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We review some of the problems associated with deriving field theoretic results from

nonsupersymmetric AdS, focusing on how to control the behavior of the field theory along

the flat directions. We discuss an example in which the origin of the moduli space remains

a stable vacuum at finite N , and argue that it corresponds to an interacting CFT in three

dimensions. Associated to this fixed point is a statement of nonsupersymmetric duality.

Because 1/N corrections may change the global picture of the RG flow, the statement of

duality is much weaker than in the supersymmetric case.
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1. Introduction

The AdS/CFT correspondence [1],[2] is a powerful tool for studying the large N

limit of field theories. By now a significant number of matches has been made between

the dynamics of gauge theories and the dynamics of supergravity in the corresponding

backgrounds. For the most part this analysis has been carried out in a supersymmetric

setting.

An interesting question is whether one can use gravity to understand the dynamics

of nonsupersymmetric conformal field theories at large N. To answer this question one is

led to study string theory/M-theory backgrounds of the form AdSp × Mq where Mq is a

compact manifold which breaks supersymmetry (either via orbifolding a supersymmetric

manifold [3], or by other means [4]). Another approach (related to the previous one [6])

uses type 0 string theory [5].

When discussing nonsupersymmetric theories one usually appeals to classical 11D

supergravity (i.e., the leading term in the momentum expansion) or to classical string

theory, both of which correspond to N = ∞. In trying to extend the discussion to large

but finite N one generically runs into problems. In [4] the following two problems were

discussed:

1. If for N = ∞ there are fields whose masses are at the Breitenlohner-Freedman unitar-

ity bound, then these masses might be pushed below the bound by 1/N corrections.

2. If there are massless fields (i.e. fields that correspond to marginal operators at N = ∞)

which are invariant under all the symmetries, then 1/N corrections may shift their

VEVs significantly and there may not be a stable vacuum for finite N , or if such

vacuum exists, it may be qualitatively different from the N = ∞ starting point.

It was shown in [4], however, that it is easy to construct models in which these problems

do not arise.

Another problem which we will discuss in this paper is that of the fate of flat directions

present at N = ∞. Many nonsupersymmetric gauge theories converge, in some formal

sense at least, to a theory with sixteen supercharges as N → ∞ [7], so in this limit the

scalar potential has flat directions. These flat directions are typically lifted by 1/N effects,

as a result of which the fields are either driven away from the origin or attracted to the

origin (or a combination of both in different directions). In the former case the vacuum

at the origin is destabilized (in fact, the theory may not have any stable vacuum at all),

while in the latter case the origin is at least perturbatively stable. In the latter case there



is generically a mass gap, explaining why it is so hard to construct nonsupersymmetric

CFTs when scalars are present (there are however examples of nonsupersymmetric fixed

points with fermions in the weak coupling regime [8]). In this paper we will discuss a 2+1

dimensional example in which the flat directions are lifted in a way which drives the fields

to the origin, nevertheless the theory does not become massive and trivial there.

Before proceeding it is worth mentioning some open problems. The main open problem

is that it is not clear whether the expansion around N = ∞ is only formal, or whether it

can be used to really approximate the physics at finite N . In backgrounds that correspond

to weakly coupled string theory there is a genus expansion which is an expansion in 1/N .

If the contribution of each genus is finite then there is a valid 1/N expansion. However,

models in the perturbative stringy regime, for example those based on D3-branes, run

into problem 2 (the dilaton is always a dangerous massless field). In the strong coupling

regime (M-theory or type IIB string theory near its self-dual points) it is not clear whether

quantum corrections are small. More on this point will appear in [10].

Another open problem is the issue of nonperturbative instabilities which describe

tunneling in the bulk. Presumably these effects are exponentially small at large N . Not

much is known about such instabilities (see however [9]), and we will not change this

situation here.

2. The Example

The example that we will focus on is that of M-theory on1 AdS4 × S7/ZZ2 . This

background is obtained by probing different kinds of IR8/ZZ2 orbifolds of M-theory with

either M2-branes or anti-M2-branes.

The two kinds of IR8/ZZ2 orbifolds differ by the charge of the singularity. The first

one, which we call the A-orbifold, has membrane charge −1/16, while the other one,

which we will call the B-orbifold, has charge 3/16 [12]. Both orbifolds preserve sixteen

supercharges, the same supercharges as those preserved by an M2-brane parallel to the

orbifold plane. Hence probing the orbifold singularities by M2-branes yields N = 8 field

theories in three dimensions. Supersymmetry implies that when the charge of the orbifold

singularity is positive (relative to that of the M2-brane) the long range gravitational field

1 the spectrum is related to that of AdS4×S
7. The spectrum of the latter is computed in [18]

and compared to field theory expectations in [19].



of the singularity is as if it had a positive mass; contrary-wise, if the charge is negative,

then the mass is negative (this, for example, can be deduced from the cancelation of forces

between the M2-brane and the singularity).

For both singularities the near-horizon geometry in the limit of large number of probes

N is AdS4 × IRP7. The only difference between the two backgrounds is the torsion class

[11] in H4(IRP7, ZZ) = ZZ2 which specifies how a membrane propagating in this background

is to be quantized [11,12,13]. The A-singularity corresponds to a trivial torsion class, while

the B-singularity corresponds to a nontrivial one. In the large N limit the curvature is

small, and M-theory on AdS4 × IRP7 reduces to supergravity on the same background.

Since supergravity is insensitive to the torsion, the supergravity spectrum will be exactly

the same for the two backgrounds. In this limit, the difference in the torsion class be-

comes visible only if one considers solitonic objects (M2-branes and M5-branes) wrapping

nontrivial cycles of AdS4 × IRP7.

Similarly we can probe the A and B singularities with anti-M2-branes. This yields

models without any supersymmetry. The near horizon geometry in this case is the “skew-

whiffed” AdS4 × IRP7 [14]. The usual logic of the AdS/CFT correspondence leads to the

conclusion that M-theory on a “skew-whiffed” AdS4×IRP7 describes a nonsupersymmetric

CFT on the boundary. The backgrounds obtained from the A and B singularities differ

only by a torsion class which does not affect the Kaluza-Klein spectrum.

Both A and B singularities can be regarded as a strong-coupling limit of certain

orientifold backgrounds in IIA string theory [12],[13]. An O2− plane lifts to an M-theory

background of the form (IR7 × S1)/ZZ2 which has two orbifold singularities of type A. An

O2+ plane lifts to the same orbifold, except that one singularity is of type A, and the other

one is of type B. Finally, an Õ2
+

plane (which is an O2− plane with a half-D2-brane stuck

to it) lifts to a pair of B-singularities. These IIA backgrounds can be probed with (anti-)D2

branes, which lift to (anti-)M2-branes of M-theory. Thus the N = 8 CFTs described by

M-theory on AdS4 × IRP7 are related to N = 8 gauge theories on D2-branes, while the

N = 0 CFTs described by M-theory on the “skew-whiffed” AdS4 × IRP7 are related to the

gauge theories on anti-D2-branes. The precise nature of this relation will be discussed in

section 4. In this paper we will focus on the N = 0 case.

Reference [4] discusses some aspects of supergravity on the “skew-whiffed” AdS4 ×
IRP7. It was shown there that the Kaluza-Klein spectrum has neither massless charged

scalars, nor modes saturating the Breitenlohner-Freedman bound. As explained in the

introduction, this implies that the “skew-whiffed” AdS4 × IRP7 avoids some immediate



problems of nosupersymmetric compactifications. In the next section we will address

another potential problem associated with the presence of flat directions at infinite N . We

will argue that for the B-singularity the potential generated along the flat directions at

large but finite N does not change the vacuum significantly. The model corresponding to

the A-singularity is apparently destabilized by 1/N corrections.

3. Lifting of the flat direction

We are therefore interested in discussing anti-M2-branes probing an A or B IR8/ZZ
2

singularity. Equivalently one may consider M2-branes probing the charge-conjugated sin-

gularities which we will call A and B. In this section we will use the latter viewpoint.

At leading order in N there are flat directions which correspond to moving the branes

away from the singularity and away from each other 2. This can be seen in several ways,

but in general one expects [7] that at N = ∞ the structure of the flat directions is the

same as in the corresponding N = 8 theory.

To obtain some information about the potential along the flat directions one can do a

long distance M-theory computation: one can place the branes at a distance r >> lp from

the singularity and determine, based on the charge and mass of the singularity, whether

there is an attractive or repulsive force between the branes and the singularity. This

computation has little to do with field theory, since the branes are in the asymptotically

flat region. However, because this computation depends on the mass and charge of the

singularity in the same way as the correct near horizon computation, it distinguishes

correctly between attractive and repulsive potential.

Using this approach one can also see that the potential is subleading in 1/N . The

leading term in the long distance computation (r >> lp) is nominally of order N2 (coming

from all pairwise interactions between the branes), but because this is the same as in the

N = 8 theory it is N2 × 0 = 0. On the other hand, the interaction between the singularity

and the branes is of order N , because there is only one singularity.

The computation that we would like to do is to check the stability of the AdS to

fragmentation along the flat directions in the near horizon geometry. The idea is to separate

the branes into several clusters and compute the potential as a function of separation. For

simplicity we will focus on the case of a single cluster away from the singularity (i.e., two

clusters which are the images of each other).

2 We are referring to the flat directions of the fixed point theory in the IR rather than to those

of the UV theory which flows to it.



3.1. The approximate solution along the flat directions

We will start with the supergravity solution representing two clusters of M2-branes

in flat space and then orbifold this solution. The metric for several parallel D3-branes

in flat space was written in [1] and it is straightforward to generalize the ansatz [16] to

M2-branes:

ds2 = f−2/3dx2 + f1/3(dr2 + r2dΩ2) (3.1)

Gx0x1x2ri ∝ ∂rif−1(r),

where G is the 4-form field strength and f is an harmonic function of the 8-vector r. To

obtain the situation with two clusters each containing N M2-branes we set

f(r) =
Nl6p

|r − a|6 +
Nl6p

|r + a|6 ,

where the 8-vector a is the position of the cluster. From the field theory point of view it

is convenient to do a rescaling ui = ri/l
3

2

p [1].

Next we want to orbifold this background. Orbifolding introduces an IR8/ZZ2 singu-

larity at r = 0. To facilitate the analysis of this background it is convenient to further

rescale the coordinates so that the metric near the origin is the canonical flat metric on

IR11:

yi =

(
2Nl6p
a6

)
−

1

3

xi, zi =

(
2Nl6p
a6

) 1

6

ri, (3.2)

after which the metric and the 4-form are given by the same ansatz but with the following

harmonic function: f̂ :

f̂ =
1/2

∣∣n − z
(2N)1/6lp

∣∣6 +
1/2

∣∣n + z
(2N)1/6lp

∣∣6 ,

where n is a unit 8-vector in the direction of a.

Since the metric near the origin is the canonical one, and for large N all curvatures

and field strengths are small there, it is easy to insert the fields of the ZZ2 singularity at

z = 0. One can identify the following regions in the orbifolded background:

1. z2 < l2p: inside this region the curvature and the field strength produced by the

singularity are large. Our knowledge of this this region is not better or worse than that

of the IR8/ZZ2 singularity in flat space. The fields due to the clusters of M2-branes (the

curvature and the 4-form) are of order 1/N
1

6 there.



2. The fields produced by the singularity and the fields produced by the branes are

comparable when
1

z7
∼ 1

N
1

6

.

At this point both are weak and can be treated using perturbation theory around flat space

(locally).

3. At z ∼ N
1

6 n we approach the cluster of M2-branes around which the space looks

like AdS4 × S7. This describes an N = 8 IR fixed point to which our theory flows along

this flat direction.

In the region z > lp, the fields produced by the singularity are small, and so are the

fields of the original background. The gravity background is therefore under control, and

furthermore, the corrections to the background due to the introduction of the singularity

are small as well. In the following subsection we will extract the influence of this small

correction on the potential along the flat directions.

3.2. The potential along the flat directions

We would like to know whether, upon the introduction of the singularity, there is

a potential which drives the center of the cluster to the origin or repels it. This poten-

tial is subleading in the 1/N expansion and can be easily computed if one neglects the

back-reaction of the singularity on the rest of the geometry. We saw above that this

approximation is valid for z > lp.

Within this approximation the computation is straightforward. If we were allowed to

choose the mass (m) and charge (Q) of the singularity arbitrarily (the charge is measured

relative to the charge of the M2-branes), then there would be a line in the Q − m plane,

Q = m in appropriate units, on which supersymmetry is preserved. A and B singularities

correspond to two points on this line (A has negative charge, while B has positive charge).

The points corresponding to the A and B singularities which break supersymmetry also

have charges of opposite sign and lie on on the line Q = −m. Clearly the sign of the

potential will change when going from one side of the line Q = m to the other. Hence one

of the SUSY-breaking singularities will attract the two clusters of branes, and the other

will repel them.

In more detail, the computation goes as the follows. When we take into account the

singularity the action is

L = L0 + m

∫

r=0

d3x
√

gind + Q

∫

r=0

C(3) (3.3)



where L0 is the usual action of 11D supergravity and gind is the determinant of the induced

metric on the plane r = 0. The fields in L0 are the same as in the supersymmetric case,

except for a two-fold identification due to orbifolding. The terms localized at r = 0 are

due to the mass and charge of the singularity. To compute the leading contribution to the

potential in the no-back-reaction approximation one has to insert the ansatz (3.1) for the

two symmetrically separated clusters into this action.

The terms that we are interested in are the kinetic terms for ai(xµ) (we allow a

to depend slowly on xµ) and the terms that encode the interaction of clusters with the

singularity. The latter are proportional to
∫

r=0
dxC(3) (the gravitational term gives an

equal contribution as can be seen by comparison with the supersymmetric case). This

gives a term in the effective Lagrangian for a of the form

1

N

∫
d3x(U i)6,

where U is the field theory quantity with dimension 1/2 (U i = ai/l
3/2
p ).

The kinetic term is also easy to evaluate. The functional dependence is determined

by spontaneously broken scale invariance to be proportional to

∫
d3x(∂µU i)2.

The coefficient in front of this term is of order N . This can be seen by rescaling the

coordinates x so that the entire metric in the new coordinates is proportional to N
1

3 . In

this setup it is easy to obtain the N -scaling of L0 and therefore the N -scaling of the kinetic

term.

The result of this computation is that for a singularity with negative charge (B) there

is an attractive potential along the flat directions, while for A the potential is repulsive.

Furthermore, since the potential is suppressed by powers of N , it is small at large N , and

the no-back-reaction approximation is self-consistent.

4. Nonsupersymmetric Duality

4.1. Weakness of nonsupersymmetric duality

The statement that we are after is that of IR duality, i.e., we would like to exhibit

two distinct (weakly coupled) theories in the UV which flow in the IR to the fixed point



described above. However, the duality that we obtain here will be considerably weaker

than the one obtained in cases with higher supersymmetry.

Field theory considerations

The reason that the duality is weaker is the following. Let us first consider the case

N = ∞. In this case the theory is a projection of the N = 8 theory, in the sense that its

dynamics is the same as in the latter, except that we restrict our attention to a subset of

operators [7]. The dynamics of the N = 8 theory is well understood [17] and it is known

that at the origin of its moduli space it flows from a free UV fixed point to an interacting

superconformal IR fixed point.

Consider now the 1/N corrections to the RG flow. They are present everywhere along

the RG trajectory. Such corrections, even though they are small at each point in the field

theory parameter space, can change the global picture of the RG flow. Therefore they may

change the statement that the theory flows from the gaussian fixed point in the UV to the

interacting IR.

Nevertheless, even with 1/N corrections taken into account, there exists an RG tra-

jectory which ends at the IR fixed point and passes at a distance of order 1/N from the

gaussian fixed point. Therefore, if one wishes to “land” at the IR fixed point, one needs to

fix a cutoff and add, besides the relevant perturbation that already exists in the N = ∞
theory, other operators with fine-tuned coefficients suppressed by powers of 1/N . In prin-

ciple, at each order in 1/N expansion one will have to tune the coefficients of all operators

allowed by symmetries, including nonrenormalizable ones (Of course, we do not need to

tune these infinite number of coefficients independently since there would be an entire sub-

manifold of trajectories which passes close to the gaussian UV and ends in the interacting

IR). Note that at large N we are still close to the free fixed point at the cutoff scale, but

we do not start from it in the UV. Duality is thus a weaker concept, since we do not know

precisely the Lagrangian at the cutoff.

An example (not necessarily the specific theory we have discussed in the paper so far)

of how small subleading 1/N effects may change the global structure of the flow, and the

need to fine tune at the UV, is shown in fig. 1.

M-theory considerations

In the AdS/CFT correspondence the statement that for N = ∞ the RG flow is the

same as in N = 8 is mimicked by the fact that the orbifold of the entire N = 8 solution

[15] at all scales is still a solution of the classical equations of motion.



UV fixed point

IR fixed point

a

b

Figure 1: Global aspects of the flow. Black arrows are the leading N contri-
bution. Dashed/White arrows are the subleading N correction. Line a is the
modified flow from the UV fixed point. Line b is the fine tuned trajectory
needed to hit the IR fixed point (we have neglected the fact that the IR fixed
point moves a bit once 1/N corrections are included.

Consider now 1/N corrections. These corrections are present at each value of U

(where U is the additional coordinate in the AdS, which contains information about the

RG flow). The zeroth order solution is no longer a solution and we need to correct it.

When correcting it we may either keep the boundary conditions at U = ∞ fixed or the

behavior at U = 0 fixed. In the first case we keep the UV of the theory fixed but then the

corrections at U = 0 may be significant and the solution there may longer by approaching

AdS. Instead we would like to keep the AdS near U = 0 but we can do so at the price of

maybe changing the U = ∞ behavior.

One may ask whether from the supergravity description one can argue that the field

theory becomes a gaussian theory in the UV. It would seem that the answer is no. The

reason is that in the supergravity solution all that one sees near the boundary of the

space-time are large curvatures [15]. Without independent means of computing at large

curvature, all one can say is that this is consistent with the field theory becoming weakly



coupled in the UV. One may perhaps also deduce the number of degrees of freedom from

black hole entropy counting, or other dominant effects, but one can not argue that one

knows exactly the Lagrangian of this weakly coupled theory at some given cutoff.

4.2. An example of a nonsupersymmetric dual pair

We need to exhibit two distinct theories which flow in the IR to the theory of anti-M2

branes near the B-singularity. For example, we may consider (IR7 × S1)/ZZ2 orbifolds of

M-theory of types AB and BB and probe them with anti-M2-branes. At weak coupling (i.e.

when the radius of S1 is small) the M-theory orbifold of type BB becomes an Õ2
+

plane in

IIA, while the orbifold of type AB becomes an O2+ plane. Anti-M2 branes become anti-D2

branes in this limit. Naively, one expects the theories of anti-D2 branes probing the Õ2
+

and O2+ planes to be IR dual. As explained above, this is only literally true for N = ∞,

and for finite N one may need to add renormalizable and nonrenormalizable operators with

fine-tuned coefficients in order to preserve duality. An analogous supersymmetric duality

was suggested in [12]. The difference is that in the supersymmetric case the theories have

a moduli space of vacua, and to see the duality one needs to go to a specific place in the

moduli space. We have argued above that in the nonsupersymmetric case the moduli space

is lifted at subleading order in the 1/N expansion, so both theories have a unique vacuum

and no tuning of the moduli is necessary.

The theories on anti-D2 branes are of course gauge theories. They are closely related

to N = 8 theories on D2 branes probing the same backgrounds; in fact, the bosonic

fields are identical. To obtain the spectrum of fermions recall that the field theory on

N (anti-)D2 branes near an orientifold 2-plane is obtained by orientifolding the spectrum

of the N = 8 U(2N) theory. In the supersymmetric case the projection is identical for

fermions and bosons, while in the nonsupersymmetric case the projection for the fermions

has an extra minus sign compared to that for the bosons. It follows that the spectrum

of the gauge theory of N anti-D2 branes near an Õ2
+

(resp. O2+) orientifold contains

gauge bosons and seven real scalars in the adjoint of SO(2N + 1) (resp. Sp(2N)) and

eight Majorana fermions in the symmetric tensor representation of SO(2N + 1) (resp.

antisymmetric tensor representation of Sp(2N)). We do not know the precise Lagrangian,

for reasons explained above. At leading order in 1/N the Lagrangian can be obtained by

taking the corresponding N = 8 Lagrangian describing D2 branes and replacing fermions

in the adjoint by fermions in the appropriate tensor representation of the gauge group.

This Lagrangian is superrenormalizable. We expect that all terms allowed by symmetries,

including nonrenormalizable ones, would have to be included at next-to-leading order if

one wants to flow to the CFT described by the “skew-whiffed” AdS4 × IRP7.



Acknowledgments

We would like to thank O. Aharony, S. Kachru, E. Silverstein, and M. Strassler for

useful discussions. The work of MB is supported by NSF grant PHY-9513835. The work

of AK is supported by DOE grant DE-FG02-90ER40542.



References

[1] J. Maldacena, “The Large N Limit of Superconformal Field Theories and Supergrav-

ity”, hep-th/9711200, Adv. Theor. Math. Phys.2,231,1998

[2] E. Witten, “Anti-de-Sitter Space and Holography”, hep-th/9802150, Adv. Theor.

Math. Phys.2,253,1998; S.S. Gubser, I.R. Klebanov and A.M. Polyakov, “Gauge

Theory Correlators from Noncritical String Theory”, hep-th/9802109, Phys. Lett.B

428,105,1998

[3] S. Kachru and E. Silverstein, “4-D Conformal Theories and Strings on Orbifolds”,

hep-th/9802183, Phys. Rev. Lett. 80,4855,1998

[4] M. Berkooz and S.-J. Rey, “Nonsupersymmetric Stable Vacua of M-theory”, hep-

th/9807200, JHEP 9901:014,1999

[5] I.R. Klebanov and A.A. Tseytlin, ”D-Branes and Dual Gauge Theories in Type 0

String”, hep-th/9811035; I.R. Klebanov and A.A. Tseytlin, ”Asymptotic Freedom and

Infrared Behavior in the Type 0 String Approach to Gauge Theory”, hep-th/9812089;

I.R. Klebanov and A.A. Tseytlin, ”A Nonsupersymmetric Large N CFT from Type 0

String Theory”, hep-th/9901101; A.A. Tseytlin and K. Zarembo, “Effective Potential

in Non-Supersymmetric SU(N) × SU(N) Gauge Theory and Interactions of Type 0

D3-Brane”, hep-th/9902095

[6] N. Nekrasov and S.L. Shatashvili, “On Nonsupersymmetric CFT in Four Dimensions”,

hep-th/9902110

[7] M. Bershadsky, Z. Kakushadze and C. Vafa, “String Expansion as Large N Expan-

sion of Gauge Theory”, hep-th/9803076, Nucl. Phys. B523,59, 1998; Z. Kakushadze,

“Gauge Theories from Orientifolds and Large N Limit” hep-th/9803214, Nucl. Phys.

B529, 157,1998; M. Bershadsky and A. Johansen, “Large N Limit of Orbifold Field

Theories”, hep-th/9803249, Nucl. Phys. B536,141, 1998

[8] T. Banks and A. Zaks, ”On the Phase Structure of Vector-Like Gauge Theories with

Massless fermions”, Nucl. Phys. B196,189,1982.

[9] J. Maldacena, J. Michelson and A. Strominger, “Anti-de-Sitter Fragmentation”, hep-

th/9812073

[10] M. Berkooz and A. Kapustin, work in progress

[11] E. Witten, “Baryons and Branes in AdS”, hep-th/9804001, JHEP 9807:006,1998

[12] S. Sethi, “A Relation between N=8 Gauge Theories in Three Dimensions”, hep-

th/9809162, JHEP 9811:003,1998

[13] M. Berkooz and A. Kapustin, “New IR Dualities in Supersymmetric Gauge Theories”,

hep-th/9810257, To be published in JHEP.

[14] M.J. Duff, B.E.W. Nilsson and C.N. Pope, Phys. Rep. 130,1,1986 ; M.J. Duff, B.E.W.

Nilsson and C.N. Pope, “Spontaneous Supersymmetry Breaking by the Squashed

Seven-Sphere”, Phys. Rev. 50,2043,1983, Erratum 51, 846,1983.

http://lanl.arXiv.org/abs/hep-th/9711200
http://lanl.arXiv.org/abs/hep-th/9802150
http://lanl.arXiv.org/abs/hep-th/9802109
http://lanl.arXiv.org/abs/hep-th/9802183
http://lanl.arXiv.org/abs/hep-th/9807200
http://lanl.arXiv.org/abs/hep-th/9807200
http://lanl.arXiv.org/abs/hep-th/9811035
http://lanl.arXiv.org/abs/hep-th/9812089
http://lanl.arXiv.org/abs/hep-th/9901101
http://lanl.arXiv.org/abs/hep-th/9902095
http://lanl.arXiv.org/abs/hep-th/9902110
http://lanl.arXiv.org/abs/hep-th/9803076
http://lanl.arXiv.org/abs/hep-th/9803214
http://lanl.arXiv.org/abs/hep-th/9803249
http://lanl.arXiv.org/abs/hep-th/9812073
http://lanl.arXiv.org/abs/hep-th/9812073
http://lanl.arXiv.org/abs/hep-th/9804001
http://lanl.arXiv.org/abs/hep-th/9809162
http://lanl.arXiv.org/abs/hep-th/9809162
http://lanl.arXiv.org/abs/hep-th/9810257


[15] N. Itzhaki, J. Maldacena, J. Sonnenschein and S. Yankielowicz, “Supergravity and the

Large N Limit of Theories with Sixteen Supercharges”, hep-th/9802042, Phys. Rev.

D58,46,1998

[16] A. Fayyazuddin and M. Spalinski, “Large N Superconformal Gauge Theories and

Supergravity Orientifolds”, hep-th/9805096, Nucl. Phys. B535,219,1998; O. Aharony,

A. Fayyazuddin and J. Maldacena, “The Large N Limit of N=2,1 Field Theories from

Threebranes in F-Theory”, hep-th/9806159, JHEP 9807:013,1998; A. Kehagias, “New

Type IIB Vacua and Their F-Theory Interpretation”, hep-th/9805131, Phys. Lett.

B435,337,1998

[17] N. Seiberg, “Notes on Theories with Sixteen Supercharges”, hep-th/9705117, Nucl.

Phys. Proc. Suppl.67:158-171,1998

[18] B. Biran, A. Casher, F. Englert, M. Rooman and P. Spindel, “The Fluctuating Seven

Sphere in Eleven Dimensional Supergravity”, Phys. Lett. 134B,179,1984; L. Castellani,

R. D’Auria, P. Fre, K.Pilch and P. Van Nieuwenhuizen, “The Bosonic Mass Formula

for Freund-Rubin Solution of d=11 Supergravity General Coset Manifolds”, Class.

Quant. Grav. 1,229,1984

[19] O. Aharony, Y. Oz and Z. Yin, “M-Theory on AdS(P )×S(11−P ) and Superconformal

Field Theories”, hep-th/9803051, Phys.Lett.B430,87,1998

http://lanl.arXiv.org/abs/hep-th/9802042
http://lanl.arXiv.org/abs/hep-th/9805096
http://lanl.arXiv.org/abs/hep-th/9806159
http://lanl.arXiv.org/abs/hep-th/9805131
http://lanl.arXiv.org/abs/hep-th/9705117
http://lanl.arXiv.org/abs/hep-th/9803051

