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We analyze the degree to which parity-violatif®V) electroexcitation of thé\ (1232) resonance may be
used to extract the weak neutral axial vector transition form factors. We find that the axial vector electroweak
radiative corrections are large and theoretically uncertain, thereby modifying the nominal interpretation of the
PV asymmetry in terms of the weak neutral form factors. We also show that, in contrast with the situation for
elastic electron scattering, the axi&> A PV asymmetry does not vanish at the photon point as a consequence
of a new term entering the radiative corrections. We argue that an experimental determination of these radiative
corrections would be of interest for hadron structure theory, possibly shedding light on the violation of Hara’s
theorem in weak, radiative hyperon decays.
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I. INTRODUCTION underpredict the data@]. One hopes that additional input, in
tandem with theoretical progress, will help identify the origin
The electroweak form factors associated with the excitaof these discrepancies.
tion of theA(1232) resonance are of considerable interest to The situation involving the axial vector transition form
hadron structure physicists. In the laye limit, the (N,A)  factors C** (i=3-6) is less clear than in the vector case,
form a degenerate multiplet under spin-flavor(8lsymme-  gince existing data—obtained from charged current
try [1], and one expects the structure of the lowest-lyingayperiments—have considerably larger uncertainties than for
spin-1/2 and spin-3/2qq states to be closely related. The {he vector current channdl8—10. While QCD-inspired
electroweak transition form factors may provide importanty,gqels tend to underpredict the central value for the axial
insights into this relationship and shed light on QCD- 5y elements by~30% as they do for the vector form

Lnfp';ed rrr]igcg\ells thr:etlr(i))\(/vels trLy":]? bafr)t/r? ns;/. TTeferl:grmxl;afTactors[S,?], additional and more precise experimental infor-
ors desc - atrix elements ot the vector and axia mation is needed in order to make the test of theory signifi-

vector current32—4} cant. To that end, an extraction of the axial vecibr A
matrix element using parity-violating electron scattering
(PVES is planned at the Jefferson Laboratdiyt]. The goal
of this measurement is to perform=25% determination for
|g?| in the range of 0.1-0.6 (GeW)2. If successful, this
X(ngw—qvgxﬂHngw} vsu(p) (1)  experiment would considerably sharpen the present state of
experimental knowledge of the axial vector transition ampli-

ey, ci . c
W wzPat P

<A*<pA>|Vi|N>=K*”<pA>[

tude.
AT (pa)|A3INY=AT" C_/; " - In this paper, we examine the interpretation of the pro-
(A7 (Pa)lALIN) = (Pa) VIRAREYELE (Gper spective measurement. In a previous wi@k the impact of

nonresonant backgrounds was studied and found not to
]u(p) @) present a serious impediment to the extraction of(ﬂﬁe

Here, we compute the electroweak radiative corrections,

which arise fromO(«aGg) contributions to the PV axial tran-
where q=p,—p and where the nucleon spinei(p) and  sition amplitude. We correspondingly characterize the rela-
Rarita-Schwinger spinoA”(p,) are defined as in Ref5].  tive importance of the corrections by discussing the rRﬁo
The form factorsCy and Cfare theN— A analogues of the of the higher-order to tree-level amplitudes. This ratio is
nucleon’s electroweak form factofs, and G, . At present, nominally O(«), so that one might naively justify neglecting
there exist considerable data on the vector current transitioradiative corrections when interpreting a 25% determination
form factors CY (i=3-6) obtained with electromagnetic of the axial term. However, previous work on the axial vec-
probes. A comparison with theoretical predictions points totor radiative correctionR} to PV elastic electron-proton
significant disagreemeitsee Ref[5] for a tabulation of the- scattering suggests that the relative importance of such cor-
oretical predictions For example, lattice QCD calculations rections can be both unexpectedly lasyel theoretically un-
of the magnetic transition form factor yield a value30%  certain[12—14. Moreover, results obtained by the SAMPLE
smaller than obtained from experimdi], and constituent Collaboration[15] suggest thatRR may be substantially
quark models based on spin-flavor @Jsymmetry similarly  larger than given by the best theoretical estinfdt2]. The

Cs
_QVg)\,u)—’—C'SAg,u,V—'— Wq,uqv
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origin of this apparent enhancement is presently not underector matrix elementép|A(*®)|p). Such one-quark contri-
stood. Were similar uncertainties to occur for PV electroexfutions toR} andR4 can be large, due to the absence in loop
citatiqn of theA, the task of extracting the desired axial terms of the small (% 4 sirf4,) factor appearing in the tree
transition form factors from the PV asymmetry would be-|evel V(e) coupling and the presence of large logarithms of
come considerably more complicated than assumed in th@e type Infny/My).
original incarnation of the expergner.ltal proposal. The second class of radiative corrections, which we refer
In what follows, we show theR,—like R3—is both large  to as “many-quark” corrections, involve weak interactions
and theoretically uncertain. We argue, however, that theimong quarks in the hadron. In Refd2—14, the many-
dominant source of this uncertainty—a new term not presenguark corrections were shown to generate considerable the-
in the elastic channel—is of interest in its own right. More- oretical uncertainty in the PV axial vecterp amplitude. A
over, as a consequence of this new term—uwhich we paranparticularly important subset of these effects are associated
etrize by a Iow-eqergy constady—the F_’VN_—>A asymme-  with the nucleon anapole mometM), which constitutes
try does not vanish at the photon point, in contrast to thehe leading-order, PWNN coupling. For a general discus-
behavior of the elastic P¥p asymmetry. A measurement of sjon of the anapole moment, see Ré#]. The result of the
N—A at low |g? could provide for an experimental deter- SAMPLE measurements, which combine PV elasticand
mination ofd, , thereby removing the largest theoretical un- quasielastie@d scattering to isolate the isovector, axial vector
certainty in the interpretation of the asymmetry. At the sameep amplitude, implies that the one-quark/standard model
time, knowledge ofd, could provide new insights into the plus many-quark/anapole contributions significantly under-
surprisingly large violation of S{B) symmetry observed in predict the observed value & Ref.[15].

AS=0 radiative decays of hyperons. o In what follows, we compute the analogous radiative cor-
Our development of these points is organized in the rerectionsRj for the axialN— A electroexcitation amplitude.
mainder of the paper as follows. Due to the length and techy principle, as in the elastic case, the one-quark corrections
nical nature of the paper, we first provide—in Sec. ll—anare determined completely by the standard model, although

overview of our primary results in order to guide the readerong-gistance QCD effects—which are finessed for e
through the subsequent sections. In Sec. Ill, we present thgyannel using S(8) symmetry plus nucleon and hyperon
general features of neutral current electroexcitation of¥he 5 gecay data—are not controlled in the same manner for the
including a more detailed discussion of various classes of _, A transition. We make no attempt to estimate the size of
radiative corrections and the implications of Siegert's theo,ch effects here. Instead. we focus on the many-quark con-
rem. In Sec. IV, we review our conventions for the parity- yripytions which, as in the elastic case, can be systematically
conserving(PC) and PV chiral Lagrangians involving th organized using chiral perturbation theoryRT). We com-
A, m, and y fields. Section V gives the nonanalytic, chiral pute these corrections through(p3). We find:
Lﬁoppc\(;r(;trlbutlons t‘?_Abatr_‘ddA't;nd ml SeSc. VI,VVI\:e compute () As in the case oR®, the correctionRa is both sub-

e -wave contributions 103, g. 1IN S€C. VIl, WE Per-  giantia| and theoretically uncertain. Thus, a proper interpre-

g)\r/n:jmodel estm}ate:f of the analynctpartsmf, dAdanc_i the tation of the PVESN—A measuremeninusttake into ac-
-wave couplingsfya, Using vector meson dominance countO(aGy) effects.

for a, andé‘,%‘ pole amplitudes fpr the latter two. Sec_tion (i) In contrast with the elastic PV asymmetry, the
VIII contains our nun"!en_cal anglysns of th@(aGg) contri- A asymmetry does not vanish gt=0. This result fol-
butions, including their kinematic dependences, and we suMgs from the presence of af(«Gg) contribution—having

marize our conclusions in Sec. IX. A reader interested in the, | analogue in the elastic channel—generated by a new PV
general features and implications of our results may wish tg

: ; : : . . —yNA electric dipole couplingl, . Specifically, we show be-
skip the technical details contained in Secs. IV-VI, focusmg%w that P plingly . Sp Y
instead on Secs. I, lll, and VII-IX.

II. OVERVIEW OF PRIMARY RESULTS ALR(qZZO)% _ — .. 3)

In studying the axial vector radiative corrections, it is im-
portant to distinguish two classes of contributions. The first o
involves electroweak radiative corrections to the elementaryvhere A r(q%) is the PV asymmetry on tha resonance,
V(e) X A(q) amplitudes, whereg is any one of the quarks in A,=47F,~1 GeV is the scale of chiral symmetry break-
the hadron and (A) denotes a vectdaxial vectoj current.  ing, Cy~2 is the dominantN—A vector transition form
These terms, referred to henceforth as “one-quark” radiativdactor, d, is a low-energy constant whose scale is set by
corrections, are calculable in the standard model. For elasticadronic weak interactions, and the- - - denotes nonreso-
scattering from the proton, they contain little theoretical un-nant, higher order chiral, andMj, corrections.
certainty apart from the gentle variation with Higgs mass, (iii) The experimental observation of surprisingly large
long-distance QCD effects involving light-quark loops in the SU(3)-violating contributions to hyperon radiative decays
Z-y mixing tensor, and S(3)-breaking effects in octet axial suggests that the effect df could be significantly enhanced
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over its “natural” scale, yielding anN—A asymmetry ¢ T N
~1078 or larger at the photon poirt.

(iv) The presence of the P¥, coupling implies that the
q? dependence of the axial vector transition amplitude enter-
ing PV electroexcitation of the& could differ significantly
from the gq? dependence of the corresponding amplitude 4 a N
probed with neutral current neutrino excitation of theAs
we demonstrate below, it may be possible to separatd the
contribution from other effects by exploiting the uniqgé ¢ " N
dependence associated with this new term. We illustrate this
possibility by considering a loyg?|, forward angle asym-
metry measurement.

(v) An experimental separation of tha&, contribution
from the remaining terms in the axial vector response would- c N
be of interest from at least two standpoints. First, it would
provide a unique window—in thAS=0 sector—on the dy-
namics underlying the poorly understood RA\6=1 radia-
tive and nonleptonic decays. Second, it would help to re-
move a significant source of theoretical uncertainty in the
interpretation of theN— A asymmetry, thereby allowing one
to extract theN— A axial vector form factors with less am-
biguity. e e N

(vi) A comparison of PV electroexcitation of the with _ o )
more precise, prospective neutrino excitation measurements FIG- 1. Feynman diagrams describing resonant pion electropro-
would be particularly interesting, as inelastic neutrino scatduction. The dark circles indicate parity violating coupling)
tering is insensitive to the largg-exchange effects arising at 9/VeS transition anapole and Siegert's term contributi¢esleads

. . . to the PVd-wave wNA contribution.
O(aGg) which contribute to PV electron scatterifi3,14.

While the remainder of the paper is devoted to a detailed
discussion of these points, several aspects deserve furth
comment here. First, the origin of the nonvanishig(q?
=0) in Eq. (3) is readily understood in terms of Siegert’s . . o
theorem[18,19, familiar in nonrelativistic nuclear physics. N contrast, for inelastic processes such as electroexcitation
For electron scattering processes such as shown in Fig. 1, ti% thea, @=My =My does not Va”'?“ and the dipole matrix
leading PVy-hadron couplingFig. 1(d)] corresponds to ma- element in Eq(4) generates a contribution to the PV scatter-

trix elements of the transverse electric multipole operatofNd @MplitudeM py behaving as & for low [g7. Since the
~E . . ) . arity-conservingPC amplitudeM p—whose interference
T;j-1,, and according to Siegert’s theorem matrix element

) X ) ith M py gives rise toA, g—also goes as §f, the inelastic
of this operator can be written in the fofm asymmetry does not vanish at the photon point. Henceforth,

5 Wg refer to the dipole contribution to the asymmetry as
SE 3 TN 2 APE%"  and the corresponding)(a) correction to the
ULEEN D \/éw(ﬂf d*x xYp, (Q)p(X)[i) + O(q%), OL(EF) z%-exchange, axial vector neutral current amplitude

(4 asR3®%*" We note that the importance AFE%®", relative to

the anapole and®-exchange contributions to the asymmetry,

wherew=E;—E;. The leading component in E¢) is g° increases as one approaches the photon point, since the latter
independent and proportional to times the electric dipole vanish forg?=0.
matrix element. Up to overall numerical factors, t&i$ ma- It is straightforward to recast the foregoing discussion in a
trix element is simplyd, /A . It does not contribute to PV covariant framework using effective chiral Lagrangians. The
elastic electron scattering, for whiagh=0. The remaining dipole term in Eq.(4) corresponds to the operatdr2,21]
terms of O(g?) and higher contain matrix elements of the
anapole operatdr20,14], which generally do not vanish for

either elastic or inelastic scattering. WheiT5_,, |i) is in-

'
)
'

A

grted into the full electron scattering amplitude, thg?1/
rom the photon propagator cancels the leadiigrom the
anapole term, yielding g°-independent contact interaction.

. edy,—
[ Siegert_ A_AA;')’)\PFW\—’_ H.c. 5)
X

whereP is the proton field and=,, is the photonic field-
'For a PV photoproduction asymmetry of this magnitude, a meastrength tensor, while the transition anapole contribution
surement using polarized photons at Jefferson Lab would be agrises from the effective interaction
interesting—and potentially feasibj@6]—possibility. An analysis
of the realy asymmetry appears in a separate communic&figh ea._
We adopt the “extended” version of Siegert's theorem derived in [ @napole_ ZOAY Pd,FM+H.c. (6)
Ref. [19]. AL
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The form of the operators in Eq$5), (6) points to an  mine the extent to which the hadronic weak interaction re-
interesting theoretical feature (ﬂﬁ not present in theep  spects the approximate symmetries associated with QCD.
case. In the largd&l. limit, the nucleon and\ become de- Finally, we observe that the resonant amplitude for PV
generate[ 1], while in the heavy baryon limit, matrix ele- pion electroproduction receives an additional contribution
ments of £ 5% are proportional tod/A «» Where 6=M, not associated with theN— A transition form factor. As
—My. Thus, we obtain the following theorem regarding shown in Fig. 1e), this contribution arises from the parity-

Afi;gefﬁ For any ¢, one has conserving electromagneth 1 excitation vertex and the PV
A— N decay amplitude. Angular momentum consider-
ASESg2) =0 (7)  ations imply that the latter id wave and, thusQ(p?). The
M1 excitation amplitude is similarl)(p?). Hence, the am-
whenN.—o, My—0. As a corollary, it follows that plitude in Fig. 1e) contributes at the same chiral order as do
the O(p®) terms in the PV electroexcitation vertex Figdy
AR(G?=0)~O(1My) (8)  The presence of Fig.(&) introduces a dependence on a new

low-energy constantLEC) associated with the PWA 7=
in the largeN, limit. Naively, corrections to Egs(7), (8)  vertex not considered previously. To our knowledge, this
should scale as N/c for finite NC and infiniteM N - This 1NC new LEC fNAﬂ' is not Currenﬂy constrained by any experi_
scaling is obscured in Eq3), due to subtleties involved in  mental data, nor have there been any model calculations to
taking various limitysee Sec. I)l, but does become apparent indicate its magnitude. Using both naive dimensional analy-
when considering theatio of APS%"to otherO(aGg) con-  sis (NDA) as well as a baryon resonance model, we argue
tributions. In particular, one would expect the ratio of thethat theoretical predictions fdi, . may vary by a factor of

Siegert and anapole contributions to scale as 10, and we assign a rather sizable theoretical uncertainty to
, this constant. The impact of the RVwave onA g is, nev-
ASiegeryAanapole:d_A Ays dy 1Ay © ertheless, considerably smaller than thatgg%®".
LR LR a 2 ar N 2"
A Qg A Ne Q

IIl. ELECTROEXCITATION: GENERAL FEATURES

Siegert
10 ;paep0|eextent2th<at(12A~aA, one wozuld expectAg? The amplitudes relevant to PV electroexcitation of the
=A[R"Ffor |g*[=A3/3~0.3 (GeVk)*—roughly the re- .0 shown i Fig. 1. The asymmetry arises from the interfer-
gion that will be accessed in the Jefferson Lab measurement - of the PC amplitude of Fig(a with the PV amplitudes
In principle, then, one may be able to kinematically separate; Figs. 1b)—(e). In Figs. 1b)—(d), the shaded circle denotes

ASiegert X . | .
an axial gauge bosonV{-fermion (f) coupling, while the

TR from the otherO(aGg) contributions to the axial
vector amplitude and test the prediction that the effect Ofremaining V-f couplings are vectorlike. In Fig. (@), the
shaded circle indicates the PNVA 7 d-wave vertex. All re-

L£5®%scales as N, .
The largeN. heavy baryon version of Siegert's theorem maining NA 7 vertices in Fig. 1 involve strong, PC cou-
noted above suggests that a studyRdfmay provide insight plings. In general, the interaction vertices of Fig. 1 contain
into another problem inVOlVing radiative transitions of ba.ry' |Oop effects as We” as tree_|eve| Contributions' The |00ps

ons. It is well known that the G parity” associated with the  relevant to the PV interactiorsip to the chiral order of our

U spin subalgebra of S@3) requires the vanishing of electric analysi3 are shown in Figs. 2—5.

dipole transitions for the dec&y" —py and=~—3"vy. As The formalism for treating the contributions £q 5 from

a consequence, the asymmetry parameter associated with th:ipgs_ 1a)—(c) is discussed in detail in Ref5]. Here, we
transition must vanish in the $8) limit—a result known as  review only those elements most germane to the discussion
Hara’s theorenj22]. One would then expect the size of the of electroweak radiative corrections. We also discuss general
measured asymmetry to be governed by the scale ¢8)SU features of the new contributions from Figgd)i(e) not pre-
breaking: (ns—m,)/A,~15%. Experimentally, however, viously analyzed.

one finds an asymmetryz2+p five times larger than this

scale, presenting a puzzle for the phenomenology of had- Kinematics

ronic weak interactions. The authors of Ref23,24] pro- ] ] ] ] )

posed a solution to this dilemma by showing that contribu- V& define the appropriate kinematic variables for the re-
tions from 3~ resonances could significantly enhance theCtion
electric dipole amplitude, yielding a prediction for the asym-

metry parameter closer to the experimental value. In what e (k+N(p)—e  (k')+A(py)—e (k')

follows, we argue that a similar mechanism could also lead +N'(p")+7(p,). (10)
to an enhancement of theNJ-suppressed electric dipole

ate, negative parity baryon resonances play an important role

in PV nonleptonic and radiative transitions, a sufficiently s=(k+p)% q=ps—p=k—k', ps=p +p,,
precise separation gk 59" from the other contributions to (11)
the asymmetry could provide an independent confirmation.

More generally, a determination df, could also help deter- wherep=0, and
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s=k?+2k-p+p?=m?+2Me+M?, (12)

e being the incoming electron energy amcand M = my the

PHYSICAL REVIEW [®5 033001

\"’Nww
FIG. 2. Meson-nucleon intermediate state
contributions to theN— A transition anapole and
€ Siegert couplingsa, andd,, respectively. The
shaded circles denote the PV vertex. The single
solid, double solid, dashed, and curly lines corre-
"‘, spond toN, A, 7, andy, respectively.
N /

whereN, (N_) is the number of detected, scattered elec-
trons for an incident beam of positivanegative helicity
electrons,« is the electromagnetic fine structure constant,

electron and nucleon masses, respectively. One may rela@d G, is the Fermi constant measured jin decay. The

the square of the four-momentum transfer

Q*=|al*~qj (13
to s and the electron scattering angleas
M2 2
sinf /2= Q (14)

(s—M?)(s—M3—-Q?)

The energy available in the nucleon—gauge bospor(Z°)
center of masgCM) frame isW= \/Ef and the energy of the
gauge boson in the CM frame is

W2_Q2_ M2

2W (19

do=

PV asymmetry

A} ) contain the vector current response of the target, aris-
ing from the interference of the amplitudes in Fig&)Xb),
while the termA 5 contains the axial vector response func-
tion, generated by the interference of Fig&)land Xc)—(e).

The leading termA(},, is nominally independent of the
hadronic structure—due to cancellations between the nu-
merator and denominator of the asymmetry—wheukgs;)
are sensitive to details of the hadronic transition amplitudes.
Specifically, one has

17

which includes the entire resonant hadronic vector current
contribution to the asymmetry. Hergy is the axial vector
electron coupling to th&° and¢],~* is the isovector hadron-
Z° vector current coupling25,26:

gaéy '=—2(Cy,—Cyg)

where theC,, are the standaré(e) X V(q) couplings in the

T T=1
L=Oaév

(18

As shown in Ref[5], one may distinguish three separate effective four fermion low-energy Lagrangid27]. At the
dynamical contributions to the PV asymmetry. Denotingtree level,g%&!~'=2(1— 2 sirfé,)~1. Vector current con-

these terms by (j, (i=1,...,3), one has

A N,-N_ -G, @
RONLEND 2 47a

[Af)TALHAG)], (16

-« l‘\ s
5 N \ \
)VVW\' ] i !
’ ’ ’

-7 WA -7 -7

a b c d

= IL“QA' = “~~
\ N N \
)WW" ] i ]
’ 7 ’

- T-' -

e f g h

FIG. 3. Same as Fig. 2 but with-7 intermediate states.

servation and the approximate isospin symmetry of the light
baryon spectrum protedt}, from receiving large and theo-
retically uncertain QCD corrections. In principle, then, iso-
lation of A7, could provide a test of fundamental elec-

N
\
1
1
4
R
a
“~
A Y
1
1
/
7
e

FIG. 4. Same as Fig. 2 but involving insertions of the baryon
magnetic moment operator, denoted by the crosses.

s N =
\ \ AY
) \ ]
¢ ] !
4 4 ’
" " ',
b c d
=~ =~ N
A} \ \
) ) \
! [ [}
/ ’ 7
—’ -, —,
f g h
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various contributions to this response according to the am-
plitudes of Fig. 1. From the interference of Figga)land
1(c) we obtain the axial vector neutral current response:

A% (NC)~gyén 'F(Q?s) (19)
where
9vén "= —2(Cyy—Cpq) (20)

in the absence of target-dependent, QCD contributions to the
one-quark electroweak radiative corrections. Thg are the
V(e)XA(q) analogues ofC,, [27], while the function
F(Q?,s) gives the dependence 4{3)(NC) on the axial cou-
plings C2. Following Ref.[5] we obtain

=~ N =~
\ \ \
1 1 )
! ! !
4 / 4
a b [
S =~ =~
\ \ \
1 ) \
! ! !
/ 4 /7
d e f

FIG. 5. Same as Fig. 2 but with PV electromagnetic insertions
denoted by the overlapping crosses and shaded circles.

CA M 2 _ Q2_ M 2 CA
troweak couplings. As shown in Ref[5], however, F(Qz,s)z—f/ 14— < — =
. - . . 2 A
theoretical uncertainties associated with the nonresonant Cs 2M Cs
background contribution 5, and the axial vector contribu- WM CA
tion A7 would likely render such a program not feasible. 4 Qo tW-M ZPQ2s), (21)
The interest for the Jefferson Lab measurenjéat lies 2M - Cg
in the form factor content of the axial vector contribution
A (). For our purposes, itis useful to distinguish between thevhere
|
MM [ (s—M?)+(s—M3)—Q?]
PQ%S)=1 - - . (22
5[Q2+(MA+M)2][Q2+(MA—M)2]+(S—M2)(S—M§)—QZS
|
In arriving at Eqs(19)—(22) we have included only resonant &)(to)=2(1-4 sif6%)(1+R3)F(Q%s)  (26)

contributions from theA. Nonresonant background effects

have been analyzed in Ref&,28]. Note thatF(Q?s) isa  where ), is the weak mixing angle at the tree level in the
frame-dependent quantity, depending as it doegHow-  standard model:

ever, for simplicity of notation, we have suppressed dgfie

dependence in the list of the arguments.

The interference of Figs.(4) and Xd) generates the tran- sir69,(1—sirf 65, = e (27)
sition anapole and Siegert contributions associated with the \/EG,U,MZ
interactions of Eqs(5), (6):
or
Ag)(SiegerHAzg)(anapole, (23 PN
sinf¢%,=0.21215-0.00002. (28)

while the interference of Figs.(d) and Xe) generates the
response associated with the RM 7 d-wave interaction;: ~ One may decompose th@(a) effects described bRy ac-
cording to several sources:
AG)(d wave). (24 A _
RA: RiWk-i- Rilegert_’_ Rznapole;}_ Ri wavey , (29)
From the total contribution
where the+ - - - indicates possible contributions from other
A (tot) =A%) (NC) + A (Siegert many-quark and QCD effects not included here. The quantity
R denotes the one-quark radiative corrections,
+A5)(anapolg+ A’ (d wave) (25
we may define the overafd(«) correctionR4 to the O(Gg) Rf\"“kzw -1 (30
axial response via Cau—Caq
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with the superscript “0” denoting the tree-level values of the We note that, unlikeM?Y, the amplitudes in Eq¢37) and
Cyq. The correctionRe¥ denotes the effects of botf(«) (38) contain no (14 sirfé,,) suppression. Consequently, the
corrections to the relatlon in Eq27) as well asO(aGg) relative importance of the P\-exchange many-quark am-
contributions to the neutral curreatq amplitude. While the  plitudes is enhanced by 1/(14 sirfé,)~10 relative to the
tree-level weak mixing angle is renormalization scheme indeading order neutral current amplitude.

dependent, both stA, and the correctiorR"‘AWk depend on The constantsl, anda, contain contributions from loops
the choice of renormalization scheme. In what follows, we(L) generated by the Lagrangians given in Sec. IV below and
quote results for both the on-shell renormalizati®@SR  from countertermgCT) in the tree-level effective Lagrang-
and modified minimal subtractiorMS) schemes. Note that ian of Egs.(5),(6):
our convention for theR{ differs from the convention

_ AL CT
adopted in our earlier work of Ref12], where we normal- dy=ds+d; (39
ized to the scheme-dependent quantity 4.sirf6,,. L e
The remaining corrections are defined by ay=astay - (40
Rs'egerLA(g)(S|eger)/A(3)(NC)° (31  In heavy baryon chiral pgrturbation theory (ngBT), only
the parts of the loop amplitudes nonanalytic in quark masses
REMP9= AT, (anapold/A T (NC)° (32) M4 can be unambigously indentified with; andaj . Con-
tributions analytic inm, have the same form as operators
Riwave:Azfs)(d wave)/AZg)(NC)O, (33)  appearing in the effective chiral Lagrangian, and since the

latter carry coefficients unknowa priori which must be
where the “0” denotes the value of the NC contribution at fitted to experimental data, one has no way to distinguish
the tree level. their effects from loop contributions analytic m,. Conse-
quently, all remaining analytic terms may be incorporated
Electroweak radiative corrections into d§$™ anda$". In Sec. V, we compute explicitly the vari-
ous loop contributions up througB(p3). In principle,dgT
anda$" should be determined from experiment. At present,
however, we know of no independent determination of these
constants to use as input in predictiﬁlﬁ, so we rely on
iMPY=iMRV+iMEY, (34) ~ model estimates for this purpogsee Sec. VI _
The structure arising from the P¥#¢wave amplitudg Fig.
where 1(e)] is considerably more complex than those associated
with Figs. 1(b)—(d), and we defer a detailed discussion to
G Sec. VI. We note, however, that the amplitude of Fig)4-
iMay=—i T’L—|A5<A|JA|N> (35 ke its partners in Fig. (d)—does not contain the 1
22 —4 sirfé,, suppression factor associated with tH¥Gg)
from Fig. 1(b) and amplitude of Fig. 1c). o _ _
For future reference, it is useful to give expressions for

The parity violating amplitude for the proceép—>eA is
generated by the diagrams in Figgb)t-(e). At tree level in
the standard model, one has

G the various contributions tA %, as well as the corresponding
iM{X=—1 —=I1MA]J,8N) (36)  contributions toRs and the total asymmetrj\ z. For the
2\2 response function, we have
from Fig. X(c). Here,J, (J,5) andl, (l,s) denote the vector
(axial vectoy weak neutral currents of the quarks and elec- " (Siegeri= 8\2ma d_e/ Got W= MN}P(QZ,S)
tron, respectively[25]. Note that the vector leptonic weak A% G,Q% C3 2A,
neutral current contains the factgf=(—1+4 sirféy)~ (41)
—0.1, which strongly suppresses the leading order
Z%-exchange amplitude of Fig(d). - 8\2ma au 5
The interactions given in Eq¢5), (6) generate additional A()(anapolg=— G A2z CY P(Q%s) (42)
contributions toM{X when a photon is exchanged between mox
the nucleon and the electrgRig. 1(d)]. The corresponding 8,2 A
amplitudes are AT (d wave = - T X
GMA)Z( My +My
imey __ATads s LeA[(M—M)g#"—q"yIN y
S|egert_ QZAX v A)9 q’y NAm H(Q%s)P(Q2s). (43)
(37) gw
(Ama)a,_ Thel appearance d?(Q?,s) results from the different kine- '
Manapole —e,y,ueA N. (39 matic dependen_ces_generated by the tran_sve_rse PC and axial
AX vector PV contributions to the electroexcitation asymmetry
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[5,25]. The functionH(Q?,s) is a gently varying function of
Q? defined in Eq(111) of Sec. VI.
The corresponding radiative corrections are

RSiegert 8\/§7Ta 1 dy A2
A GMA2 1- 4S|r\203\, 2Ch @2
QO
(@) (44
X
anapole_ 8\/§7Ta . as 21
R - 2 r]2 0 ZCAf(Q ,S)
G,A2 1-4sirfey, 2Cs
(45)
Rd wave_ 4\/_7Ta 1 AX

G,A2 1—4sirfoy, Matmy

cY
ﬁC—Z\H@%s)f(Qz,srl, (46)

where

M3i—-Q?-M2C, qu+W—-M C5
2 A 0
f(Q%s)=1+ VT C5A+ oM A

47)

In order to set the overall scale &&5°%" Ra"aP°k gng
RIWae e follow Ref.[12] and setdy~as~fyar~0.,
whereg, =3.8x 10 8 is the “natural” scale for charged cur-
rent hadronic PV effect§29,30. Using CE~1, Cy/Ct
~1.6,g,na~1, F(Q?5)~1 andH(Q?,s)~0.1, we obtain

RR9°%-0.0041 (A%/Q?) (48)
Ranarole. _0,0041 (49)
RYWave_ —0.0002. (50)

As we show belowR2"****may be significantly enhanced
over this general scale. From Eqg4) and (45 we also

observe that the ratio of radiative corrections scales as in EG:

(9) (up to a factor of 2 Thus, we expect the relative impor-

tance of the two contributions to depend critically on the

PHYSICAL REVIEW D65 033001

QZ
ArlAT]= \/i 2(Cqy=Cya)

~—-9%10 [ Q% (GeV/c)?]
(51

MQZ

4\2ma
~—6.3x107°F(Q?,s)

X[Q?/(GeVic)?] (52)

2(Cyy—Cog)F(Q?5)

ALr[A3)(NC) ] =

AR[AL(Siegen]=— v 1 P(Qz)

Agﬂ'

~—-2x10"8 P(Q?,s)

3
(53

2
2 pas)

A AP (anapole]= Y A2

aa /g7T
Cs

X[Q?/(GeVic)?] (54)

~2.8x10°8 P(Q?,s)

,S)P(Q?,s)

fNA17
AL A (dwave =
gaNa

2Q?
X—
A (my+my)

fnan/On

~3.0<10 8 —"""IH(Q?)s)

mNA
X P(Q?,s)[Q%(GeVic)?]. (55

Chiral and 1/N counting

A consistent treatment of the asymmetry must consider all
contributions to the PV amplitudes through a given chiral

TABLE I. Chiral orders for the vertices in Fig. 1. The first two
lines apply to Fig. td), while the second refers to Fig(e). The
orders for both tree-level and loop corrections are indicated. Note
that the tree-level Siegert interaction 3(p?), while the corre-
sponding tree-level anapole interaction¢p®). Loop effects gen-
erate O(p®) and O(p?) contributions, respectively, to the Siegert
nd transition anapole interactions. The vertices in the third line are
ee level only.

*N— — i
ratio of d, /a, at the GO kinematics, and we argue below PV Vertex y'N—4 A—Nm Amplitude
that d,—like ay,—may be significantly enhanced over the y*N—A, Siegert  O(p2p?) O(p) O(p?,p?)
scaleg, . y*N—A, anapole  O(p%p°) o(p) o(p?,p?)

Finally, the total contribution to the asymmetry from the A N4, d wave O(p?) O(p?) o(p%)

various response functions is given by

033001-8
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order. One may identify the chiral order either according to |UNR|<|UA| (59
powers of 1A, and 1y or in terms of powers op, where
p denotes a small external momentum or mass or the photon
field. In general, the two schemes are easily interchanged. In
the present case, the interactions in E&$. (6) are, respec- AR <|Ad?. (59)
tively, O(1/A,,1/A%) or O(p?,p?). In what follows, we
adopt thep-counting scheme exclusively, following the small
scale expansion framework of Ref31]. We truncate our Hence, to an excellent approximation,
expansions ofl, anda, at O(p3).
While one may readily identify the formal chiral order of
various contributions tdA, g, the physical significance of
chiral counting is complicated by the dominance of the Ao?
intermediate state at resonant kinematics. As a first step, we ALrR~ o (60)
identify the chiral order of various contributions to treso-
nantPV amplitudes in Figs. @) and Xe). The order of each
interaction vertex is listed in Table I, along with the order of
the corresponding amplitude. Here, we counthpropaga-
tor asO(p 1), though other conventions exist in the litera-
ture [32]. From the third column of Table I, it is clear that
one must include both the amplitude of FiddjLlas well as
that of Fig. 1e). Loop corrections to the PXX— N vertex
always lead to a higher order PV amplitude in chiral count-
ing as shown in Sec. VI. Details can be found in Appendix C.
The list of amplitudes in Table | does not include various
nonresonant background contributions, even though som
may be formally of lower chiral order than those involving
the A intermediate statésee, e.g., the studies of PV thresh-
old 7 production in Refs[16,30,33). The reason for the
omission is that for resonant kinematics the contribution o
the A is enhanced relative to the nonresonédR) back-
ground contributions by

At Q?=0, the only contribution ta\ o® arises fromg Sieeert
whose matrix element scales dsFor these kinematics, the
parity conservingVl 1 amplitude which governs® also var-
ies asd, yielding the s-independent result of Eq3). This
feature appears in the functig®(Q?,s) which is=1/5 when
Q?=0. We emphasize that the result in E8), obtained for
N.=3 andg?=0, expresses the relevant limit for the inter-
pretation of prospectivéd, g measurements.

To obtain thetheoreticallimit N.— <, we first treatN and

as degenerate states with zero widths. In this case, one
may no longer distinguish resonant and NR contributions to
A r, and theA contributions are no longer enhanced relative
fo those involving a nucleon intermediate state. Moreover,
Siegert’s theorem implies thato® =0 atQ?=0 when theN
and A are degenerate, heavy baryons. Thus, we obtain the
result quoted in Eq(7) and the PV asymmetry becomes

a1 oNR~(2M, IT )4 ~2x 10 (56)
NR
and, thus, more than compensates for the relative chiral or- A R(Q2=0N,— %)~ AgTT+O(M N), (61)
ders of theA and NR contributions. Indeed, from a blind ot + R

application of chiral power counting t& r, one might er-
roneously truncate the chiral expansion@gp), retaining
only the non-resonant background contributions to the resoyhere ©(1/M,) denotes recoil-order corrections from
nant asymmetry. In this context, then, chiral power countingg Siegert ginceA oNR is also of O(1/My) [16,33,30, the total
is appropriately used as a means of organizing various resgsymmetry at the photon point must &¢1/M,). Thus, we
nant contributions but not to delineate the relative impor-gptain the corollary quoted in E@8). In short, the large\,
tance of resonant and nonresonant amplitudes. behavior ofA  is hidden in Eq(3) by the dominance of the
These considerations take on added importance wheR ¢oss section at resonant kinematics inkhe= 3 world. In
studying the largé, limit of A g. In carrying out this limit,  rder to obtain the appropriate lard limit, one must con-
one must take care to includmththe A and NR contribu-  giqer theN, scaling of the PV and PC amplitudésfore
tions. To that end, we write forming the asymmetry and settirgf=0.

A NR
B Ao +Aco IV. NOTATION AND CONVENTIONS

ALR_

o~ +to . I
In computing the loop contributions td, anda,, we
follow the standard conventions for T [34,35. An ex-
whereo® andoNR denote thel and NR contributions to the tensive discussion of the relevant formalism, including com-
helicity-independent electron scattering cross section anglete expressions for the nonlinear PV and PC Lagrangians,
Ao® and Ac"R are the corresponding helicity difference can be found in Refd.36,12,37,3) and Appendix A. Since
cross sections. In the physical regime wil=3, one has, we focus here on the PYNA transition, however, we give

for resonant kinematics, the full expression for the corresponding Lagrangian:
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di— d d dy—
LpN=ie AT YFLNFie STy TR X1 N +ie SThy TR, X3 T N+ie T4y ysF N
X X X
ds— de d, y 5 dg—, 5
+|eA—XT Sy 75[FMV,X ]+N+|eAXT 57" vslF . X +]+N+|eA—T [FW,X,]+N+|eA—XT Y'[F . X2]-N
Cdi, d, 5 dy 5 d, ~
+|eA—XT3y<F >N+|eA—T y([FM,XJ )N+|eA—T y([FM,XJ )N+|eA—T3y 75(FM)N
 ds—  de— o d— _—
+ a—T Fo.X3] )N+ —T"D N+ —T“[D FrlX31N+ ﬁ?“[D”F+ X3]1N
IeA gyl v 1) eA [ ] eA [ +1+ eAzs[ ’VM] +1-
X X X
~ ~ =
+e—T”<[D Fr ]>N+e—T“<[[D Fr Xi]+>N+e—32T§([[DV,FjM] X3 1_)N+H.c. (62
AX AX AX
[
Here, 7T,=0 (69)
Xp=&'72¢, Xp=¢r2E", Xi=X{rXg (63
with 7T, =0 (70
i 1
S=¢2, &= exr( —) ,  m=—-mir? (64) _
Fa 2 p~T,=0. (72)

andF ;=92.4 MeV is the pion decay constant. In additidh,
is the nucleon isodoublet fieldj'ﬂ are decuplet isospurion
fields given by

R RR N
" 3lA) e lATB]
A%\3
“= (A— ) ’ (69
o
and
1
Fer=5(0,A4,— 9, 4,)(£Q'€"££'Q'8)  (68)
where
,_(1 O)
Q' =ly ol (67)
For an arbitrary operator we define
(O)y=Tr(0). (68)

The decuplet fields satisfy the constraints

We eventually convert to the heavy baryon expansion, in
which case the latter constraint becorm;é’s'l’L=O with v,
being the heavy baryon velocity. Another useful constraint in
HBxPT is

ST}, =0 (72

which arises from the fact thaysy“T,=0 in relativistic
theory.

The PV ’)/AN Couplingsdl,z,al,z, ’61,2 and’él,Z are
associated, at leading order irF1/, with zero-pion vertices.
In terms of these couplings, one has

CT 2 3 J
CT_ 2 A P

033001-10



ELECTROWEAK RADIATIVE CORRECTIONS TO. .. PHYSICAL REVIEW [®5 033001

The PV ywAA interactions contribute through loops. The hi—h2

corresponding Lagrangian is —7 D, ) +i LFQ—AFy“y5n(w+DM7r‘
bi1— by — 2
LA =T R, XL T+ T o F T V2hi—
VA Pl X=Je T Ay T Ty —m D7) +i |:2Ap’)’M7’5n7T+DM7TO
+b—T”¢r“”[F X31.T i 2o \/" 2_
Ay pr T Ay * - n)/ yspm D 71' (76)

w

b 3 b 3
+|—T”[F X]+TV+|—T“[F X231, T”

pv? M

whereD , is the electromagnetic covariant derivative and we
3 have retamed thé(1/F> <) three-pion terms arising from the
pr X214 TY PV Yukawa interaction.
When including the\, one deduces from angular momen-
0=, ~_ 3 , tum considerations that the lowest-order PANA interac-
+ A_T“75[F;w'x+]+T ' (79 tion having only a single pion ig wave and thus contains
X two derivativeq12,30. The leading one and two pion con-

+ F TV+bTM [
A_X Vs A_ sl

where all the vertices have one pion when expanded to th&ibutions are
leading order.

The PC strong and electromagnetic interactions involving 1 >
N, A, 7 and vy fields are well known, so we do not discuss gWNA (2f1+ _f4>ﬁy5(Du7TOT3+ DA T+
them here(see Appendix A Since the corresponding PV Far 3 a a
interactions may be less familiar, we give expressions for 2 2
these interactions expanded ®(1/F2). In the (y, N, ) +D 7 T,) + =—f,NysD 7T — —f,Nys
sector one has Fa Fa

2
— — 1 X(—DH*m~ + Mo tTN
£WNN——ihﬂ(an+—an7) 1——3F2<’7T+7T (=D#7 T, +D*7"T,) wasN%Ts
2
1, 0) h3+4/3hv[_ﬂ D, X(D#7OTS +D#7 T/ +D*a* T, W 5Ny57-3
+ s —F|PY™Nn 7"
2 2F
\/_ W X(D“W_T;+D"7T+T;)+H.C. (77)
1 2
" D - hy +h (7D
+ny pD, 7 ]+i py ysp( 7 77
. and
NA_ h2A++’7777T0_ 'hRAJrJrﬂ'oﬂf - RA+’7TO7TO_
T ++ — ++ +
L gy F—szM DAm~ 70— 2 pAl DAl —F—ZpA#D"‘ﬂ'Oﬂ'O

hpA+ tr hpA+1T ot N IthOw"'wo_ o Lo ihRAOw017+_ . ot
—F—pA D¢t ar —F—pA D*m™ —F—ZpAMD“ﬂ' T —F—ZpAMD”“ﬂ' T

IhpA atat | RA++ 77'__ ihRA+7T_7TO_
_F—DA D#m* 2 nA;+DMW77T7—F—2nA;DMW77TO

ihnAJr*n'oﬂnf_ ihnAOTrOﬂ'O_ H nAoﬂ'Jr'nf_ ihnA0w717+_
—AF—ZHA;D“WO'JTf—AF—ZnAzD”WOWO— AF—znAzD”W+W7—A?nA?LD“777T+

nA~ 7t 70 S onA T 70T

ihy ihy - 0

—F—nA D#at 70— ?nAMD“W 7T +H.c., (78
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where the PV coupling$; etc. are defined in Appendix A. TABLE II. Chiral orders for the meson-baryon vertices in the
Finally, we require the PMrAA interaction: loop calculation. TheO(p) PC w#NN vertex arises from chiral
connection while the PMI(p°) vertex comes from the Yukawa
hy — — coupling.
LEA=—i—=(ATTA T —ATA T 77
\/§ Vertex type Parity conserving Parity violating
hy — — 7NN O(p) o(p°%p)
A SO -+ A —AO,_—
TAA op) o(p°%p)
2hy — — NN O(p,p?) O(p)
T AN AOD _+_ AOA A+, — ’
TmAA O(p,p?) O(p)
ATHAT
- Vv - - _
L7 == —— (A" "y, AT D a + Ay, A DH ) _ . o
w We first consider the contributions afg generated by the
A+AO PV 7NN couplings. The leading contributions arise from the
— Y (A" y,A°DH 7 +K0,YMA+DM7T_) PV Yukawa couplingh,. contained in the loops of Fig(&—
Far (c). To O(p®), the diagram &) containing a photon insertion

(minimal coupling on a nucleon Iinetordoes not contribute
10 SNt A O 4t — since the intermediate baryon is neutral.
(Ay,A"DmT + A7y, ADEm). (80) The sum of the nonvanishing diagrams Figsa)2b)

_ _ _ yields a gauge invariar®(p?) result:
In order to obtain the proper chiral counting for the

nucleon, we employ the conventional heavy baryon expan- \/§ 1

sion of £PC and, in order to consistently include the we ak(Y1)= _G_QWNAh‘"'AXf dx(2x—1)x
. . ™ 0

follow the small scale expansion proposed[81]. In this

approach botlp,E<A, and 6<A, are treated ag(e) in

chiral power counting. The leading order vertices in this

framework can be obtained projectively i, I'P, where

I' is the original vertex in the relativistic Lagrangian and

3 A
1+4¢ =—\/— h —XfFN, 82
Pt: 5 (81) 67Tg7TNA 'rrrn7T 0 ( )

A0A~
hy

Fr

Xfxd I'(1+e)
0 yC_(X,y)l+€

where g_na is the strongmNA coupling, C..(X,y)=Yy?
+2y8(1—x) +x(1-x)Q?+m2 —ie and the functions "4
are defined in Appendix A. Due to them/ dependence of
ak(Yl), this contribution appears at one order lower than the
Otree-level contribution from Eq(6). Hence, the latter is a
subleading effect.
As the PV Yukawa interaction is of ordé}(p°), we must
consider higher order corrections involving this interaction,
. L which arise from the Iy expansion of the nucleon propa-
V. CHIRAL LOOPS: ds AND a4 gator and various vertices. Sin€e.-1-P_=0, there is no
Using the interactions given in the previous section, wel/my correction to the PV Yukawa vertex. From them}/
can compute the contributions &g andd, generated by the NN terms in Eq.(A3) we have
loops of Figs. 2—5. Loop corrections to the PANA d-wave

are projection operators for the lar¢g@mall) components of

the Dirac wave function, respectively. Likewise, the
O(1/my) corrections are generally proportional to
P.I'P_/my. In previous work the parity conserving
7NA vy interaction Lagrangians have been obtained t
O(1/m?) [31]. We collect some of the relevant terms in Ap-
pendix A.

interaction contribute at higher order than considered here, L Ay
so we do not discuss them explicitly. To assist the reader in as(Y2)=7,2-9m=nah- = Go
. o . : . N
identifying the chiral order of each Feynman diagram, we list
the chiral powers of all relevant,N,A vertices in Table II. V3 Ay
We regulate the loop integrals using dimensional regular- _GngAhwm_F ' (83)

. . . N
ization (DR) and absorb into the counterterra§’ andd$ '

the divergent—14—4)—terms as well as finite contribu- whereu is the subtraction scale introduced by DR and
tions analytic in the quark mass a@id For the sake of clar-

ity, we discuss the contributions &, andd, separately. We

note, however, that the P¥NA interaction isO(p?), so that 3In fact, even if the intermediate state were charged, this class of
the loops in Figs. @)—(i) and 3e)—(h) do not contribute to  diagram would vanish since the loop integral has exactly the same
a, andd, to the order we are working. form as that in Eq(92) which is shown to be zero.
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2

M
N —"
m- +x(1—x)Q?

1

)

Finally, the 1y correction to the strongrNA vertex yields

J3

Ggﬂ'NA T

Go= | dxIn (84)

)
2 % pn

ag(Y3)=- —

(85

For the PV vectorrNN coupling we consider Figs(@—(d),
which contribute

J6 4
a5 (V) = 359mna| Ny + gh? (86)

oo

Similarly for the PV7AA Yukawa coupling in Figs. @&)—
(c) we have

J3

a5 (Y D1)=7o—Gmmaha

87

A
2Xxpa
mTr Fo .
As in the case of;(Y1), the contributiora;(Y D1) occurs

at O(p?), one order lower than the tree-level contribution.
The 1y expansion of the delta propagator yields é¥®)
term

V3

AX
@%NA A

My

1SG
24

I

while the 1my expansion of the strong vertices leads to

aj(YD2)=— 0

2
-1
L

o
- —F5+

= SN

A

X

P~ (89

J3 1 5
az(YD3)= +1879vNAhA TZGO_m_ﬁFé :
For the PV vectorrAA coupling we consider diagrams Figs.
3(a)—(d). Their contribution is
ATAO
\Y

V3

The contribution generated from the PV axisdrNA ver-
tices comes only from the loop Fig(e}, and its contribution
is

AtTAT
hy

Go. (90

L 1
az(vD)= §9mna

1 +_+, - +, - _+
a“(AD)=—(h* 77 —hR* T T)HGo. (9D

Finally, the nominallyO(p®) diagram Fig. %) does not

PHYSICAL REVIEW [®5 033001

appear to be?d(p®). However, such diagrams vanish after
integration within the framework of HBPT for reasons dis-
cussed belowsee Eq.(92)]. Moreover, these diagrams do
not generate the tensor structure given in &j. As for the
PV electromagnetic insertions in Fig. 5, their contribution is
O(p*) or higher, as we have explicitly verified, and we ne-
glect them in the present analysis.

In principle, a large number of diagrams contributedko
at one loop order. However, our truncation@tp®) signifi-
cantly reduces the number of diagrams that must be explic-
ity computed. For example, the amplitudes in Fi¢h)Sand
5(e) are O(p*). The diagram in Fig. @) arises from the
expansion of thel; terms in Eq.(62) up to two pions, and its
contribution is also®(p?). The diagrams arising from PV
axial and vector vertices in Figs. 2 and 3 do not have the
tensor structure as in E¢p). Another possible source is PC
magnetic insertions in Fig. 4 with the PV Yukawa vertices.
However, their contribution vanishes after the loop integra-
tion is performed. For example, for Fig(al we have

. .M hﬂ'gﬂ'NA va
IM4a=Ieh6’“ ﬂs#quasﬂ
m IN
dPk k

o

2m)° (v-K)[v-(q+k)J(K2—m+ie)

X
i
Iu’nhﬂ'gﬁNA

= —pjelnimImNa
\/§F7TmN

S 1
xj sdsf duf

0 0
Ky

X
[k2+sv-k+usv-q+m?]®

e‘”“'gsﬁq WU o Sg

dPk

(2m)°

(92

whereu, is the neutron magnetic momeun, is the photon
momentum,e is the photon polarization vectos, has the
dimensions of mass, and we have Wick rotated to Euclidean
momenta in the second line. From this form it is clear that
iM 40 .. However, the index is associated with the delta
spinor, and from the constraifit’v ,=0 we conclude that
this amplitude vanishes. Similar arguments hold for the re-
maining diagrams in Fig. 4. Hence, the only nonvanishing
contributions toO(p®) come from the PV Yukawa vertices
of Figs. 2a)—(c) and 3a)—(c), including the associatedMj,
corrections.

The chiral correction from the P¥wNN Yukawa vertex
reads

have the transition anapole Lorentz structure. It contributes

only to the pole part of the Siegert operator, and its effect is

completely renormalized away by the counterterm.
An additional class of contributions t; arises from the

insertion of PC nucleon or delta resonance magnetic mos
ments. The relevant diagrams are collected in Fig. 4. Since

the PV 7NA vertices areO(p?), the correction from Figs.
4(e)—(h) is O(p®) or higher. In contrast, when the PV vertex
is Yukawa type as in Figs.(d—(d), these diagrams naively

1
d5(YD) =~z NeGoas| 7 Got -F5|.  (99)
he 1My correction to the propagator yields
3 -
d5(Y2)= 3 NoGona (o Fl (94)
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while the 1y correction to the strong vertex leads to

Y3)= AL o F§
d3(Y3)= 37 9mNa| S g 2my S0 mym. 5"
(95)
Similarly, the PV7AA Yukawa vertex yields
@ 1
d3(YDL)=—g hagma| 7Go~ -F5|.  (96)
The 1My correction to the propagator yields
\/§ T m, o
d3(YD2)= et RNy m—N+2—mNGo
85 82— m?
— A_ A
mNmﬂ'F3 mymz F4 , (97)

while the 1imy correction to the strong vertex leads to

52
Gy —2—FA|.

mNm7T
(98)

7Tm,.,+ 1)
2my  2my

dA(YDs)_ 1Tg1TNA

Summing the results in Eq&82)—(98) we obtain the total
loop contributions taa, andd, :

1A A
_ XEN_ = D Ay en
aj(tot)= 67 ngAh WFo 24mNGO mNFl
) J3 A 11 A
X T N YT XA T X
T m7T':2 T 1gn9maha mWF0 24my " °
2
_& d —1|FA _|_\/_6g
mN 1 36 7NA
+40
4 1 6A +HA+
x| hd+ =h2|Gy+ =g, (—+hA A6
\ 3V 0 6 NA \/§ V 0
1 At mt e At m—mt
—=(h® 77 —h® T T )G, (99
di(to = — \/ch ~Got -+ Doy T
A(O)_ 37 wngA 4 0 m7r 3 4 2 mN
° s al Fs \/§h
Z_mN 0 m 5797 A9 zNA
1 5FA 52—m§TFA .
XZGO_m_W S_W 4l (100

VI. PV #NA d-WAVE CONTRIBUTION

The PV7NA d-wave interaction given in Eq77) can be
derived from the more general, nonlinear PMerms in the
general PV7NA effective Lagrangian in Appendix A. For
present purposes, we require only the terms invohArg

PHYSICAL REVIEW D65 033001

2f
LZ\IGA:_\/; = py5A D#m°
1an+
+ ny5A D*7~+H.c. (10)
3 F
where
4
pr+WO:_2fl+§f4_2f3_2f5
2
an+7T7:_2f1+2f2+2f3_§f4_2f5.
(102

In order to see thd-wave character of these interactions, we
make the replacement

| v s

my+ My (103

Ys5—

wherel , is the pion momentum. In the nonrelativistic limit,
the spatial part ofy, ys is justS,, so that these interactions
are quadratic i, as advertised.

The domlnant contribution frond 7Y, to A g arises from
the s-channel process of Fig(d). In addition, theu-channel
diagram ¢r and y vertices interchangedalso contributes.
The latter is strongly suppressed, however, Eﬁ/mi
~0.01 for resonant kinematics, making its effect commensu-
rate with that of other background contributions, such as the
s-channel amplitude containing nucleaksr, etc. intermedi-
ate states. Consequently, we do not include it explicitly here.
Similarly, as shown in Appendix C, loop contributions to the
PV wNA d-wave interaction arise only at higher order than
we include here. Hence, we compute only the tree-level con-
tribution to A g.

The full expressions for the PV and PC cross sections are
too lengthy to be presented here. For illustrative purposes,
however, we quote the lowest-order contributions. In doing
so, we adopt the following counting(l) We count
my,m, .k, ~O(p°) andq,,l,~O(p) wherek, ,q,,!, are
the eIectron photon and pion momenta, respectivély.
Whenever we encounter scalar product of two momenta, we
first employ the on-shell condition and other kinematical
constraints like p+q)?=p3=m3. For example, we have
I-k~O(p),!-a~O(p?),k-q=—Q?*/2~ O(p?),p-k~O(p°)
etc.

The lowest chiral orde®(p®) parity violating response
function reads

2

Wpy~ — — (My—my) (My+my) 2{4E3m3(m2 + m3

oImy
—2s)+ 16E2mimam3(2my+ m,) + E,mamym?2
X (Mg — 6mym, — 3m3 ) (Mm% + m3 — 2s)

— 4mjim3m2(m3+2mym, —3m3)}, (104
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while the lowest chiral orde®(p*) parity conserving re-

sponse function is

1
Wpc~ om (mN mMy) (My+my)?ma{ — 2E ;msmy

2 2 2
+mymy[2(my—s)m;—myEm3]

+3mA[4(mZ—s)m3+myE .m3]}. (105
The lowest order expressions f&r,,m3,m3 are
c m3 —m3+m? Lo6
. W(mA do) (106
2 2 2
m3 —m2+m?2
m3= — om, P (107
o mi—mg+m2 Q%+s—m3
s 2m, 2m,
(108

whereqo=(ms—Q2—m?2)/2m, .

From these expressions, we obtain the contribution to the

asymmetry from Fig. (e):

f 2Q?
A ™ _ _NAwx 2 2
ALRLA5y(d wave ] = O H(Q%,s)P(Q%, ) A (ms +my)
(109)
where
1 2
fNA‘rr:§an+ﬂ'_+ §pr+ﬂ.0. (110)
The functionH(Q?,s) is defined as
A M
P(QZSIH(Q2S) = =5 (11
Q° Mpc

where we have inserted the factdr, to make the whole
expression dimensionless. Explicit numerical calculation

shows that

|H(Q?%s)|<0.1 (112

PHYSICAL REVIEW [®5 033001

VIl. LOW-ENERGY CONSTANTS AND HADRONIC
RESONANCES

As discussed in Ref12], a rigorous HB/PT treatment of
R3evert Ranapole andRY Y@ would use measurements of the
aX|aI response to determine thepriori unknown constants
a$", d$T, andfy, . Our goal in the present work, however,
is to estimate the size of the radiative corrections in order to
clarify the interpretation of the proposed measurement. To
that end, we turn to theory in order to estimate the size of
these counterterms. Because they are governed in part by the
short-distance r(>1/A,) strong interaction, such terms are
difficult to compute from first principles in QCD. One may,
however, obtain simple estimates using the “naive dimen-
sional analysis” of Ref[38]. According to this approach,
effective weak interaction operators should scale as

— | i
b m D'u ,
(m) (F_w) (A_X X(AF)?Xg,, (113
where
g NGFFfT o
m 2\/5

is the scale of weak charged current hadronic processes dis-
cussed above arid,, is the covariant derivative. In all cases
of interest here, one hds=1. The interactions of Eqg5),

(6) correspond td=0 andm=2 (Siegert operatgrand m

=3 (anapole operatpr Consequently, the Siegert and ana-
pole interactions should scale gs/A andi/Af(, respec-
tively. For the PVNA 7 d-wave interaction, one has=1
andm= 1, so that this interaction should scalegdF ,. (the
heavy baryon expansion includes an additional explicit factor
of D,/My). From the normal|zat|on of the operators in Egs.
(5), (6) (101, we conclude thaﬂA , aA , andfy, ., should

all be O(g,,). As we discuss below, however, different mod-
els for short distance hadron dynamics governing these low
energy constants may yield significant enhancements over
the NDA scale.

Transition anapole

In our previous wor12], we adopted a resonance satu-
ration model for the elastic analoguesaf. The justifica-
tion for this choice relies on experience witfPT in pseu-
doscalar meson sector, where th@(p%) low-energy

over the kinematic range of the Jefferson Lab measuremengonstants are well described using vector meson dominance

At present, the PWA 7 coupling fys, iS unknown. In

(VMD) [39]. In Ref.[12], we used VMD and obtained large,

Sec. VI, we discuss various estimates for its magnitude. Weegative values foay ' . The resulting prediction foRY, lies

note, however, that the P&-wave contribution toA g has

closer to the experimental result than if one assumedtﬁﬂe

the same leadin@? dependence as the anapole and neutraere of “natural” size. Consequently, we adopt a similar
current contributions, and it is consequently highly unlikely approach here in order to estiman&T.
that one will be able to isolate this term using the remaining The relevant VMD diagrams are shown in Fig. 6. Note

kinematic dependences containedHnThus, we treafy, -
as an additional source of uncertainty in théaGg) contri-
butions.

that parity violation enters through the vector meson-
nucleon-delta interaction vertices. The relevant PV vector
meson-nucleon Lagrangians 4v]
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. g
a b

FIG. 7. Resonance saturation contributions d§", where
shaded circles denote PV transition matrix element.

Siegert operator

FIG. 6. Vector meson contribution ta, . Shaded circle indi- A Straightforward app”cation of power Counting shows
cates PV hadronic coupling. The wavy line is the photon fieldthat t-channel exchange of vector mesons cannot contribute
v_vhlch transforms into the vector mesons denoted by the doublg0 dgT. To obtain estimates for the latter, we consider con-
line. tributions fromJ™=%" and 3~ baryon resonances, as indi-

_ _ cated in Fig. 7. Here, the pseudoscalar, nonleptonic weak
Lina=—h{n,NpH T i—hiy, Np“OTS —hiy, interaction [’ mixes states of the same spin and opposite
=t = S i3 parity into the initial and final baryon states, while thy&
X(Np# T, =Np* T, =N7p¥T, )+ H.c. vertex brings about thAJ=1 transition. A similar approach
(115  was used in Refd.23,24 in analyzing theAS=1 nonlep-
tonic and radiative decays of octet baryons. A particularly
LAY =—hl, ﬁwMT§+H.c., (116) interesting applicgtion_ of baryon_resonance saturation in-
¢ ¢ volves the electric dipole transitions for the decays
where the PV coupling constankg,, etc. have been esti- —PY and=~—2"y. As noted earlier, Hara's theorem im-
mated in Refs[40)]. plies that these amplitudes vanish when($Usymme/try is

For theV-y transition amplitude, we use exact, leading to vanishing asymmetry parametet§ for
the decays. Naively, one would expect the measured asym-
metries to be of the typical order for $8J-breaking correc-
tions: a®® ~my/M~0.15, wherem, is the strange quark
mass. Experimentally, however, one fi@3,46
wheree is the charge unitfy, is the y-V conversion constant

e
['V”V:Z_fVFWV’”’ (117

(V=p%w,4), andV,, is the corresponding vector meson o P=—0.76+0.08 (119
field tensor.(This gauge-invariant Lagrangian ensures that
the diagrams of Fig. 6 do not contribute to the charge of the === _0.63+0.09. (120
nucleon) The amplitude of Fig. 6 then yields
S0 ahl _pl (A2 The theoretical challenge has been to account for these
as'(VMD)= \ﬁ ANp ANp AN”(_X) enhanced values o' in a manner consistent with the
3 fy m, corresponding nonleptonic decay rates. While a number of

2 approaches have been attempted, the inclusioh ofeso-

, (118 nances as in Fig.(@) appears to go the farthest in enhancing
the theoretical predictions for the asymmetries while simul-
taneously helping to resolve tf&waveP-wave problem in
the nonleptoni®— B’ 7 channel. If; ~ resonance saturation

1
+ \ﬁhANw ﬁ
3 f m

w w

An important consideration when analyzing the impact of

a(A:T(VMP) is the overall sign, which is set in large part by s jndeed the correct explanation for the enhances
the relative phase betwedfyy, and thefy. The same issue  — 1 py radiative asymmetries, then one would naturally ex-

arises for the overall sign CﬁéT(VMD). which depends on  pect a similar mechanism to play an important role in the
the PVNNV couplingsh,, and fy . In Ref.[12] we deter- AS=0 PV electric dipole transition.

mined the relative phase betwefgnandh'p using the sign of In employing baryon resonance saturation to estimate
the measured P\ﬁp elastic asymmetr}[41_44] and the d,CT, a number of considerations should be kept in mind:
VMD contribution to nucleon charge rad#5]. The resulting (i) In contrast to the purely charged curré@C) AS=1
phase ish/f ,>0. The authors of Ref[40] obtain “best nonleptonic weak interaction, the Hamiltoniah {,'(AS
values” for hy, .hi, .Nin, having opposite sign from the =0) of interest here receives botiC) and neutral current

h!, while hy},, is very close to zero. Within the context of (NC) contributions. Moreover, the up- and down-quark CC
this model, then, we obtaihlyy,,/f,<0, hiy,/f,<0. From ~component of 7y (AS=0) is enhanced relative to
Eq. (45), we obtain apositive contribution toR&"*®from  Hw'(AS=1) byV,4/Vys~4.5. Naively, then, one might ex-
the short-distance part of the anapole transition form factorpect theAS=0 3 3" and 3~ 3" amplitudes to be

033001-16



ELECTROWEAK RADIATIVE CORRECTIONS TO. .. PHYSICAL REVIEW [®5 033001

TABLE IIl. Four star resonances which may contribute to the ~ TABLE IV. Best values and reasonable rangesdff, a$'.
amplitudes of Fig. 7. Final column gives branching fraction for the

radiative decayR— py, whereR denotes the resonant state. Coupling Best value Reasonable range
Resonance (3™ Tt (MeV) Loy /T ot |d5 " (res) 259, 0—100g,
ag'(VMD) 159, (-15-70)g,
S;; N(1535) 119 150 0.15-0.35% faand 4g., 0— 169,
S;; N(1650) 14 150 0.04-0.18 %
Ss1 A(1620) 31y 150 0.004-0.044 % ] W
DysN(1520)  1(3-) 120 0.46-0.56 % d$T(res = Mo M. (123
DasA (1700 3(3-) 300 0.12-0.26 % R4
From the experimental EM decay widths given in Table I,
we find
larger than theAS=1 3~ 3" amplitudes by this factor. |C150d ~0.98+0.05 (124)
However, there exist situations where symmetry consider-
ations imply a suppression of th#S=0 CC nonleptonic |C170d~0.70+0.13 (125

amplitudes relative to thA S=1 channel. At leading order,
for examp|e, the CC contribution to the AN'N7r Coup"ng with the overall sign uncertain. For the weak amplitudes
h, contains aV,s/V,4 suppression relative to the scale of Wr, we note that the analysis of Ref24] obtained

AS=1 weak mesonic decays. Although we seeanpriori  |Wr(AS=1)|~2x10"" GeV ~5g,A . Writing our esti-

reason for such a suppression in the—1* and 2~ 2+ mates ford, in terms of this quantity we have

weak amplitudes, we cannot rule out the possibility in the Wis20 Wi700
absence of a detailed calculation. dgT(re$~17g,T[— +8g,, —}

" . . 1y Wg(AS=1) Wg(AS=1)

(ii) At present, one has information on the — 3% AS (126)

=1 amplitudes from fits to th&wave AS=1 mesonic de-

cays, yet no information exists on thS=0,13" 32" or  With an uncertainty as to the overall phase.
AS=0 3« 3" amplitudes. Since we seek only to provide To the extent that|Wr(AS=0)|~[Wg(AS=1)|, we

an estimate fod, and not to perform a detailed treatment of would anticipate|d; '(res) ~(10-25),. For comparison,

: CT — H “ ”
the underlying quark dynamics, we use the results of RefV® obtainag (V_M.D) 159, using the " best values® of
24] for theAS=1 1~ 1" amplitudes for guidance in set- Ref. [40]. Thus, itis reasonable (0 expédh /| ~1 (up to
[ =1z <3 P g chiral corrections

ting the scale of th\S=0 weak matrix elements. (v) Based on NDA, one would might have expected

(iii_) The Iowest—lyir_wg four sta}r resonances yvhich may|WR(AS=O)|~g7TAX (see, e.g. Ref§30,38 for generic ar-
contribute to the amplitudes of Fig. 7 are given in Table ”"gument$ and, thus.d,~g, . However, the results of Ref.

In computing the amplitudes associated with Fig. 7, we rero4] give [Wg(AS= 1)|~59WAX’ while the energy denomi-
quire the electromagnetide.m) R(37)—A(1232) and nators in Eq(123 suggest additional enhancement factors of
R(3)—N(939) transition amplitudes. The e.m. decays of2 to 3. Since theAS=0 amplitudes are generally further
the 1~ resonances to th&(1232) have not been observed, enhanced by,q/V,s as well as neutral current contribu-

whereas the partial widths f&t(3 ~)— py have been seen at ;uons, ouk: estlm.ate Oﬂ,A (rés) ;ggld bIthOU(/JO Evse_tcl)mes
the expected rates. For purposes of estimadigg then, we arger than given in Eq.(126 with |Wr(AS=0)

. L . . : ~|Wg(AS=1)|. Hence, we quote in Table IV a “ reasonable
ly th from F Iving th | W ce, we
<3:on3|der only the contributions from Fig(ty involving the range” based on this possible factor of 4 enhancement. The

5~ resonances. . y . : P
(iv) The lowest order weak and e.m. Lagrangians needed best vglues are given b_y takingg(A S=0)| ~|Wr(AS
in evaluation of the amplitudes of Fig(ly are .:1)|' G|ven that the relative phase between GieandWe
is undetermined by the foregoing arguments, we quote a best
value and reasonable range for {i§ (res) only.

£BN= R 5 pFerH (121
EMTA, uw¥oP -C- PV N A 7 d-wave coupling
One may also apply the~, 3~ resonance model in order
= to estimate thed-wave couplingf . The relevant dia-
RA __ NA 7w
Lpy=1WrR*A,+H.C., (122 grams are similar to those of Fig. 7 with thereplaced by a

7. For the 3~ contributions, we require the partial widths

where, for simplicity, we have omitted labels associated withl (3 ~— A ). However, for the resonances listed in Table Il
charge and isospin and denoted the spin-3/2 fiel®byThe  only the S3;(1620) has an appreciabler partial width. In
constantsCg and Wx are unknowna priori. Using Eqgs. the case of thé ~ states, we need thés partial widths. In
(121, (122, we obtain from the diagrams of Fig(lj this case, large contributions arise from they(1520) and
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TABLE V Weak mi>.<ing anglg and one-quaR(aGg) contri- in sirP4,, from its tree-level valué.
butions to isovector axial transition current. In discussing the impact of many-quark corrections, it is
i ok useful to consider a number of perspectives. First, we com-
Scheme sifty —2(C2u=Caa) Ra pare the relative importance of the one- and many-quark cor-
Tree level 021215 0.00002 0.3028 0 rections by studying the ratioR{’. Using the results of
OSR 0.22288 0.00034 0.1404 — 0536 Secs. V-VII, we derive numerical expressions for these ra-
MS 0.23117-0.00016 0.1246 —0.589 tios in terms of the various low-energy constants. For the

relevant input parameters we ugg=1.267+0.004 [27],

U.na=1.05[31], G,=1.166<10 > GeV ?, §=0.3 GeV,
D43(1700). While a complete calculation would include aMIA)ézl-lG Gev, f,=5.26, f,=17 [47], 9,=38
sum over all resonances, we focus for our estimate only oi< 10 ¢, C6=0.87 andCy=1.39[7]. It is worth mentioning
the latter two states for simplicity. The corresponding stronghat ZC’Q is normalized such that this factor beconggsfor

decay Lagrangians are polarizede p scattering. We find then

£ PN 7§MA N+ H.c. 12 1.74
=12 — 9D, N nYs (127) RinaPO'ez o_o1><2—CA><{—0.04q,,—0.07hV+ 0.006h,
5

£ P NoysR. +H.c.,
R ~0.16n3+ 0.1 ""+0.09h3 y, + hiy,— hak,

+0.028h3,, 1} (132

(128

whereR,, andR), denote thd (J™)=3(3 ) and$(3 ") reso-
nance states, respectively, and from the experimental partial

. 74
waves, we obtain R e0e O.OIXWX[O.SEET— 0.0%,,
5
|9p..n-|=1.05+0.08 (129
¥ 0.0 0.1Ge\? g+ W—M 123
|9p, N =0.63+0.14. (130 03] I3 0.6 Gev (133
The weak PV3"-3~ interaction is given in Eq(122.  RY“®'°=0.00105 fy, X (CY/C8) X H(Q?,s)
The resulting P\Wd-wave couplings involving tha ™ are (139
Wr(1700 where
|fnanl~49x WAS=1) (131 ,
_p0 T2
The contributions fronD ;5(1520) to thenw* andp=® am- hy=hy+ 3 hy (139
plitudes cancel due to isospin symmetry, leaving only the
D35(1700) contribution in this approximation. As before, hA " Al
taking Wx~WR(AS=1) vyields weak couplings notably ha= Y 4ps A" (136)
larger thang . The corresponding best values and reason- V3
able ranges are given in Table IV.
hXA'rrﬂn':th T _hRA T (137)

VIIl. THE SCALE OF RADIATIVE CORRECTIONS

In the absence of target-dependent QCD effects, thﬁﬂ?nggﬁrfoi" PV couplings are in units @ and

O(aGe) contributions Eﬁf) are determined entirely by the o expressions in Eq§132) illustrate the sensitivity of

one—quarkkcprrect|onRA as defined in Eq(30). As noted e ragiative corrections to the various PV hadronic cou-
above,Ry"™ incorporates the effects of both th@(a) cor-  plings. As expected on general grounds, the overall size of
rections to the definition of the weak mixing angle in Eq. he Rﬂ) is about 1% when the PV couplings assume their
(27) as well as the(aGg) contributions to the elementary «pagyral” scale (NDA). The relative importance of the Sieg-
e-g neutral current amplitudes. The precise valuRf*is e term correction, however, grows rapidly wheR falls
renormalization scheme dependent, due to the truncation @fejow ~0.1 (GeVk)2. The hadron resonance models of
the perturbation series &(aGg). In Table V, we give the  gec. vl may yield significant enhancements of R be-
values of siffy, —2(Cp,—Caq), andRR™ in the OSR and yond the NDA scale. To obtain a range of values for the
MS schemes. We note that the impact of @ar) one-quark  corrections, we list in Table VI the available theoretical esti-
corrections to the tree-level amplitude is already significant,

decreasing its value by-50%. As noted in Sec. I, this siz-

able suppression results from the absence in various loops ofiat this order, the scheme dependence introduces a 10% variation
the 1— 4 sirf4,, factor appearing at the tree level, the appear-n the amplitude, owing to the omission of higher-ordevo-loop
ance of large logarithms of the typer/Mz, and the shift and beyong effects.

033001-18



ELECTROWEAK RADIATIVE CORRECTIONS TO.. ..

PHYSICAL REVIEW [®5 033001

TABLE VI. Range and the best values for the available PV
coupling constantsgin units of g,;) from Refs.[40,42,12,37 and
this work. 075 |
Coupling constants Source Best values Range 0.5
h, [40] ([42) 7(7) 0—17 0.25
hy [40] ([42)) -20(-20) —51-0 _
hiine [40] ([42)  11(10 517 z 0
h%Np [40] ( [42]) 20 (30) — 54152 £ o
hinp [40] ( [42) 20 (20) 1726
hiR, [40] ( [42]) 0(0) ~05-2 05
hy [12] 1 -10-10
h3 this work 1 —10-10 -0.75
hpA™™ [37] 1 ~10-10 p
(] 0.1 0.2 0.3 04 0.5
la’] (GeV)

mates for the PV constants, including both the estimates

given above as well as those appearing in Ref8,29. We FIG. 8. Contributions to the electroweak radiative correciin

h h i s hi at beam energy 0.424 GeV. The short-dashed lines show the upper
0b§erve that t_ € coup ingia, v dy and ANp @€ 3nd lower bounds of the “reasonable range” for the anapole contri-
weighted heavily in the expressions of Eqd32). At  pytion. The solid line is the one-quark contribution. The upper

present, these couplings are unconstrained by conventiongwer) long-dashed line is the Siegert term with,=25g.,,
analyses of hadronic PV and there exist no model estimate(& 25g,). The dotted line is the-wave contribution.

for hly andhy,. Consequently, we allow the various combi-
nations of these constants appearing in B2 to range
between 19, and —10g,., usingg, as a reasonable guess
for their best values.

enhances the effect of the unknown consthpfor low mo-
mentum transfer. If the Siegert operator is enhanced by the
i 0 ) same mechanism proposed to account for the violation of
The resulting values fogietth are shown in Table VI 1515 theorem im S=1 hyperon radiative decays, then the
and Fig. 8. For the ratidR;"“", we quote results for two magnitude of the effects shown in Table VIl and Fig. 8 is not

overall signs (=) for d,, since at present the overall phase ynreasonable. Conversely, should a future measurement im-

is uncertain. From both Table VIl and Fig. 8 we observe tha,y, RA~RS" then one may have reason to question the

the importance of the many-quark corrections can be signifizasonance saturation model for bath and the hyperon de-
cant in comparison to the one-quark effeBf&’. Moreover, cays.

the theoreticaluncertainty resulting from the reasonable o the purpose of analyzing prospective measurements, it
ranges for the PV parameters in Table VI, can be as large as
RS itself. It is conceivable that the total correctid®y
could be as much as 1 near the lower end of the kinematic
range for the Jefferson Lal— A measurement. While this
result may seem surprising at first glance, one should keep it
mind that theO(aGg) one-quark effects already yield a 50%
reduction in the tree-level axial amplitude, while the absence
of the leading factor 0f)? in the Siegert contribution t8,

TABLE VII. One-quark standard modéSM) and many-quark
anapole and Siegert’'s contributions W¥§A) X A(N) radiative cor-
rections. Values are computed in the on-shell scheme uGihg
=0.1 (GeVk)? and go+W—M=0.6 GeV. The plus and minus
signs correspond to the positive and negative vaIuesIﬁSr

Source Ra(best) Ra(range)

One-quark(SM) —-0.54 002 © X - i v s
Siegert () 0.21 0.02-0.85 ) ‘g% (GeV?) ) ’
Siegert () -0.21 —0.85—-0.02 )

Anapole 0.04 ~0.09-0.21 FIG. 9. Ratio of asymmetry componenis= A g/ Al'Rior, Where
ANS,,; denotes the total neutral current contribution. The dotted line
d wave 0.0006 —0.003-0.003 LRtot :
gives the Siegert contribution; the long-dashed line is for the PV
Total (+) —-0.29 —0.61-0.52 d-wave; the short dashed lines give our “reasonable range” for the
Total (—) -0.71 —1.48--0.35 anapole effect; and the solid line is for axial vector neutral current

contribution. All the other parameters are the same as in Fig. 8.
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0.30

effects, noting thatl, is dominated byd$". In Fig. 10, we
give the variation of the Siegert contribution for a range of
d, values, where this range is essentially determined by the
range ford$" given in Table IV.

From the plots in Figs. 9 and 10, we observe that the
uncertainty associated with the anapole ahdave terms
can be as much as25% of the nominal axial NC contribu-
tion. The uncertainty associated with the Siegert contribution
is even more pronounced. FQ?<0.1 (GeVk)?, this un-
certainty is+100% of the axial NC contribution, decreasing
to =15% atQ?=0.5 (GeVk)?. Evidently, in order to per-
form a meaningful determination @IiA(QZ), one must also
determine the size of the Siegert contribution. Since@ie
variation of the latter can be as large as that associated with
CA(Q?) for 0.1=Q?=<0.5 (GeVk)?, one may not be able to
rely solely on theQ? dependence of the asymmetry in this
regime in order to disentangle the various effects.

FIG. 10. Same as Fig. 9 but omitting the anapole andif\ave Rather, in order to separate the Siegert contribution from
curves and showing Siegert contribution for several vglues of thehe other axial terms, one would ideally measig, in a
couplingd, . The dotted, dashed _and dashed-(_jott_ed I_|nes are folregime where the Siegert term dominates the asymmetry. As
ds=19,, 25, and 10, respectively. The solid line is for the - g5,y iy Fig. 11, the Siegert contribution can become as
:;(éalh\;eg;or;::ll;triﬁl Fclgrrgnt contribution. All the other parameterﬁarge as thtze Ieadir?g, AZTI) contrib_ution fo_r Q2 -

=0.05 (GeVk)“. To estimate the experimental kinematics

is also useful to consider the contributions to the total asym9ptlrnal for a determination afl, in this regime, we plot in

. : Fig. 12 the total asymmetry for lo@2. To set the scale, we
metry generated by the variod¥ «Gg) effects. In Figs. 9, S .
10, we plot the ratios use the benchmark feasibility estimates of RBf, based on

the experimental conditions in Table VIII.
. From the figure of merit computed in R¢g], one obtains
r:ALR[Aw)(')] (139 a prospective statistical accuracy of~27% at E
" Ar(NCtop’ =400 MeV, = 180° andQ?=0.054 (GeVt)?2. A measure-
ment with such precision would barely resolve the effect of
whereA r(NC tot) is the total neutral current contribution to d,=*=100g,,. Doubling the beam energy and going to more
the asymmetry and denotes the Siegert, anapole, andforward anglege.g., #=20°), while keepingQ? essentially
d-wave contributions. In Fig. 9, we show the band generatethe same, would reduce the statistical uncertainty to roughly
by the anapole term, where the limits are determined by th&% . At this level, one would be able to resolve the effect of
ranges in Table VII. For simplicity, we show the Siegert con-d, having roughly the size of our “best value.” More gen-
tribution for only the single casel,=25g,, where the ef- erally, a forward angle {=20°) measurement foiE
fective couplingd, contains both the counterterm and loop ~1 GeV appears to offer the most promising possibility for

025 |
020 ¢
= 015 |
0.10

0.05 [

0.00
0

0.00

—1.00x10™ |
—2.00x10% |
o | FIG. 11. Asymmetry components as a func-
200y tion of |g?| and beam energy 0.424 GeV. Except
= wk for d, , all the parameters are taken from the cen-
< Hox0T tral values of Table VI. The bold long-dashed
< ‘ (dashedl line is for A (A7) [ALr(A%))]. The
-5.00x10 | solid, dashed-dotted, dotted and dashed lines are
for Alr(Af) atd,=0, 259, 509,, 759,,, and
-6.00x10™° | 100y, .
—7.00x10 | \ 3
E \\
—8.00x10™ L 1 ! L :
0 0.1 0.4 05

0.2 2 2 0.3
a7l (GeV)
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0.00x10° ; . ; 4 IX. CONCLUSIONS

-1.25x1079%
-2.5x10°% |
—3.75%10795 [~
-5.00x107%
-6.25x10°%
—7.50x10%
-8.75x107%
~1.00x10-03
~1.13x10°%
-1.25x10-%
—1.38x10%5
—1.50x10%5

1 Parity violation in the weak interaction has become an
] important tool for probing novel aspects of hadron and
nuclear structure. At present, an extensive program of PV
electron scattering experiments to determine the strange-
quark vector form factors of the nucleon is underway at MIT-

] Bates, Jefferson Lab, and Maif#8]. A measurement of the

1 neutron radius of%pPb is planned for the future at Jefferson

i Lab [49], and measurements of nonleptonic PV observables
are being developed at Los Alamos, NIST, and Jefferson Lab
—1.63x10°05 [50]. In the present study, we have discussed the application
—1.75x107% N - of PV electron scattering to study thd— A transition,
~1.88x107% |- Q}‘\\\ . which holds significant interest for our understanding of the
200K 004 0.06 0258 012, XEREr XTI TR low-lying qqq spectrum. We have argued the following.

o'l (GeV') (i) The O(aGg) contributions to the axial vectdd— A
response generate a significant contribution to the PV asym-
metry. One must, therefore, take these effects into consider-
ation when interpreting any measurement of the asymmetry.

(i) A substantial fraction of the)(aGg) contributions
arise from weak interactions among quarks. A particularly
interesting “many-quark” contribution of this nature in-
determiningd, . Such a measurement would have two ben-gjyes the PVyNA electric dipole couplingd,, whose
efits: (@) providing a test in théd S=0 channel of the mecha- presence leads to a nonvanishing asymmetry at the photon
nism proposed to explain the violation of Hara’s theorem inpoint.

ALR(|q2|)

FIG. 12. Total asymmetry at smallt?| for severald,. The
couplings are at central values of Table VI. The lines &y
=0,29,,759,, 509, and 10@, are the solid, dashed, dashed-
dotted, dotted and long-dashed lines.

the AS=1 hyperon radiative decays, arib) helping con- (iii ) A determination ofd, via, e.g., a low®? asymmetry
strain the d,-related uncertainty in an extraction of the measurement, would both sharpen the interpretation of a
CA(Q?) for Q?=0.1 (GeVk)?. planned Jefferson Lab PWA electroexcitation experiment

Finally, we comment on ’[h@2 dependence of the various and shed light on the dynamics of mesonic and radiative
O(aGg) effects analyzed here. The scale of (9é depen- hyperon weak decays. Indeed, one may conceivably discover
dence of the one-quark corrections is determined essentialyhether the anomalously large violation of QCD symmetries
by M, making the impact of this variation negligible over Observed in the latter is simply a peculiarity of th&s=1
the range of kinematics considered. The lead@fgdepen- chann.el or a more general fea_ture of low-energy hadronic
dence of the Siegert, anapole, and 8Wave effects is de- weak interactions. At the same time, knowledgel@fwould

: allow one to place new constraints on the axial transition
termmeq by the operator structure of E¢., (6), (77)-' The . form factors CP-A(QZ) from PV asymmetry measurements
subleadingQ? behavior arises from the loops considered in i y y

Sec. V as well as higher-order operators in the effective La’_taken over a modest kinemaltic range.

grangian. At present, the latter are completely undetermine h (tlvt)h Exgsrlllmeztal rer?]t:nltst:‘or thr??:tl ddecaycs sltég%est
In principle, one could extend the resonance saturation mog- at the —A asymmetry generated by, cou €
els of Sec. V in order to generate the subleaddfdbehavior.

The rel'|ab|I|ty of such a model extrapolation is Iargely UN* kinematics at existing medium energy facilities appears to lie
tested in the baryon sector, however, and we do not 'nd“dﬁ/ithin the realm of feasibility

any §ubleadin@2 behavior in our analysis. One should bear  \1ore generally, the subject of hadronic effects in elec-
in mind, however, that fo@?=0.5(GeVt)?—a scale where  rqweak radiative corrections has taken on added interest re-
the chiral expansion becomes unreliable—our lack of knowl-cen“y in light of new measurements of the muon anomalous
edge of the subleadin@? behavior of theO(aGg) correc-  magnetic momenf51] and backward angle PV elastip
tions introduces additional uncertainty. and quasielastied scattering 15]. The results in both cases
differ from standard model predictions, with implications
resting on the degree to which one can compute hadronic
contributions to radiative processes. The interpretation of fu-

arge, approaching a few 10 ® asQ?— 0. Measurement of
an asymmetry having this magnitude using forward angle

TABLE VIIl. Possible experimental conditions fok g mea-

surement. ture precision measurements, including determination of the
Experimental parameter Benchmark value asym_metry parameter ir_l neutrgh decay.and the rate for
neutrinolesg3B decay, will demand a similar degree of con-
Luminosity £ 2x10°%® cm 257! fidence in theoretical calculations of higher-order, hadronic
Running timeT 1000 h electroweak effects. Thus, any insight that one might derive
Solid angleAQ 20 msr from studies in other contexts would represent a welcome
Electron polarizatiorP, 100% contribution. To this end, a comparison of PV electroexcita-

tion of the A with the corresponding neutral current

033001-21



ZHU, MAEKAWA, SACCO, HOLSTEIN, AND RAMSEY-MUSOLF PHYSICAL REVIEW D65 033001

v-inducedA excitation would be particularly interesting, as eter which is not relevant in the present w¢4]. Our con-
the latter process is free from the lard «Gg) hadronic  vention for ys is that of Bjorken and Drel[52].

effects entering PV electroexcitati¢h3,25. The PV analogue of EA3) can be constructed using the
chiral fieldsX{  defined in Eq.(63). We find it convenient
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McKeown, and S. P. Wells for helpful discussions. current. In the standard model, the strangeness conserving
charged currents are pure isovector, whereas the neutral cur-
APPENDIX A: EEFECTIVE PC AND PV LAGRANGIANS rents contain both isovector and isoscalar components. Con-

sequentlyH,, containsAT=0,1,2 pieces and these channels
Defining the chiral vector and axial vector currents as must all be accounted for in any realistic hadronic effective
theory.
D,=D,+V, We quote the relativistic Lagrangians, but employ the
heavy baryon projections, as described above, in computing

D,m loops. It is straightforward to obtain the corresponding heavy

i
- _ t_ gt - 3
Au= 2(§D“§ §D,8) F. +0O(7) baryon Lagrangians from those listed below, so we do not
(A1) list the specific PV heavy baryon forms below. For takl
sector we have
1
_- T et _
V,= 2(§D,u,§ +¢& D,Lf) (A2) L:Z‘I'\":o:h?/NAM'YMN (A5)
we quote the relativistic PC Lagrangian fet N, A, andy \ h\l,_ 5 hi_ .
interactions needed here: LiT-1= ?N YNTI(A,X3) — ?N Y*ysNTr(A,X2)
cPC—FiT D“3D, ST+ N(D ,v*—myN hn _ =
=0 . (iD,y*—my) - F.NX3N (A6)
242
J— e —
vt _
+gANA#’yM’)/5N+ A_XN(CS+ CU T3)O”u FMVN EZ‘|’\"=2:h\2/IabN[X%AMXE+ XEAMXE]‘}/MN
hi

o ) 1 o _
—TH Dy =My 8 g, =7 7, Y (1D " > TAON[XRA, Xp— XA, XPT7* ysN.
, L, 01 T y (A7)

My Nyt S ALY s T S (V,A) _ o
The above Lagrangian was first given by Kaplan and Savage
[36]. However, the coefficients used in our work are slightly

+A'/iyv) vs5+ %yﬂA'; vEYsY, Tj”+ J-NA different from those of Ref36] since our definition ofA,,
differs by an overall phase.
X[ﬁt(gﬂﬁzoyﬂv)wivNJrﬁwiw The_term proportional t_dnq, contains no derivatives and,
at leading order in F ., yields the PVYNN7 Yukawa cou-
. Cali—, pling traditionally used in meson-exchange models for the
X(Gupt Zo%?’M)Ti'“L]_leA_XTi“FWTi PV NN interaction[29,43,44. Unlike the PV Yukawa inter-

action, the vector and axial vector terms in EGS5)—(A7)
contain derivative couplings. The terms containimgy,h
start off with NN 7 interactions, while all the other terms
start off asNN7. Such derivative couplings are not included
whereD, andD, are, respectively, chiral and electromag- in conventional analyses of nuclear and hadronic PV experi-
netic covariant derivatives, ari}, &, ij etc. are defined in ments. Consequently, the experimental constraints on the
Sec. IV above. The constants,c, are determined in terms low-energy constants,,, hly are unknown.

of the nucleon isoscalar and isovector magnetic momengts, The corresponding PV Lagrangians involvingNa— A

is the A magnetic momentjg,d, are the nucleon and delta transition are somewhat more complicated. The analogues of
transition magnetic moments, amg is an off-shell param- Eqgs.(A5)—(A7) are

ie—
+ A—Tg(ds+ d,73)y"ysF ,,,N+H.c. (A3)
X
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LT3N — £, €@N yo[ XEA X0+ X3A, XE] T + XEARXET2) — 2(XLAMXE+ XZAXE
+glﬁ[AM,X§]+T§+g2W[A#,X3],T§+ H.c. = 2XPAXE) TS ] = (L—R)}+H.c. (A9)
(A8) LT, =£,e2P97Ni 5[ X2A XD+ X3A  XB] T
LN =1,6Niyg[A, X351, Th + 562N ys[ X2A, X3+ X3A X2+ (Lo R)JTE
+ 13 Ni ye[ A, X3 ] T+ %ﬁ[(xﬁA#xf +0sTN[A, X231, TH+geZ*N[A, X2 ]-Tf
+H.c., (A10)

—XPALXE) — (XA, XE— XBA X3 T N o
where the terms containing andg; start off with single and
two pion vertices, respectively.

94 a3 an 1Tl L w272 1puy3TL
3 {NLBXCARXUT, +X(T,) +3OGAMXLT, For the PV7AA effective Lagrangians we have

LT o=ioTAY"T;, (A11)
J k 1 2A
LT 1—§lT' ATTr(AXS )——T'y ysTiTr(A,X )—Tf TxE T/Efﬂ{ST?’(Xl,TH—XZ,TZ)

+3(TIXE+T2X2) T3 2(TOXCE T+ T2 T2 2T T9) )+ o B(TE T+ T T3 Tr(A LX)

(T T2+ T2yA T TH(A LX) ] = 2Ty T T2y T2 = 2T T3 Tr(AL X3} Kof B[ (T3 y# s T?

+ Tyl ys T TH(A LX) + (T  ys T2+ T2y ys T Tr(A X2 ) 1= 2(TLy Py TH+ T2y y T2

= 2Ty s THTHAX (TR (AL XA T3+ T A, XA ] T+ a2y A, X3 ] -T2

— T AL XI] T+ ke T s A, X2 L T34+ Ty A, X1 T+ kaf Toy# ye[ A, X2 ] T2

—Toykys[A, X3]_T}, (A12)
LT ,=[sT T2y A TP+ [ e Z20TI XBA XE+ XA X0 1y T+ ksZ 2T XAA , XB— XA, XP] y# 5T,

+ K€ T3 ysXP T2+ T2 y5X0 T3], (A13)

where we have suppressed the Lorentz indices oAtfield, \ Cy

i.e., T”---T,. The vertices with; start off with two pions. LY PV_A_N‘TW[F
All other vertices have a single pion at leading order in X
1/F .. Theh! , are the PVrAA Yukawa coupling constants,
in terms of which

uv?

X3 1N+ ~ZNo#F 7, N
— 1+ AX nv

X3 N+, (A15)

puv?

S Nok
+AXN0' [F,

hy=hl,+h2,. (A14)

APPENDIX B: LOOP INTEGRALS

In addition to purely hadronic PV interactions, one may The functlonsFN A

also write down PV E.M. interactions involving baryons and

mesons. The Siegert and anapole interactions represent two
examples, arising aP(p?) and O(p?), respectively, and in-

etc. are defined below. They are all
convergent.

2

volving no pions. There also exist terms @(p?) which G zfldxln M (81)
include at least oner [30]: 0 m2+x(1—x)Q?

®Note that the hadronic derivative interactions of E¢)—(A7) FoN= fldX(ZX— 1)waLm (B2)
also containy fields as required by gauge-invariance. 0 0 CL(Xy)
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e f
FIG. 13. Loop corrections to the Pi-wave 7NA vertex in- FIG. 14. Same as Fig. 13 but with intermediate states.

volving nucleon intermediate states.
F3=0.243 R¢Fy)=—0.243

1 © d
FaN= Jo dx(2x—1)xJ Y2 (B3)

2 T
0 Cx(xy) F4=0.067 ReFY)=0.067
an_ [* = dy
F2 _Jodx(l_ZX)Jo C.ooy) M (B4) Fi=—0.127 Re¢FY)=0.127
Fg'N=fldx(1—x)xFLm (85) FA=0.168 R¢FY)=—0.168
0 0o Ca(xy) 7
A N
L (e dyy F2=0.226 RéF))=0.226
FA'N=f dxxf ———m B6
4 0 0 Czt(x,y) T ( )

F2=0.451 RéFY)=-0.451

1 < d
Fé’N=f dx(l—x)f S (B7)
0 0 C=(x.y) Go=4.23.

where  C.(x,y)=y?+2y(1—x)6+m2+x(1—x)Q%—ie,
the “+” sign is for the A intermediate state and the—"
sign is for the nucleon intermediate state.

The functionsF;* are well defined. However, fdF)' we
need to make an analytical continuation to the contour which All possible one-loop corrections to the PMNA vertex
runs from—co to  and then counterclockwise in the upper are shown in Figs. 13 and 14 with nucleon and delta inter-

APPENDIX C: LOOP CORRECTIONS TO PV @NA
VERTEX

infinite half circle. Then we have mediate states, respectively. Some of them are nominally

O(p?), e.g., Figs. 183 and 13c). The amplitude of the dia-

° y" o y" . gram Fig. 18a) is
dy——=(— ”*1J' dy—=——+ 81X (residue
fo yCT(x,y) ( ) o yCT(X,y) m,1 ( $
B Gmua slie

i ~h, -
where the residue is imaginary faon=1. Hence we will = F2 (2m)° (v-Dlv- (k+H](1IP=m>+ie)
generate an imaginary component Rﬁ,z,s,s- This is an ex-
pected result sinceny>(my+m_). Note that we are inter- )
ested only in the asymmetdy, r, which can be written as —oh 9anada |

T FL (4m)P?
2ReM M}
Pe o o YYyZrmZ—2xy k—ie)*

SinceMpc is purely real, the imaginary part GfiN does not
contribute to this asymmetry, and henceforth we keep onlyvhich is clearly®(p?) and appears to represent a Bwave

the real part oFiN. contribution. However we note that the indexs contracted
Numerically, at Q°=0 with m_=0.14 GeV and 6  with theA field, and from Eq(72) we see that this amplitude
=0.3 GeV we have vanishes. In the case of Fig. &3 we find
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gnnada d®l S-kl“

M0 | 2mP (o Dlw - (ke D122+ i)

gnnada [
F2  (4m)P?

m

xfxd fwd faxe Sk

X .

o Jo yy(y2+me—2xyv~k—ie)1+€ 0
(C2

a
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which seems to yield a P\P-wave correction. However,
with the constrainb “T!, =0 we see that Fig. 18) also does
not contribute to the loop correction to the PNNA vertex.
The underlying physics is clear: there exist no BVand
P-wave PV7NA couplings due to angular momentum con-
servation. Similarly, the diagrams Figs.(a4and 14c) with

PV wAA Yukawa insertion do not contribute. The reasoning
is the same. All other possible insertions of the PV vertex in
Figs. 13 and 14 lead t®(p®) or higher corrections, which
can be readily seen with the help of Table II.
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