

The IGT is intended to comprise a small number of
nodes at USCMS Tier-1 and Tier-2 centers from hard-
ware that is assigned to USCMS Facilities. Within the
IGT, focused development and integration prototyp-
ing takes place in support of a set of middleware prod-
ucts and CMS applications to be used in a production
grid setting. Currently, the IGT actually comprises
most of the available USCMS Tier-1 and Tier-2 re-
sources. This is because

• This was the first time we have tried seriously
to put Grid middleware into production on this
scale in a continuously available fashion.

• There was as yet no documentation or level of
support in place appropriate to a production set-
ting

The goals of this first running of the IGT are to pre-
pare for a turnover of newly integrated software onto
the first Production Grid and to start writing docu-
mentation appropriate to a production setting, while
participating in official CMS Monte Carlo production.
The turnover is scheduled to happen in Spring 2003.
At that time, the resources assigned to the IGT will
mostly migrate to the production grid (PG).1 In addi-
tion, CMS has a development grid testbed (DGT) in
order to provide a less stringent environment for more
speculative development and test deployments. With
these three grids in place, USCMS is well positioned to
deploy a Grid with a view to continuous upgrades and
improved software quality control while maintaining a
development environment conducive to new concepts
and experiments in Grid middleware. This also pro-
vides an effective response to the declared intention of
the LHC Computing Grid (LCG) to produce a con-
tinuously available 24x7 production grid for the LHC
experiments.

1From time to time, it will happen that large amounts of
resources will be temporarily assigned to the IGT for scalability
tests in the integration setting.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1MOCT010 B ePrint cs.DC/0305066



2. Hardware Included in the IGT

Table I shows the available hardware on the IGT.
Participating sites included the California Institute of
Technology, Fermi National Accelerator Laboratory,
University of California at San Diego, and the Uni-
versity of Florida at Gainesville as of November 1,
2002. A group from the LCG at CERN also joined
the effort after November 15, 2002. While the Uni-
versity of Wisconsin at Madison Computer Science
department did not participate directly in the IGT,
they participated directly in the USCMS Development
Grid Testbed2(DGT) in support of the IGT efforts by
troubleshooting problems and by doing important re-
gression tests on the middleware.

In Spring 2003, most of this hardware will be turned
over to a production grid. A small number of machines
will be saved to do integration testing in support of
production grid operations, which is the original pur-
pose of the IGT in the first place.

3. Software Running on the IGT

In the Grid environment, many different layers of
software have to be present. At the lowest level is the
OS itself. The IGT ran a Linux platform with either
RedHat 6.X based operating systems or with RedHat
7.X based operating systems3. The Grid middleware
was distributed using the Pacman [1] based Virtual
Data Toolkit (VDT) [2]. The version which ran on
the IGT was VDT 1.1.3. The next level of software
included the Job Creation level, consisting of mainly
CMS developed tools and some PPDG provided tools
to wrap CMS specific jobs in Grid aware wrappers,
and finally the CMS applications themselves.

Most Grid sites ran the PBS batch system or the
Condor High Throughput Computing System, the
Farm Batch System Next Generation (FBSNG) was
run at Fermilab.[22]

3.1. VDT Middleware

The VDT is composed of three types of grid soft-
ware, although the lines between these types are some-
times blurry. These three types are:

2The DGT is a smaller clone of the IGT on which it is per-
mitted to deploy untested software.

3The use of RedHat 6.X based operating systems was re-
quired for CMS production with applications based on CMS
ORCA which used Objectivity as an object persistency layer.
This was not because of limitations within Objectivity, but was
rather due to licensing issues.

• Core Grid Software This is the grid middleware,
and it includes Globus, [3] Condor-G, and Con-
dor [4].

• Virtual Data Software This is the software that
is able to either compute or fetch data on de-
mand, depending on whether it needs to be com-
puted or is already available.[10]

• Utilities This is a selection of software that pro-
vides smaller but still important utilities, such
as as software for fetching certification authority
revocation lists on a regular schedule.

The IGT made use primarily of the core Grid software
and some of the utilities.

The software in Table II was included with VDT
version 1.1.3, which ran on the IGT.

3.2. CMS Specific Software

The CMS software was distributed to the remote
sites using DAR [20] before any jobs were submitted.
In principle, the CMS software can be installed as
part of the job, as described below in the discussion
of MOP. However, the particular production request
handled by the IGT was large enough (greater than
100,000 CPU hours on a single GHz CPU) to justify
special pre-installation.

CMS Monte Carlo production consists of several
steps [5]. First, vector representations of simulated
physics collision events are generated with the Pythia-
based CMKIN application. Second, the responses
of the CMS detector are simulated in the GEANT
3 based CMSIM application. A third CMS specific
step is to re-format the CMSIM events into an Ob-
jectivity DB format with the writeHits application4.
Forth, the native detector signals must be mixed with
noise simulations and with simulated by-products of
nearly contemporaneous collisions called pileup (PU)
in the writeDigis application. Pileup events are typi-
cally pre-processed and stored in locally resident files
ready to be mixed with signal events in writeDigis,
leading to I/O bound behavior when the number of
pileup events per signal event is large. (For the 1034

luminosity expected in the LHC, this ratio is about
200:1 on average.) Finally, the last stage of produc-
tion involves the creation of analysis objects (ntuples)
to be analyzed by the physicists. Table 3.2 summa-
rizes the average behaviors of the executables used in
CMS Monte Carlo production. Actual production de-
pends most critically on the size of each event at the
CMKIN stage: the more particles produced per event
translated directly into higher processing times.

4This step will be combined with the previous step in future
versions of the software.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2MOCT010 B ePrint cs.DC/0305066



IGT site Worker CPU CPU Speed OS Comments
Caltech 40 0.8 GHz RedHat 6.X
Caltech 40 2.4 GHz RedHat 7.X
Fermilab 80 0.75 GHz RedHat 6.X
University of Florida 80 1 GHz RedHat 6.X
UC San Diego 40 0.8 GHz RedHat 6.X Few CPUs inoperable after power failure
UC San Diego 40 2.4 GHz RedHat 7.X
CERN 72 2.4 GHz RedHat 7.X

UW Madison 0 N/A Provided important SW support

Table I USCMS hardware currently dedicated to the Integration Grid Testbed. Most of this hardware will have been
turned over onto a production grid by Spring 2003.

Component Version Comments
Globus Toolkit 2.0 Modified Gatekeeper/Job Manager
Condor 6.4.3 includes DAGMan
Fault Tolerant Shell 0.99
Globus Clients 2.0 eg- Globus-url-copy
Condor-G 6.4.3

Table II Software from the VDT 1.1.3 currently installed on the IGT.

CMS production usually proceeds by breaking up
production requests into sets of 250 events each5 and
processing each collection serially through all steps.
For the IGT production during Fall 2002, there were
two requests for events. The first request was for 1M
events processed through all steps. The second re-
quest was for 500K events processed only through the
CMSIM stage.

3.2.1. Job Creation: McRunjob

McRunjob [9] is a package containing Python
scripts designed to aid in organizing large scale CMS
and DZero production processing applications. While
initially developed specifically for DZero offline exe-
cutables, McRunjob was easily extended to the CMS
experiment. There are two basic classes within
McRunjob. The Configurator encapsulates all of the
knowledge needed to run an application or perform
some simple task and exposes only the metadata with
a customizable interface. The Linker is a container
class for Configurators responsible for instantiation,
maintaining a list of Configurators, and handling com-
munication among the Configurators and the user
and other Configurators. The user interacts with the
Linker, sending commands to attach and configure

5250 events was found to be a reasonably large round number
of events that lead to manageable filesizes and processing times.

various Configurators. Conceptually, McRunjob pro-
vides a language by which the use can specify a work-
flow pattern abstractly and then the McRunjob im-
plementation takes care to turn it into a set of sub-
mittable jobs. Depending on which modules are in-
cluded, McRunjob can target Virtual Data Language
of the Chimera system or jobs using the SAM sys-
tem at DZero. For the IGT, McRunjob comes with a
set of Configurators that target the CMS legacy Im-
pala runtime scripts which were used in official Spring
2002 Monte Carlo production. McRunjob produced
4000 jobs for the million event full production request,
while the balance of 2000 CMSIM-only jobs were pro-
duced by the Impala scripts.

3.3. MOP

The jobs as produced by McRunjob and Impala for
the IGT run were not specially “grid aware.” The con-
nection to the grid was provided by a thin software
layer called MOP (Monte Carlo Production). MOP
basically represents existing McRunjob or Impala pro-
duced jobs as Directed Acyclic Graphs (DAGs). There
were four generic types of DAG nodes that help ac-
complish this. Stage-in nodes were responsible for
transporting the execution environment to the worker
node. Run nodes were responsible for running the ex-
ecutables. Stage-out nodes were responsible for trans-
porting results back to the submit site. Finally, clean-
up nodes were responsible for removing any left over
job state from the worker nodes.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3MOCT010 B ePrint cs.DC/0305066



Name Time Size
(sec/event) (MB/event/stage) Bound

CMKIN 0.05 0.05
CMSIM 350 2.0 CPU Bound
writeHits 0.05 1.0 I/O Bound
writeDigis (NoPU) 2.0 0.3 CPU Bound
writeDigis (1034PU) 10.0 3.0 CPU and I/O Bound
ntuple ≤ 1 0.05 CPU and I/O Bound

Table III CMS Executables with some running statistics on a 750 MHz machine. NOTE: The overall results can be
highly variable depending on the physics being simulated, but the ratios should be about right.

During the IGT running, MOP was invoked to cre-
ate DAG representations of each job at job submit
time. Once a DAG was produced, MOP submitted
the DAG to the DAGMan package of Condor. DAG-
Man usually runs DAG nodes using the Condor sys-
tem; for the IGT Condor-G was used as a gateway
to allow DAGMan to run DAG nodes on remote sites
running Globus Job Managers. In turn, these Globus
Job Managers are able to run the jobs using local
batch queues. For the IGT, only Condor and the
Farm Batch System of Fermilab were used as local
batch interfaces.

Scheduling functionality was not implemented in
the MOP system during the Fall 2002 IGT run.
Rather, jobs were distributed by direct operator speci-
fication at job submission time. MOP was logically di-
vided into the MOP master site and the MOP worker
sites. Jobs were created and submitted from the MOP
master site, all input files were staged in from the
MOP master site, and all output was returned to the
MOP master site. No replica catalogs were used dur-
ing the production process itself, but resulting data
products were registered in a replica catalog at the
end of processing. During Fall 2002, Fermilab hosted
the IGT MOP master site, while UW Madison hosted
a MOP master site for the DGT.

3.4. Virtual Organization

The Virtual Organization (VO) was implemented
using a system to help us to organize the Grid mapfiles
of Globus. We used the Caltech Virtual Organization
Group Manager [13] developed at Caltech to manage
the VO users on the testbed. Group Manger stored
the user information in an LDAP database and orga-
nized the users into different groups. A VO admin-
istrator could create/add groups and populate users.
This info could either be uploaded by user certificate
or through the LDAP certificate server if the Depart-
ment of Energy Science Grid (DOESG) certificates
were used. The VO tool was installed on a server ma-
chine at Fermilab. Each site (including Fermilab) used
the EDG mkgridmap script to generate the gridmap-

file entries based on the information stored in the
LDAP database at Fermilab. For the IGT Fall 2002
run, we used both Globus certificates and DOESG
certificates.

3.5. Monitoring

In the Fall 2002 IGT run, monitoring systems were
not used for automatic controls such as scheduling,
but rather for creating human readable displays only.
Monitoring was divided logically into two different
concerns. Local monitoring consists of gathering use-
ful information from a single cluster or grid site, while
Grid-wide monitoring consists of transporting and in-
tegrating information from local sites. IGT-wide mon-
itoring was accomplished using the MonaLisa mon-
itoring tool developed at Caltech [14]. Local mon-
itoring was accomplished using modules written for
MonaLisa at some sites and Ganglia at other sites.

4. Running a Production Grid
Continuously for the First Time

The IGT ran CMS production by integrating CMS
applications with Grid tools. Several problems were
identified and fixed during this run. These include
integration issues arising from non-grid CMS tools in-
tegrated with Grid tools, bottlenecks arising from op-
erating system limitations (eg- default limits not set
high enough), and bugs in middleware and applica-
tion software. Every component of the software con-
tributed to overall problem count in some way. How-
ever, we found that with the current level of func-
tionality, we were able to operate the IGT with 1.0
FTE effort during quiescent times over and above nor-
mal system administration and up to 2.5 FTE during
crises. A sampler of problems appears below.

• (Pre-IGT) During Spring 2002, the Globus 2.0
GASS Cache was found to not support the re-
quired level of performance for CMS production.
The software was re-engineered in consultation

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4MOCT010 B ePrint cs.DC/0305066



with Condor developers and Globus developers
over the summer of 2002, and released in Globus
2.2.

• The Impala environment requires many helper
files to run a production job. It was found that
many simultaneous globus-url-copy operations
originating from the MOP master site when sub-
mitting many jobs would cause some globus-url-
copy operations to hang. Globus-url-copy op-
erations were wrapped in Fault Tolerant Shell
(FTSH) scripts. FTSH contains semantics to
time-out and retry shell commands.

• Keeping in view the need of automatic resubmis-
sion of failed jobs; MOP used the auto restart
features of Condor G. There have been several
cases of this when actual jobs were still running
on remote site. While the jobs eventually finish,
there was wasted CPU time.

• There were some instances when jobs failed due
to application code problems, or some real rea-
son like full disk partitions. With auto-restart
option, it becomes difficult to find out actual
cause of trouble, while failed jobs are restarted
and resubmitted in an infinite loop. The actual
problem remain hidden unless jobs are watched
closely.

• Condor G running on the MOP Master site
uses ’gahp server’ to handle its communication
with processes running under Globus on remote
worker sites, one thread per tracked process.
With over 400 CPUs available to IGT at later
stages of production, running two assignments
to produce 1.5 Million events, we had to divide
production over two physically separate MOP
master machines, to avoid scaling limit of the
number of gahp server threads.

5. Analysis Environment on the IGT:
CLARENS

A need was identified to provide a simple univer-
sal access method or ”portal” to data and CPU re-
sources as part of the end-user physics analysis pro-
cess. Clarens [15] is a flexible web services layer acces-
sible through SOAP or XML-RPC which is designed
for high security, high throughput request process-
ing. Server functionality is easily extensible through
administrator- or user-installed server-side modules
written in C/C++ or the Python scripting language.
Individual service requests are handled by a multi-
process server, providing crash protection and support
for non-blocking long-lived requests.

Security is based on X509 certificates for authen-
tication, and optional transport encryption using

SSL/TLS. A full Virtual Organization (VO) imple-
mentation coupled with fine-grained access control
lists (ACL) provide powerful and easy to administer
security for server methods and files. The traditional
mode of certificate to user mapping for execution of
server-side jobs is also supported.

Server methods available include file repository ac-
cess, VO/ACL administration, job execution, and
a remote interface to the Sql2ROOT/SOCATS
(Stl based Object Caching And Transport System)
RDBMS-based analysis framework. Client access to
server methods is through ROOT (command line, in-
terpreted and compiled C++), Python (command line
and script-based), and Java.

6. SC2002 Demo

A continuously updated display of simulated event
production being run on the IGT as part of the
Fall 2002 production was demonstrated at the Fermi-
lab/SLAC booth at Supercomputing 2002 (SC2002)
[16]. The display was constructed using the ROOT
analysis package using data obtained from Clarens
servers involved in the IGT production at Caltech,
Fermilab, UCSD and UFL. The data used were ROOT
files produced in the last step in the production pro-
cess at each site. The Clarens ROOT client continu-
ously monitored the servers for newly produced data
files, which were incorporated into the analysis on the
show floor.

A second demo at the Caltech Center for Advanced
Computing Research (CACR) booth showed an in-
teractive analysis of event data stored at many re-
mote RDBMS analyzed via the Clarens interface to
SOCATS. The results of the analyses performed at
Caltech and the Startlight point of presence (POP) in
Chicago were made available as ROOT files that were
interactively accessed through the ROOT Clarens
client.

7. Conclusions

The IGT was a success in that it produced all of
the required events and provided many useful insights
into operating a grid in production mode. Also, many
problems were uncovered with the software at all lev-
els. Figure 1 shows the progress of IGT full ntuple
production during Fall of 2002.

Despite the problems, the production was remark-
ably smooth and sustained for over two months. The
two notable flat spots occur during the SC2002 con-
ference and during the winter holidays, which reflect
loss of manpower during those periods.

In order to better quantify efficiency, the IGT run
period was divided into 12 periods of about five days

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5MOCT010 B ePrint cs.DC/0305066



Figure 1: IGT production progress during Fall 2002.

each. The average daily production rate in each inter-
val was compared to the theoretical maximum daily
rate of 45 K events per day IGT-wide6. The average
efficiency was just under 40%.

This performance is not much worse than the con-
ventional CMS Spring 2002 Production. The Spring
2002 production was more complicated in that it in-
volved more events with pileup and involved a lot
more file transfers. Also, it is hard to calculate ef-
ficiency of the Spring 2002 production because it is
hard to determine when a site was unavailable due to
problems or just idle for lack of a request.

The EDG stresstest [17] ran during Fall of 2002 also.
The EDG stresstest involved more functionality than
the IGT in that it used a resource broker which re-

6This number was estimated by scaling the daily throughput
observed on one machine to all machines weighted by rated CPU
speeds.

lied on MDS to supply it with timely information.
In short, they found that with the current state of
Grid middleware, more functionality led to more prob-
lems, (and more FTE expended to track them down.)
Viewed for what it was, the EDG stresstest was an
immense success and found problems that were com-
plementary to those found in the contemporaneous
IGT run. Finally, our experience with the IGT has
led to a plethora of documentation [18],[19] that can
be a good start to providing production level support.

Acknowledgments

We would like to acknowledge the CMS Core Com-
puting and Software group and the USCMS Software
and Computing projects for supporting this effort. We
would especially like to thank Veronique Lefebure and
Tony Wildish of the CMS Production Team for their
support and helpful discussions. This effort was also

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

6MOCT010 B ePrint cs.DC/0305066



Figure 2: Efficiency of the IGT during Fall 2002 running. Based on the amount of resources available and the
measured program performance on a single CPU, a theoretical maximum throughput of 45K events per day was
calculated. Stated efficiencies are relative to that maximum throughput.

supported by the USCMS Development Grid Testbed,
including additional testbed hardware and support
from the University of Wisconsin at Madison.

References

[1] http://physics.bu.edu/ youssef/pacman/.
[2] http://www.lsc-group.phys.uwm.edu/vdt/.
[3] http://www.globus.org.
[4] http://www.cs.wisc.edu/condor/.
[5] The Spring 2002 DAQ TDR Production V.

Lefebure and Tony Wildish, CMS Note 2002/034.
[6] DZero Monte Carlo Production Tools G.E. Gra-

ham. Proceedings of Computers in High En-
ergy Physics 2001, 8-027, (CHEP 2001), Beijing,
China

[7] Tools and Infrastructure for CMS Distributed
Production G.E. Graham. Proceedings of Com-

puters in High Energy Physics 2001, 4-033,
(CHEP 2001), Beijing, China

[8] CMS Distributed Production G.E. Graham. Pro-
ceedings of Computers in High Energy Physics
2001, 4-031, (CHEP 2001), Beijing, China

[9] McRunjob: A High Energy Physics Workflow
Planner for Grid Production Processing G.E.
Graham, et al. Proceedings of Computers in High
Energy Physics 2003, TUCT007, (CHEP 2003),
La Jolla, CA

[10] Virtual Data in CMS Production A. Arbree, et
al. (To appear in CHEP 2003)

[11] MOP: A System for CMS Monte Carlo
distributed Production J. Amundson, et
al. (2001) DOE-NSF Review of USCMS
Software and Computing (Available from
: http://www.uscms.org/s&c/reviews/
doe-nsf/2001-11/docs/mop.pdf

[12] http://www.cs.wisc.edu/condor/dagman/.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

7MOCT010 B ePrint cs.DC/0305066



[13] http://groupman.sourceforge.net/.
[14] http://cil.cern.ch:8080/MONALISA/.
[15] http://clarens.sf.net.
[16] Panel 9 of the Fermilab/SLAC Vir-

tual Booth at SC2002 can be viewed at
http://www-group.slac.stanford.edu/sciart/
sc2002/9.htm.

[17] The CMS EDG Stresstest P. Capiluppi, et al.
CMS note in preparation

[18] http://www.uscms.org/scpages/subsystems/DPE/.
[19] The CMS Integration Grid Testbed E. Aslakson,

et al. CMS note in preparation
[20] http://computing.fnal.gov/cms/natasha/DAR
[21] http://ganglia.sourceforge.net
[22] Farm Batch System M. Breitung, et al. Computer

Physics Communications, vol. Vol 140/1-2, pp.
253-265

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

8MOCT010 B ePrint cs.DC/0305066


