

JClarens: A Java Framework for Developing and Deploying
Web Services for Grid Computing

Michael Thomas,1 Conrad Steenberg,1 Frank van Lingen,1 Harvey Newman,1
Julian Bunn,1 Arshad Ali,2 Richard McClatchey,3 Ashiq Anjum,2,3 Tahir Azim,2

Waqas ur Rehman,2 Faisal Khan,2 Jang Uk In4

1California Institute of Technology, Pasadena, CA, USA
{thomas,conrad,newman}@hep.caltech.edu, {fvlingen, Julian.Bunn}@caltech.edu

2National University of Sciences and Technology, Rawalpindi, Pakistan
{arshad.ali,ashiq.anjum,tahir.azim,waqas.rehman,faisal.khan}@niit.edu.pk

3University of the West of England,Bristol ,UK Richard.McClatchey@uwe.ac.uk
4University of Florida, Gainsville, FL, USA juin@phys.ufl.edu

Abstract
High Energy Physics (HEP) and other scientific

communities have adopted Service Oriented
Architectures (SOA) [1][2] as part of a larger Grid
computing effort. This effort involves the integration
of many legacy applications and programming
libraries into a SOA framework. The Grid Analysis
Environment (GAE) [3] is such a service oriented
architecture based on the Clarens Grid Services
Framework [4][5] and is being developed as part of
the Compact Muon Solenoid (CMS) [6] experiment at
the Large Hadron Collider (LHC) [7] at European
Laboratory for Particle Physics (CERN) [8]. Clarens
provides a set of authorization, access control, and
discovery services, as well as XMLRPC and SOAP
access to all deployed services. Two implementations
of the Clarens Web Services Framework (Python and
Java) offer integration possibilities for a wide range
of programming languages. This paper describes the
Java implementation of the Clarens Web Services
Framework called ‘JClarens.’ and several web
services of interest to the scientific and Grid
community that have been deployed using JClarens.

1. Introduction

These days scientific collaborations require more

computing (cpu, storage, networking etc) resources
than can be provided by any single institution.
Furthermore, these collaborations consist of many
geographically dispersed groups of researchers. As an

example, two High Energy Physics experiments CMS
[6] and ATLAS [9] will be generating petabytes to
exabytes of data that must be accessible to over 2000
physicists from 150 participating institutions in more
than 30 countries.

Grid computing holds the promise of harnessing
computing resources at geographically dispersed
institutions into a larger distributed system that can be
utilized by the entire collaboration.

As one of any site’s responsibilities is to the local
users, institutes managing these sites generally have a
large amount of control over their site’s resources.
Local requirements at each site lead to different
decisions on operating systems, software toolkits, and
usage policies. These differing requirements can
result in a very heterogeneous character of some Grid
environments.

A Services Oriented Architecture (SOA) is well
suited to addressing some of the issues that arise from
such a heterogeneous, locally controlled but globally
shared system. Three features of a SOA make it a
suitable candidate for use in a Grid computing
environment:

Standard Interface Definitions – The use of
common interface definitions for resources allows
them to be used in the same way.

Implementation Independence – Any
programming language on any operating system can
be used to implement services. Local sites are not
required to run a particular operating system or to use

a specific programming language when implementing
or selecting their service implementations.

Standard Foundation Services – These services
provide the basic security, discovery, and access
control features for locating and accessing remote
services.

One example of a SOA is the Grid Analysis
Environment (GAE) [3] which uses the Clarens Grid
Service Framework. The GAE aims to provide a
coherent environment for thousands of physicists to
utilize the geographically dispersed computing
resources for data analysis. The GAE SOA is part of
the Ultralight [10] project which focuses on
integration of networks as an end-to-end, managed
resource in global, data-intensive Grid systems.
Clarens is also utilized as a Grid Service Framework
in other projects, such as Lambda station [11], Proof
Enabled Analysis Center (PEAC) [12], and Physh
[13].

In this paper, we discuss the design,
implementation and various services of the second
Clarens implementation called ‘JClarens.’ The
JClarens architecture is based on Java Servlet
Technology and XMLRPC/SOAP. JClarens can be
deployed with any web server configured with a
servlet engine. Both JClarens and PClarens (based on
Python) are intended to be deployed as a set of peer-
to-peer servers with a complementary set of deployed
services.

2. Software architecture

The core of the Clarens Framework provides a set

of standard foundation services for authorization,
access control, service discovery and a framework for
hosting additional grid services. These additional
services offer functionality, such as remote job
submission, job scheduling, data discovery and access.
Standard technologies such as Public Key
Infrastructure (PKI) for security, and
SOAP/XMLRPC for invoking remote services, are
used within the Clarens framework to provide secure
and ubiquitous access. The two implementations of
Clarens (Python and Java) both share the common set
of standard foundation services. PClarens, is based
on the Apache Web Server with the mod_python
module. In this implementation services are written
using the Python programming language.

JClarens is developed as a single J2EE web
application hosted inside the Tomcat servlet container
[14]. Tomcat provides the basic HTTP transport for
sending and receiving the SOAP and XMLRPC

messages. The HTTPS transport is also supported.
The built-in HTTPS connector for Tomcat could not
be used, however, due to its lack of support for client
authentication using proxy certificates. Libraries
provided by the gLite [15] project provide support for
this client proxy authentication. HTTP-based
authentication can also be performed using the
‘system’ service described below.

Figure 1. JClarens architecture

The JClarens web application uses a single servlet

to handle both SOAP and XMLRPC messages, as
shown in Figure 1. The servlet contains an instance
of both an Axis SOAP engine and an Apache XML-
RPC engine. Each incoming request is examined to
determine if it is a SOAP or XMLRPC request.
Requests are then passed to the appropriate engine
(Axis or XML-RPC) for processing. The use of a
single URL for both types of requests simplifies the
configuration for client applications.

The use of two transport encoding engines
necessitates two configurations. A Java properties file
is used to configure the main JClarens web
application, as well as the XMLRPC engine. The
interface for a web service is specified using one
configuration property, and another property is used
to define the implementation class for that service.
This makes it very easy to install multiple service
implementations, and choose between the multiple
implementations at startup time. A standard SOAP
web service deployment descriptor file is used to
configure the SOAP engine.

3. Services

In a dynamic Grid environment, there is no central
authority that can be trusted for all authorization and
access control queries. Each local provider of a Grid
service is responsible for providing these features for
their set of local services. The Clarens framework
provides several core services [16], which includes a
system service that provides authorization and access
control management capabilities. A group service
augments the access control capabilities by allowing
groups of users to be managed as a single entity. The
file service provides a limited mechanism for
browsing, uploading, and downloading files on a
remote system. A proxy service assists in the
management of client proxy credentials that are used
when executing shell commands (see Shell Service,
Part 3.4, infra) and when making delegated service
calls from one service to another.

The core services described in the previous
paragraph are part of the standard installation of
Clarens. As Clarens is continuously being developed
and used within projects, new functionalities and
services are being created. Rather than creating a
large package containing all the possible services, site
administrators can decide to install additional services

Additional services add useful functionality for
operating in a Grid environment as well as some
domain-specific services for use in very particular
environments such as CMS. The next sections discuss
several of these additional services.

3.1. Job scheduling

The job of a Grid scheduler is to enable effective

use of resources at many Grid sites. The scheduler
takes into account data location, CPU availability, and
resource policies to perform a matchmaking process
between the user’s request and the Grid resources.
SPHINX [17][18] is a novel scheduling middleware
in a dynamically changing and heterogeneous Grid
environment and provides several key functionalities
in its architecture for efficient and fault tolerant
scheduling in dynamic Grid environments.

Modular system: The scheduling system can be
easily modified or extended. Changes to an
individual scheduling module can be made without
affecting the logical structure of other modules.

Robust and recoverable system: The SPHINX
server uses a relational database to manage the
scheduling process. The database also provides a
level of fault tolerance by making the system easily
recoverable from internal component failures.

Platform independent interoperable system: The
JClarens service framework is used by SPHINX to
provide platform and language neutral XML-based
communication protocols.

SPHINX consists of two components: a client and
a server. This separation facilitates system
accessibility and portability. The client is a
lightweight, portable scheduling agent that provides
the server with scheduling requests. The client also
interacts with a user which submits scheduling
requests to the client. As such, it provides an abstract
layer to the scheduling service, while exposing a
customized interface to accommodate user specific
functions.

SPHINX processes Directed Acyclic Graphs
(DAGs) using a system based on a finite state
machine. Each DAG workflow (and corresponding set
of jobs) can be in one of several states. These states
allow for an efficient control flow as well as graceful
recovery in the case of machine failure. Each state
has a module to handle control flow and machine
failure. The data management component
communicates with the monitoring interface and a
Replica Location Service (RLS) for managing copies
of data stored at many sites.

Sphinx Server

VDT Client

VDT Server (Grid Site)

Cluster scheduler/deamon

Globus Resource
RLS server

Condor-G/DAGMan

Request
Processing

Data
Warehouse

Data
Management

Information
Gathering

Sphinx Client Chimera
Virtual Data

System
GSI-enabled
XML-RPC

TrackerTracker

Sphinx Architecture
Figure 2. SPHINX architecture

 Figure 2 shows the architecture of SPHINX.

The SPHINX client forwards the job generated by
Chimera [19] to the server for execution site
recommendation. The SPHINX server schedules the
job on to a site utilizing the monitoring information
and Replica Location Service. The client can then
submit it to that site and the tracker can send back job
status information to the server. The communication
between all the components uses GSI-enabled XML-
RPC services.

3.2. Discovery Service

Within a global distributed service environment

services will appear, disappear, and be moved in an
unpredictable and dynamic manner. It is virtually
impossible for scientists and applications to keep
track of these changes. The discovery service provides
scientists and applications the ability to query for
services and to retrieve up-to-date information on the
location and interface of a service in a dynamic
environment. Although the discovery service is
conceptually similar to a UDDI registry, it offers a
much simpler service interface and more dynamic
content. Registration with the discovery service must
happen at regular intervals in order to prove that a
service is still available. If a service fails to notify the
discovery service within a certain time period, it is
automatically removed from the registry. The
discovery service offers four methods: (1)
register is used to add a new service to the
registry; (2) find_server is used to locate service
hosts that match certain search criteria; (3) find is
used to locate service instances that match certain
search criteria; (4) deregister is used to remove
services from the registry (however it is seldom used
since the registry will automatically remove the
service once it fails to re-register).

CS

SS

DS

CL

MonALISA JINI
Network

Station
Servers

Clarens Discovery
Servers/JINI Clients

Clarens
Servers

Clients

SS SS

DS

CL CL

CS

CS

CS

Figure 3. Discovery Service

Two implementations of the discovery service

interface are currently in use. The first is a peer-to-
peer implementation based on Jini and the
MonALISA [20] Grid monitoring system, as shown in
Figure 3. MonALISA is a Jini-based monitoring
system that uses station servers to collect local
monitoring data, and uses a Jini peer-to-peer network
to share selected monitoring data with other station
servers or other interested clients. Arbitrary

monitoring data can be published to a MonALISA
station server using ApMon, a library that uses simple
XDR encoded UDP packets.

This first implementation of the discovery service
uses the ApMon library to publish service
registrations to the MonALISA Jini network. Each
discovery service contains a client that listens for
these service publications on the MonALISA Jini
network, and stores them in an in-memory cache.
The discovery service periodically purges expired
entries from this in-memory cache. Since the service
registry is stored in memory, it is not persistent across
server restarts, which is not a problem since the
registry will be quickly populated with new
information once it starts up again.

The second implementation of the discovery
service does not make use of the MonALISA Jini
network at all. Instead, it uses a UDDI repository to
store the service publications. The UDDI
implementation serves as an important bridge
between the simple JClarens service registry and a
more full-featured and common UDDI registry. The
register method of this implementation makes the
appropriate UDDI service calls to insert the Web
Service into a known UDDI registry. The find and
find_server methods perform queries on the
UDDI registry and reformat the result to match the
discovery service interface. This UDDI
implementation allows JClarens to be used in an
environment that is more static and has existing
UDDI repositories already in use.

3.3. Data Location Service

The Grid will have a number of computational

elements that might belong to multiple organizations
split across geographically dispersed sites. The sites
are connected by a number of different Wide Area
Network (WAN) links. These links will have different
bandwidths and latencies for various reasons such as
the relative locations of the sites, the capabilities of
the local telecommunications providers, etc. Some
executables and data items will be large compared to
the available network bandwidths and latencies. The
relative locations of executables and data, network
bandwidth consumed, size and time of the data
transfer are important within Grid wide scheduling
decisions as these parameters might have significant
impact on the computing costs.

In order to achieve some of the objectives stated
above, File Access and optimized Replica Location
Services in a Grid analysis environment must be
combined so that a user or user agent can specify a

single logical filename and return the optimal
physical path to that file. The Data Location Service
(DLS) outlined in this paper focuses on the selection
of the best replica of a selected logical file, taking into
account the location of the computing resources and
network and storage access latencies. It must be a
light-weight web service that gathers information
from the Grid’s network monitoring service and
performs access optimization calculations based on
this information.

This service provides optimal replica information
on the basis of both faster access and better
performance characteristics. The Data Location
process allows an application to choose a replica,
from among those in various replica catalogs, based
on its performance and data access features. Once a
logical file is requested by the user, the DLS uses the
replica catalog to locate all replica locations
containing physical file instances of this logical file,
from which it should choose an optimal instance for
retrieval. These decisions are based on criteria such as
network speed, data location, file size, data transfer
time and other related parameters. It should be
decentralized (not rely on some central storage
system) and fault tolerant, so that when one instance
goes offline, the user (or client service) is still able to
work by using other instances of the service.

Figure 4. DLS Service Architecture

Figure 4 shows the DLS architecture. The DLS is
a decentralized service which takes into account the

selection process on the basis of client and file
location and respective network parameters while
utilizing the discovery service to locate the available
dataset catalog services. Each catalog is queried by
the DLS to find all locations where the requested file
is available. The service returns a paginated list of
file locations to the caller. In addition, the DLS
monitors data access patterns, keeping track of often-
used and often-unavailable files.

The result of a call to this service is sorted by
either the reliability of the file, or by the "closeness"
determined by some network ping time or other
network measurements from MonALISA. The DLS
also evaluates the network costs for accessing a
replica. For this it must use information such as
estimates of file transfer times based on network
monitoring statistics. The DLS selects the "best"
physical file based on the given parameters. Several
performance parameters such as network speed,
current network throughput, load on data servers,
input queues on data server are included in the metric
for selecting the "best" replica. The discovery service
makes it possible to discover and publish services in a
fault tolerant and decentralized way.

3.4. Shell Service

The shell service provides a generic way to invoke

local shell commands using web service calls in a
secure manner. A Globus grid-mapfile is used to map
a user’s x509 credentials to a local user account. The
shell service makes use of the suexec command line
tool from Apache in order to change to the local
user’s uid before executing the command. suexec
has built-in safeguards to ensure that it can not be
used to run commands as root or any other privileged
system user.
The core method in the shell service is the cmd
method. This is the method that is used to execute the
shell commands on the JClarens server. It assigns a
unique ID to each request and returns this ID back to
client after the requested command has been
scheduled on the server. This command allows the
client to launch long-running commands without
having to maintain a persistent connection to the
server. The shell service also provides the
cmd_info method for obtaining information on the
status of the scheduled commands. This information
includes the name of the local system user that was
used to run the command, the process ID, start and
end times of the command’s execution, and directory
containing the sandbox used as the working directory
for the command. This directory stores standard

MonALISA

Discovery
Service

JClarens
Host A

Data
Location
Service

Replica
Optimization

Service

Dataset
Catalog
Service

MonALISA

JClarens
Host B

Data
Location
Service

Replica
Optimization

Service

Dataset
Catalog
Service

output and error files that contain any output and
errors from the command. The previously mentioned
file service can be used to retrieve contents of these
files.

The ability to execute arbitrary commands as a
local system user makes the shell service a valuable
tool for integrating existing command line tools into
web services. By providing a set of utility functions in
the JClarens core server, new web services can be
written that simply wrap command line tools and
return the output to the user. For example, a df
service can be written using the shell service utilities
that executes the system df command and returns the
disk usage statistics back to the user.

4. Adding new services

One of the primary motivations for creating

JClarens is to assist web service developers with the
development and deployment of new services while
providing functionality needed by all services
deployed in a dynamic Grid environment:
authorization, authentication, and discoverability.
JClarens uses the common Redhat Package Manager
(RPM) packaging format for installation. This RPM
package comes with a Tomcat 5.0.28 servlet engine as
well as the JClarens web application itself. Once the
RPM package has been installed, no further
configuration is necessary to start the server. Some
site-specific configuration (such as the use of a host-
specific x509 certificate) will be necessary before
putting the server into production.

Example 1. Command to install JClarens

A sample service is provided as a template for

building new services. This sample service contains
an Ant[21]-based build file with targets to generate
SOAP stubs from WSDL. The build file also contains
rules for building an RPM for the service. This RPM
can then be installed into an existing JClarens
installation. After installing the service RPM, only a
single line need be added to the global JClarens
configuration file to indicate that this service should
now be used. The sample service also contains a
template XMLRPC binding file that can be easily
customized to enable XMLRPC encoding for the
service.

Example 2. Command to install a new service.

The process to deploy a new service in JClarens is

slightly more involved than with a basic Apache Axis
SOAP engine. However, JClarens provides more
features than the basic Axis engine, These features
include the dynamic service publication and
XMLRPC bindings.

5. Future Developments

The JClarens Web Services Framework is

becoming a foundation for web service development
and deployment in several projects such as GAE that
focus on distributed and scalable scientific analysis
within the CMS experiment. Future work will focus
on developing services to create a self-organizing,
autonomous Grid.

One such service currently under development is
the job monitoring service [22] that will be tightly
coupled with a Grid scheduler. This service will
provide the user with a view of the current status of
their job submission request. A set of estimation
service methods [23] will determine how long a
particular Grid job submission (be it a large data
transfer request or some long-running computation)
will take. A steering service [24] will provide means
for the user to fine-tune a job submission, so that he
can redirect slow-running jobs to faster computing
sites. Future improvements on the steering service
will add more autonomous behavior, making use of
the job monitoring service and estimation methods to
automatically detect when job execution could be
optimized (reducing execution time or resource usage)
and steering such jobs automatically on behalf of the
user.

Additionally, improvements will be made to
further simplify the process of writing and deploying
new services. A tool that will automatically generate
XMLRPC binding classes from the service WSDL
description is being investigated. This would reduce
the amount of code that a service author needs to
write so that she doesn’t need to even know that the
SOAP or XMLRPC bindings exist.

Most services require some sort of database
connectivity. JClarens supports many databases
through the use of JDBC, but does so in a somewhat
inelegant manner. Currently each supported database
requires a new implementation of the service interface
due to non-portable table-creation statements. A
database abstraction layer would help remove some of
these database-specific features, minimizing the need
for multiple service implementations.

rpm –ivh jclarens-shell-0.5.2-2.i386.rpm

rpm –ivh jclarens-0.5.2-2.i386.rpm

6. Related work

There are many other international Grid projects

underway in other scientific communities. These can
be categorized as integrated Grid systems, core and
user-level middleware, and application-driven efforts.
Some of these are customized for the special
requirements of the HEP community. Others do not
accommodate the data intensive nature of the HEP
Grids and focus upon the computational aspect of
Grid computing.

EGEE [2] middleware, called gLite [15], is a
service-oriented architecture. The gLite Grid services
aim to facilitate interoperability among Grid services
and frameworks like JClarens and allow compliance
with standards, such as OGSA [25], which are also
based on the SOA principles.

Globus [26] provides a software infrastructure that
enables applications to handle distributed
heterogeneous computing resources as a single virtual
machine. Globus provides basic services and
capabilities that are required to construct a
computational Grid. Globus is constructed as a
layered architecture upon which the higher-level
JClarens Grid services can be built.

Legion [28] is an object-based “meta-system” that
provides the software infrastructure so that a system
of heterogeneous, geographically distributed, high-
performance machines can interact seamlessly.
Several of the aims and goals of both projects are
similar but compared to JClarens the set of methods
of an object in Legion are described using Interface
Definition Language.

The Gridbus [28] toolkit project is engaged in the
design and development of cluster and Grid
middleware technologies for service-oriented
computing. It uses Globus libraries and is aimed for
data intensive sciences and these features make
Gridbus conceptually equivalent to JClarens.

NASA’s IPG [29], is a network of high
performance computers, data storage devices,
scientific instruments, and advanced user interfaces.
Due to its Data centric nature and OGSA compliance,
IPG services can potentially interoperate with GAE
services.

WebFlow [30] framework for the wide-area
distributed computing. is based on a mesh of Java-
enhanced Apache web servers, running servlets that
manage and coordinate distributed computation and it
is architecturally closer to JClarens .

NetSolve [31] system is based around loosely
coupled, distributed systems, connected via a LAN or

WAN. Netsolve clients can be written in multiple
languages as in JClarens and server can use any
scientific package to provide its computational
software.

The Gateway system offers a programming
paradigm implemented over a virtual web of
accessible resources [32].Although it provides a portal
behaviour like JClarens and is based on SOA, its
design is not intended to support data intensive
applications.

The GridLab [33] will produce a set of Grid
services and toolkits providing capabilities such as
dynamic resource brokering, monitoring, data
management, security, information, adaptive services
and more. GAE Services can access and interoperate
with GridLab services due to its SOA based nature.

The Open Grid Services Architecture (OGSA)
framework, the Globus-IBM vision for the
convergence of web services and Grid computing has
been taken over by Web Services Resource
Framework (WSRF) [34]. WSRF is inspired by the
work of the Global Grid Forum's Open Grid Services
Infrastructure (OGSI) [35]. The developers of the
Clarens Web Services Framework are closely
following these developments.

7. Conclusion

JClarens has proven to be an important component

of the Grid Analysis Environment. As a second
implementation of the Clarens Grid Services
Framework, it has provided a way to integrate
existing Java Grid services with little difficulty. The
tight integration with the MonALISA monitoring
system has given rise to a new set of Grid services
that can use a global view of the state of the Grid in
order to make optimized decisions.

JClarens was chosen as a Grid service host by the
SPHINX development team based on JClarens’ Java
implementation, its MonALISA integration, and its
publication of services via the dynamic discovery
service service registry. Already more projects within
the HEP community are looking to JClarens to host
their Grid services.

8. Acknowledgements

This work is partly supported by the Department

of Energy grants: DE-FC02-01ER254559, DE-FG03-
92-ER40701, DE-AC02-76CH03000 as part of the
Particle Physics DataGrid project and by the National
Science Foundation grants: ANI-0230967, PHY-
0303841, PHY-0218937, PHY-0122557. Any

opinions, findings, conclusions or recommendations
expressed in this material are those of the authors and
do not necessarily reflect the views of the Department
of Energy or the National Science Foundation.

9. References

[1] http://www.opensciencegrid.org/
[2] http://egee-intranet.web.cern.ch/egee-

intranet/index.htm
[3] F. van Lingen, J. Bunn, I. Legrand, H. Newman, C.

Steenberg, M. Thomas, P. Avery, D. Bourilkov, R.
Cavanaugh, L. Chitnis, M. Kulkarni, J. Uk In, A.
Anjum, T. Azim, Grid Enabled Analysis: Architecture,
Prototype and Status. CHEP 2004 Interlaken

[4] C. Steenberg, E. Aslakson, J. Bunn, H. Newman, M.
Thomas, F. van Lingen, The Clarens Web Service
Architecture CHEP 2003 La Jolla California

[5] C. Steenberg, J. Bunn, I. Legrand, H. Newman, M.
Thomas, F. van Lingen, A. Anjum, T. Azim, The
Clarens Grid-enabled Web Services Framework:
Services and Implementation CHEP 2004 Interlaken

[6] http://cmsinfo.cern.ch/Welcome.html/
[7] http://public.web.cern.ch/Public/Content/Chapters/Abo

utCERN/CERNFuture/WhatLHC/WhatLHC-en.html
[8] http://www.cern.ch
[9] http://atlas.ch/
[10] http://ultralight.caltech.edu/
[11] http://www.lambdastation.org/
[12] M. Ballintijn, Global Distributed Parallel Analysis

using PROOF and AliEn, in Proceedings of CHEP
2004.

[13] http://cmsdoc.cern.ch/cms/aprom/physh
[14] http://jakarta.apache.org/tomcat
[15] http://glite.web.cern.ch/glite/
[16] A. Ali, A. Anjum, T. Azim, M. Thomas, C. Steenberg,

H. Newman, J. Bunn, R. Haider, W. Rehman,
JClarens: A Java Based Interactive Physics Analysis
Environment for Data Intensive Applications, ICWS
2004 pp. 716-723

[17] Jang-uk In, Paul Avery, Richard Cavanaugh, Laukik
Chitnis, Mandar Kulkarni, Sanjay Ranka, SPHINX: A
fault-tolerant system for scheduling in dynamic grid
environments, in the proceesings of the 19th IEEE
International Parallel & Distributed Processing
Symposium (IPDPS 2005), Denver, Colorado, April,
2005.

[18] Jang-uk In, Adam Arbree, Paul Avery, Richard
Cavanaugh, Sanjay Ranka, SPHINX: A Scheduling
Middleware for Data Intensive Applications on a Grid,
in the proceedings of Computing in High Energy
Physics (CHEP 2004), Interlaken, Switzerland,
September, 2004

[19] I. Foster, J. Vockler, M. Wilde, Y. Zhao, Chimera: A
Virtual Data System for Representing, Querying, and
Automating Data Derivation. 14th International

Conference on Scientific and Statistical Database
Management, SSDBM 2002

[20] I. Legrand, MonALISA - MONitoring Agents using a
Large Integrated Service Architecure International
Workshop on Advanced Computing and Analysis
Techniques in Physics Research, Tsukuba, Japan.

[21] http://ant.apache.org
[22] A.Anjum, A. Ali, H. Newman, I. Willers, J. Bunn, W.

Rehman, R. McClatchey, R. Cavanaugh, F. van
Lingen, C. Steenberg, M. Thomas, Job Monitoring in
an Interactive Grid Analysis Environment. Poster #272
at CHEP 2004.

[23] A.Anjum, A. Mehmood, A. Ali, H. Newman, I.
Willers, J. Bunn, R. McClatchey, Predicting Resource
Requirements of a Job Submission. Poster #273 at
CHEP 2004.

[24] A.Anjum, A. Ali, H. Newman, I. Willers, J. Bunn, M.
A. Zafar, R. McClatchey, R. Cavanaugh, F. van
Lingen, C. Steenberg, M. Thomas, Job Interactivity
using a Steering Service in an Interactive Grid
Analysis Environment. Poster #271 at CHEP 2004,
Interlaken, Switzerland

[25] http://www.globus.org/ogsa
[26] Foster I, Kesselman C. Globus: A metacomputing

infrastructure toolki,. International Journal of
Supercomputer Applications 1997; 11(2):115–128.

[27] Grimshaw A., Wulf W., The Legion vision of a
worldwide virtual compute,. Communications of the
ACM 1997; 40(1).

[28] Buyya R. The Gridbus Toolkit: Enabling Grid
computing and business, http://www.gridbus.org

[29] Johnston W., Gannon D., Nitzberg B., Grids as
production computing environments: The engineering
aspects of NASA’s information power grid, Eighth
IEEE International Symposium on High Performance
Distributed Computing, Redondo Beach, CA, August
1999. IEEE Computer Society Press: Los Alamitos,
CA, 1999.

[30] Akarsu E., Fox G., Furmanski W., Haupt T.,
WebFlow—high-level programming environment and
visual authoring toolkit for high performance
distributed computing. SC98: High Performance
Networking and Computing, Orlando, FL,1998.

[31] Casanova H., Dongarra J., NetSolve: A network server
for solving computational science problems.
International Journal of Supercomputing Applications
and High Performance Computing 1997; 11(3).

[32] Akarsu E., Fox G., Haupt T., Kalinichenko A., Kim
K., Sheethaalnath P., Youn C., Using Gateway system
to provide a desktop access to high performance
computational resources. The 8th IEEE International
Symposium on High Performance Distributed
Computing (HPDC-8), Redondo Beach, CA, August
1999.

[33] Gridlab. http://gridlab.org
[34] Globus. http://www.globus.org/wsrf/
[35] Global Grid Forum. http://www.ggf.org/ogsi-wg

