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The neo-classical model of SmC (and SmC*) elastomers developed by Warner and Adams predicts
a class of “soft” (zero energy) deformations. We find and describe the full set of stripe-domains
— laminate structures in which the laminates alternate between two different deformations — that
can form between pairs of these soft deformations. All the stripe-domains fall into two classes, one
in which the smectic layers are not bent at the interfaces, but for which, in the SmC* case, the
interfaces are charged, and one in which the smectic layers are bent but the interfaces are never
charged. Striped deformations significantly enhance the softness of the macroscopic elastic response.

PACS numbers:

I. INTRODUCTION

Liquid-crystal elastomers [1] are cross-linked polymer
networks (elastomers) with liquid-crystal phases embed-
ded inside them. The liquid-crystal rods are chemically
incorporated into the elastomer either as a simple compo-
nent of the polymer chains or as pendent like side chains.
Below a critical temperature these rods align to form a
liquid crystal phase inside the elastomer. Any of the
different liquid-crystal phases can be produced by tun-
ing the temperature and composition of the elastomer,
including a SmC phase in which, in addition to an av-
erage alignment, the liquid-crystal rods are also confined
to layers and the layer normal is not parallel with the
alignment. A schematic diagram of a SmC elastomer is
shown in Fig. 1. If the liquid-crystal rods all have the

FIG. 1: A SmC elastomer.

same chirality (SmC* as apposed to SmC) the system
will also have a polarization along the cross product of
the layer normal and the liquid-crystal director, that is
in the y direction.

Liquid crystal elastomers show remarkable elastic
properties because the polymer conformations are biased
along the liquid-crystal director. This means rotation
of the director (and therefore of the bias) relative to
the polymer network causes macroscopic shape changes

of the elastomer at little energetic cost [2], generating
soft (zero energy) modes of deformation. In a SmC elas-
tomer, there are energy penalties associated with chang-
ing the layer spacing and the tilt angle. Therefore, the
soft modes are those obtained by rotating the director in
a cone around the layer normal [3].

If a non-soft deformation is applied to a SmC elastomer
it may still be able to reduce its energy by splitting into
small regions each of which undergoes a soft deformation
such that the total deformation matches the imposed de-
formation. The stripe-domains observed in nematic elas-
tomers [4] are an example of this type of behavior. Such
textures significantly enhance the macroscopic soft re-
sponse of a material. This poses two interesting prob-
lems, what is the energy function of the material after
the most favorable textures have been adopted, and what
deformation patterns (textures) can form?

In this paper, we build on the work of Adams and
Warner [3, 5] to address the second question above.
Specifically, we show that SmC has great freedom in
forming stripe domains and characterize all possible
stripe-domain textures and their morphology. By stripe
domains, we mean alternating plates of two distinct di-
rector orientations and corresponding soft deformations
separated by unbroken interfaces. Since every interface
in a stripe domain is the same, one has only to exam-
ine a single interface which we do using tools developed
to study twins in crystalline solids showing martensitic
transitions. We note that the first question has been ad-
dressed by Adams et al. [6].

Stripe-domain textures could be observed experimen-
tally by imposing simple non-soft deformations on SmC
monodomain samples. Although the formation of more
complicated higher order textures (double and triple lam-
inates) can be energetically favorable [6], these, as in ne-
matic elastomers, are associated with deformations that
stretch the sample in all directions perpendicular to the
initial director. Since existing fabrication techniques pro-
duce thin films with the director in-plane, such deforma-
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tions cannot be imposed globally. Therefore we antic-
ipate that the observed textures will predominantly be
stripe domains of the forms described in this paper.

This paper is organized as follows. We give a phys-
ical description of our results in Section II. We recall
the theory of Adams and Warner and characterize the
soft modes in the next section. In doing so, we make a
different choice of reference configuration, one which is
commonly used elsewhere [7] and one which makes fur-
ther calculations simpler. We discuss continuity of dis-
placement across interfaces in Section IV, characterize
all stripe domains in Section V and examine ferroelectric
properties in Section VI.

II. RESULTS

The soft deformations in SmC elastomers are caused
by a rotation of the director relative to the underlying
polymer network while leaving the layer spacing and tilt
angle unchanged. A soft stripe domain involves an un-
broken interface between regions suffering two distinct
soft deformations corresponding to two different degrees
of director rotation. We show that it is possible to form
stripe domains with regions which have undergone any
two degrees of director rotation relative to the polymer
network. In fact, we show that given any pair of direc-
tor rotations, it is possible to form two different stripe
domains which form the two categories with distinct me-
chanical, geometric and electrical properties described
below. All stripes domains in SmC elastomers belong
to one of these categories.

The first category of stripe-domains is shown in Fig. 2.
It has the property that the smectic layer plane trans-
forms to the same plane under both deformations so
the smectic layers are unbent at the texture boundaries.
However, the two deformations are different, and this is
indicated by the kinking of the initially straight sides of
the sample. The director retains the same component
parallel to the smectic layer normal (as it must for any
soft deformation) but the components in the layer form
equal angles γ with the texture interfaces. If the angle
between the boundary and smectic layer planes is χ, and
the angle between the director and the layer normal is θ
(which is a constant for all soft modes depending on the
elastomers temperature and composition) then, for this
first category of stripe-domain,

tan(χ) = tan(θ) sin(γ). (2.1)

Textures of this type was predicted in [5].
The second category of stripe domain is shown in Fig.

3. In this category, the smectic layers are bent at the tex-
ture boundary as shown. Defining χ again as the angle
between the smectic layers and the interface, the layers
are bent by π−2χ at the interfaces. Defining γ as the an-
gle between the component of the director in the smectic
plane and the texture interface, measured through the
smectic plane, again the director forms equal angles on
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FIG. 2: Top: A small region of a SmC elastomer after the
formation of the first category of stripe-domain. The region
was cuboidal before deformation and has undergone different
soft-deformations on either side of the orange boundary plane.
The smectic layers, which deform affinely, pass through the
boundary without being bent. This figure was drawn with
the material parameters r = 25 and θ = 0.6. Bottom: A top-
view of a square region of a smectic layer that passes through
the boundary, which is shown as an orange dashed line. The
ovals represent the projection of the liquid-crystal rods in the
plane and the arrows show the projection of the liquid-crystal
director in the plane. The component of the LC director in
the smectic plane, which we call ĉ, is also shown in red on the
top figure.

either side of the interface. For this category of stripe-
domains the relationship between χ and γ is

sin(γ) =
(r − 1) cos2(θ) + 1

(1 − r) sin(θ) cos(θ)
cot(χ) (2.2)

where r, the anisotropy ratio of the step length tensor,
and θ are constants for a given composition and temper-
ature.

After the formation of a stripe-domain there is a rela-
tive shear across the boundary indicated by the kinking
of lines which were straight before deformation. We also
characterize this relative shear by calculating the size of
the kink in an initially straight line that, after formation
of a stripe-domain, is normal to the boundary on one side
of the boundary. This is a good characterization of the
relative shear because it is the line that forms the largest
kink at the boundary [7].

In the case of a SmC* (chiral) elastomer which is polar-
ized along the cross-product of the layer normal and the
director, the discontinuities across the texture boundary
may give rise to a polarization. We show that the tex-
ture boundary is charged in a category one stripe domain
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FIG. 3: Top: A small region of a sample of SmC elastomer
after the formation of the second type of stripe-domain. Be-
fore deformation the sample was cuboidal. In this type of
stripe-domain the smectic layers are bent at the boundary.
This figure was drawn with the material parameters r = 25
and θ = 0.6. Bottom: The two halves of the region on top
each viewed down its smectic layer normal. The red ovals are
the components of the LC rods in the LC layer plane and the
black arrows are the components of the LC director in the LC
layer plane. The component of the LC director in the smectic
plane, which we call ĉ, is also shown in red on the top figure.

(shown in Fig. 2) but not in a category two stripe domain
(shown in Fig. 3). This is evident by examining the bot-
tom of Figs. 2 and 3 and recalling that the interface will
charged if there is a discontinuity in the component of
the polarization perpendicular to the boundary.

III. SOFT MODES

A. Choice of a reference state

The description of a deformation requires a reference
state from which to measure deformations. For the pur-
poses of this paper it is useful to consider two states, and
two sets of axes. The first is a relaxed SmC* elastomer,
with the z axis along the layer normal, the x axis along
the projection of the director into the layers and the y
axis into the page such that the three form a right handed
orthogonal set (see Fig. 1). The liquid-crystal director in
this state will be n0. The neo-classical theory of Warner
and Adams [3] predicts that if a deformation gradient λ

is applied to this relaxed state, producing a state with
director n, providing the layer spacing and tilt angle are
preserved, the free-energy of the elastomer will be,

F = min
n̂

µ

2
Tr(l0λ

T l−1
1 λ), (3.1)

FIG. 4: Primed axes defined after deformation.

where l = (r − 1)n ⊗ n + I and both r (the polymer
anisotropy) and µ (an elastic modulus) are scalar con-
stants of the material.

This relaxed state has extremely low symmetry. It is
useful to use a higher symmetry state as the reference
state. To this end we consider the state formed by ap-

plying the deformation l0
−1/2 to the relaxed state. The

free energy associated with a deformation Λ from this

new state can be found be substituting λ = Λl
−1/2
0 , into

(3.1) to give

F = min
n̂

µ

2
Tr(ΛT l−1Λ). (3.2)

This expression is independent of n0 — physically the
deformation, a compression along n0, has compressed the
polymers into an isotropic conformation distribution —
which gives this state its higher symmetry. However, it
is still layered, the new layer normal, b, is given by

b =
l
1/2
0 z

|l1/2
0 z|

= z′. (3.3)

We define a new primed set of axes in this state, the z′

axis lies along the new layer normal, the y′ axis coincides
with the y axis and the x′ axis is chosen to make the
set a right handed orthogonal set, it lies in the new layer
perpendicular to y (see Figure 4). This state will be used
as the reference state, and deformations from it will be
written as Λ.

B. The Soft Modes

For nematic (unlayered) elastomers, a deformation
takes the reference state to a relaxed state if and only

if it can be written in the form Q1l
1/2
0 Q2 [8]. This re-

sult has a simple interpretation. The deformation l
1/2
0

returns the original relaxed state. However, for the un-
layered case, the reference state is isotropic so first ro-

tating the reference state then applying l
1/2
0 must also

return a relaxed state. Finally, rotating the sample after

applying l
1/2
0 is just a body rotation and does not change

the elastomers energy. Therefore any deformation of the

form Q1l
1/2
0 Q2 must return a relaxed elastomer. To find

the soft deformations for a SmC elastomer we must sim-
ply find the subset of these deformations that obey the
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constraint that the relaxed layer spacing and director tilt
angle are preserved.

Since the reference state is layered but otherwise
isotropic, rotation of the sample around the layer normal
before applying a deformation cannot change the energy
of the deformation. Therefore, similarly to the nematic
case, any deformation of the form

Q1l
1/2
0 B, (3.4)

where B is a rotation of any angle about b must return
a relaxed elastomer. This is in fact the complete set of
soft deformations since these are the only deformations
that are consistent with preserving the layer spacing.

If Λs is to return the original layer spacing (which is
the same as returning the original layer area since volume
is conserved), it must satisfy

|Λ−T
s b| = |l−1/2

0 b|,

where -T denotes the inverse transpose, which is how
plane normals (or vector areas) transform.

Substituting a generic unlayered soft mode for Λs gives

|Q1l
−1/2
0 Q2b| = |l−1/2

0 b|. (3.5)

The rotation Q1 does not change the modulus of the

vector l
−1/2
0 Q2b so this condition can be written as

|l−1/2
0 Q2b| = |l−1/2

0 b|.

As l0 and all its powers are uniaxial matrices with their
axes aligned with the liquid crystal director n0, this
equality will hold only for Q2 that map b to one of the
two cones formed by rotating b and −b around n0. The
set of such rotations is completely parameterized by

Q2 = NRyB

where the rotations N and B can be by any angle (about
n0 and b respectively), and, just in this section, Ry can
be either a rotation of π about y or the identity operator.
Intuitively, B does not change b, Ry determines which
cone b is mapped to and N determines where on the cone
b is mapped to. Since both N and Ry commute with l0
and therefore can be incorporated into Q1, we see that
that any soft deformation must be of the form eq. 3.4.
Since all deformations of this form are soft, this is the
complete set.

IV. CONTINUITY ACROSS THE

STRIPE-DOMAIN BOUNDARY

If a sample in the reference state is split into two re-
gions separated by a plane with normal m, and one region
is subjected to a deformation Λ1, and the other to Λ2,
the condition that the sample remains continuous (rank
one connected) is that there is a vector a such that

Λ1 − Λ2 = a ⊗ m. (4.1)

FIG. 5: A different deformation is applied on each side of a
plane boundary. A stripe domain is simply many repetitions
of this structure so that the deformation alternates in stripes
separated by parallel plane boundaries.

Physically, a is a vector in the plane of the boundary after
deformation. This is illustrated in Figure 5. A detailed
explanation of texture and the the continuity equation
can be found in [7]. This structure is known as a twin.
A full stripe-domain is simply many repetitions of the
same twin so that the deformation alternates in stripes
separated by parallel plane boundaries.

The principle result in this section is that given any
two of the soft modes of deformation, Λ1,s and Λ2,s,
there are two rotations, Q and Q′, such that the defor-
mations Λ1 = QΛ1,s and Λ1 = Q′Λ1,s can both satisfy
(4.1) with Λ2 = Λ2,s, and hence can both form a stripe-
domain with Λ2,s. For (4.1) to hold, Q and Q′ require
different a and m. The required m are also calculated
explicitly. To do this we use two theorems (discussed in
[7]) to the continuity equation. The first, a uniqueness
theorem proved by James and Ball [9] states that:

If Q is a rotation, ∆ and Γ are distinct deformations,
and m and a are vectors, the equation

Q∆ − Γ = a ⊗ m, (4.2)

for fixed ∆ and Γ, has either zero or two solutions. The
two solutions will in general have different Q, m and a.

The second theorem is known as Mallard’s law and
states that [7, 10]:

If, for a pair of distinct deformations ∆ and Γ,

∆ = Q3ΓR (4.3)

for any rotation Q3 and any π-rotation R, then there
are certainly two (not zero) solutions to (4.2). These
solutions can be computed relatively easily — if the axis
of R is s then the two solutions are

I. a = 2

(

Γ−T s

|Γ−T s|2 − Γs

)

, m = s (4.4)

II. a = ρ̃Γs, m =
2

ρ̃

(

s− ΓT Γs

|Γs|2
)

(4.5)

where ρ̃ is chosen to make m a unit vector.

Substituting soft mode expressions for Λ1 and Λ2 from
eq. (3.4) gives

Q1l
1/2
0 Bb1 − Q2l

1/2
0 Bb2 = a ⊗ m (4.6)
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(here Q1 and Q2 are arbitrary rotations). More special-
ized forms for Λ1 and Λ2 can be adopted since none of
the intrinsic properties of a texture are changed by rotat-
ing the whole sample about any axis after deformation
or around b (the reference state layer normal) in the ref-
erence state. Only the relative rotation between the two
regions at each stage, Q1Q

T
2 and Bb1B

T
b2

, are physically
important. Therefore we can limit our attention from all
equations of the form (4.6) to any subset that still in-
cludes all possible relative rotations Q1Q

T
2 and Bb1B

T
b2

.
One such subset is given by

Ql
1/2
0 Bb − l

1/2
0 B−b = a ⊗ m. (4.7)

This form (with Q2 = I) is useful because Mallard’s law
can be directly applied to it. The choice to split the
relative rotation about b in the reference state (the B

rotations) equally between the two regions is motivated
by algebraic convenience.

Equation (4.7) will only be satisfied by very special
combinations of Q, b, a and m. To find these combi-
nations (solve the continuity equation) we use Mallards
law. Comparing (4.2) and (4.3) with (4.7), we see that
there will be Mallard’s law type solutions to (4.7) if we
can find any rotation Q3 and any π-rotation R such that

l
1/2
0 Bb = Q3l

1/2
0 B−bR. (4.8)

This holds if Q3 = R = Ry because y is perpendicular to

b and n0 and so B−bRy = RyBb and Ryl
1/2
0 Ry = l

1/2
0 .

This result is significant. As the continuity equation
(4.7) is of the form (4.2) it can, by the uniqueness theo-
rem, have either two or zero solutions for each value of b
(varying Q, a and m). Mallard’s law is satisfied for all b
(since with the right choice of Q3 and R (4.8) is satisfied
for all b) so the continuity equation has two (rather than
zero) solutions for all b. This is the largest possible set
of solutions. This means that any two soft deformations
can, if rotated correctly relative to each other, form two
different stripe-domains, giving rise to the two classes of
stripe-domains described in this paper.

At this stage we could simply calculate the mechanical
properties of both the solutions for each value of b using
(4.4) and (4.5). However, calculating the first of these
solutions is significantly simpler than calculating the sec-
ond since its boundary normal is simply the axis of R.
We can avoid calculating the mechanical properties of the
solution in this way by finding another Q3 and R that
satisfy (4.8). This can be done by noticing that (4.3) can
be rewritten as

∆T∆ = RΓTΓR.

Casting (4.8) in this form and moving all rotations to the
right hand side gives

l0 = BbRBbl0B−bRB−b.

The expression on the right is a rotated form of l0, the
rotation will not change l0, (and hence the equality will

hold) if the rotation does not change the axis of l0, giving

n0 = ±BbRBbn0. (4.9)

For fixed n0 and b this has two solutions for R, one
for each sign. The minus sign is given by the R = Ry

solution found above. This follows as

BbRyBb = BbB−bRy = Ry,

and

Ryn0 = −n0.

The solution for the plus sign is rather more complex as
it depends on b. As n0 lies in the x′-z′ plane (which is
the same as the x-z plane), it can be decomposed into
components along x′ and b. Writing

n0 = ex′ + db

we see that

Bbn0 = e(cos(b)x′ + sin(b)y) + db

and

B−bn0 = e(cos(b)x′ − sin(b)y) + db.

Since (4.9) rearranges (with the plus sign) to give

B−bn0 = RBbn0,

R must map these two vectors onto each other. As it is
a rotation of π this uniquely identifies the axis or rotation
as the average of unit vectors in these two directions.
Defining the axis as the unit vector s, it can be written
as

s ∝ db + e cos(b)x′.

For a given b there are two R that satisfy Mallard’s
law. Each R generates two solutions to the continuity
equation (4.7) suggesting there might be four solutions
in total. However, there can only be two solutions so the
two solutions generated by each R must be the same.
The first solution for each R is very easy to calculate as
the reference state boundary normal, m, is along the ro-
tation axis of R. This suggests we only need to calculate
this easy first solution for each R; provided these two
solutions are different, we will then have two solutions
to the continuity equation. As we know there are pre-
cisely two solutions, this is all the solutions. If we were
to calculate the second solution for one R we would find
it coincided with the first solution from the other.

V. CHARACTERIZATION OF THE

STRIPE-DOMAINS

In the previous section it was shown that all physi-
cally distinct stripe-domains can be formed between two
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FIG. 6: A sample in the (layered) reference state is divided
into two regions and different (but compatible) soft deforma-
tions are applied in each region. The deformations move the
boundary between the regions and the layers, and introduce
an LC director in both regions.

soft modes of deformation of the form Λ1 = Ql
1/2
0 Bb

and Λ2 = l
1/2
0 B−b. Further, using Mallard’s law, it was

shown that for each value of b there are two rotations Q

(Q1 and Q2) such that Λ1 and Λ2 can form a stripe-
domain. If the texture is to form properly, the correct
boundary normal in the reference configuration (m in
Fig. 5) must be used. These are m1 ∝ db + e cos(b)x′

(when Q = Q1) and m2 = y (when Q = Q2).
Before the physical properties of the stripe-domains

can be calculated the rotations Q1 and Q2 must be de-
termined so that the deformations giving rise to the tex-
tures are completely specified. This can be done using
the continuity equation and the requirement that m must
transform to the same vector under both deformations
in a stripe-domain (because the transformed m is the
boundary normal in the final state).

Once the deformations are fully determined, the liquid
crystal director, the liquid crystal layer normal and the
texture boundary normal in the final state can be calcu-
lated on both sides of the interface to reveal its physical
structure. Since in general the surface normal k trans-
forms under the deformation Γ to Γ−T k (−T denotes the
inverse transpose), the smectic layers on either side of the
interface can be calculated by applying this rule to the
layer normal in the reference state (b) on either side of
the interface. Similarly, the boundary normal in the final
state can be calculated by applying this rule to m, using
either deformation in the stripe-domain. Finding the po-
sition of the liquid crystal director is a little more subtle,
it is not defined in the reference state (in which the poly-
mers have an isotropic conformation distribution) but is

introduced when the l
1/2
0 deformation is applied. As l

1/2
0

is an extension along n0 it extends the polymer confor-
mation distribution along n0 and introduces the direc-
tor, also along n0. The director transforms as a line el-
ement under the subsequent rotations that complete the
deformations. The full set of properties is summarized
in Fig. 6. Although the calculations indicated above are
straightforward, they are also rather long, not least be-

cause to describe fully each class of stripe-domain five
quantities must be calculated, giving ten calculations in
all. The full set of calculations is given in Appendix A.
The resulting mechanical structure of the stripe-domains
was given in Sec. II.

There is one other more subtle mechanical feature
of the stripe-domains that is worth characterizing, the
amount of shear across the boundary. The continuity
equation, eq. (4.1), can be written as

Λ1 = (I + a ⊗ Λ−T
2 m)Λ2, (5.10)

where the matrix pre-multiplying Λ2 is a simple shear.
This means that to change a region which has suffered a
deformation Λ2 to one which has suffered a deformation
Λ1, one needs only to apply a simple shear, and this is
what we mean by the shear across the interface. It is
associated with the shear angle ζ, where

tan(ζ) = |a||Λ−T
1 m| = |a||Λ−T

2 m|. (5.11)

If a straight line is embedded in the sample in the refer-
ence state it will kink at the boundary after deformation.
Physically the shear angle is the amount such a line kinks
if after deformation it is normal to the boundary on one
side of the boundary [7].

For Mallard’s law type stripe-domains this is the same
for both type-1 and type-2 solutions and evaluates to

tan(ζ) = 2

√

|Λ2m|2|Λ2
−T m|2 − 1, (5.12)

which can easily be verified by substituting the solutions
for each type of solution (eqns. (4.4) and (4.5)) into eqn.
(5.11). This means that ζ will be the same for both
stripe-domains (one in each class) generated using a given
value of b. A plot of tan(ζ) against b is shown in Fig. 7,
and details of the calculation of the curve can be found
at the end of Appendix A.

FIG. 7: Shear angle across the boundary for both classes of
stripe-domain as a function of b plotted with r = 25 and θ =
0.6, the maximum shear angle is tan(ζ) = (r−1) sin(2θ)/((r−
1) cos2(θ) + 1) and occurs at b = π/2.
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VI. FERRO-ELECTRIC PROPERTIES OF THE

STRIPE-DOMAINS

At the texture boundaries there is a discontinuity in
the liquid-crystal director, and hence, for SmC* elas-
tomers, a discontinuity in the electrical polarization
(which is along the cross product of the layer normal and
the director) so it is possible that the texture boundaries
are charged.

The main result of this section is that the class two
stripe-domains (generated by the y axis of rotation) are
uncharged, and the class one stripe-domains (generated
by the db + e cos(b)x′ axis) are charged. Since both the
directors and layer normals in each stripe-domain have
already been calculated this could be proved very simply
by taking the pertinent cross products but here we prove
and use a more general result.

Consider two deformations Q1Λ1 and Λ2 that act on
two regions separated by a plane boundary with normal
m in the reference configuration. Let the boundary nor-
mal be m′ in the final state. The continuity condition
gives

Q1Λ1 − Λ2 = a′ ⊗ m.

If the deformation Λ1 results in a polarisation p1 and
the deformation Λ2 results in a polarisation p2 (which
subsequently transform as line elements) then the condi-
tion that the texture boundary is not charged is that the
component of the polarisation normal to the boundary is
continuous across the boundary,

(Q1p1 − p2) · m′ = 0.

If the stripe-domain obeys Mallard’s law then

Λ1 = Q2Λ2R, (6.13)

and if

p1 = Q2p2 (6.14)

the first Mallard’s law solution will not be charged and
the second will be. The proof is simple. First we make
the following rearrangement:

p1 = Q2p2

Λ−1
1 p1 = (Q2Λ2R)−1Q2p2

Λ−1
1 p1 = RΛ−1

2 p2

(Λ−1
1 p1) ·m = (RΛ−1

2 p2) ·m.

Second, we use the fact that we know m for a general
Mallard’s law stripe-domain — for the first Mallard’s
Law solution m is along the axis of R so (RΛ−1

2 p2)·m =
(Λ−1

2 p2) ·m. For the second solution m is perpendicular
to the axis of R so (RΛ−1

2 p2)·m = −(Λ−1
2 p2)·m. These

results can be written as

(Λ−1
1 p1) ·m = ±(Λ−1

2 p2) ·m,

which can be rewritten as

Q1p1 · (Q1Λ1)
−Tm = ±p2 ·Λ−T

2 m.

However, m transforms to m′ under both Q1Λ1 and Λ2

so

(Q1p1 ∓ p2) · m′ = 0.

Therefore the first Mallard’s law solution is uncharged
and the second is charged. This result suggests that a
structure of two classes of stripe-domains, one of which
is charged and one of which is neutral, may be quite
widespread in ferroelectric systems. We note that in oc-
casional degenerate cases (if Q1p1 and p2 are parallel)
the above condition is consistent with both classes be-
ing uncharged. The disporoptionation stripe domain dis-
cussed in [5] is such an example.

Returning to SmC* elastomers, if Λ1 and Λ2 are soft
modes it was shown in §IV that there are two choices for
Q2 and R that satisfy (6.13). The first choice (with the
axis of R along db+e cos(b)x′ and, as shown in Appendix
A, the axis of Q2 along z) generates the class one stripe-
domains as its first solution and the class two stripe-
domains as its second solution. This order is reversed
for the second choice (with the axis of R along y and
Q2 = Ry).

Both Λ1 and Λ2 produce a state with a director along
n0 and the layer normal along z so the polarisation,
which is given by the cross product of these two vectors,
is along y. The sign of the polarisation is determined
by the chirality of the rods. Setting p1 = p2 = y we
see that (6.14) is satisfied by the second choice for Q2

and R but not the first. This means that the second
class of stripe-domains (which are the first solution for
this choice of Q2 and R) are not charged while the first
class of stripe-domains (which are the second solution)
are charged.

These results are easily demonstrated by explicitly cal-
culating the polarizations for each category of stripe-
domain. Electrical actuation of these materials may be
complicated by the formation of these laminate charge
structures. This is discussed in more detail in [5].

VII. CONCLUSIONS

A deformation of a SmC or SmC* liquid-crystal elas-
tomer is a soft mode if and only if it can be written in
the form

λ = Ql
1/2
0 Bl

−1/2
0 ,

where l0 is the step length tensor in the initial (relaxed)
state, Q is an arbitrary rotation and, if z is the liquid

crystal layer normal, B is a rotation about l
1/2
0 z.

Any two soft deformation can (if they are rotated
appropriately relative to each other) form two stripe-
domains, both of which obey Mallard’s law. This is the
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largest possible set of stripe-domains. These two tex-
tures form two distinctive categories, one in which the
LC layers are bent at the texture boundary and one in
which the texture boundary is charged. If γ is the an-
gle between the component of the LC director projected
into the LC plane and the texture boundary (measured
through the LC layer plane), and χ is the angle between
the boundary normal and the LC layer normal then in
the latter case

tan(χ) = tan(θ) sin(γ)

and in the former case

sin(γ) =
(r − 1) cos2(θ) + 1

(1 − r) sin(θ) cos(θ)
cot(χ).

In the two results above θ (the angle between the di-
rector and the layer normal) and r (the anisotropy of
the polymer conformation distribution) are constants for
elastomers of a given chemical nature and temperature.
Although the calculations were done using the unphysical
reference state variable b, these results connect physical
angles in final state and hence have the potential to be
tested experimentally.
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Appendices
Appendix A: Calculation of the physical properties

of the stripe-domains

Before embarking on the calculations it is useful to
define a few additional variables:

ρ = cos2(θ)(r − 1) + 1 (B.1)

α = (1 − r) sin(θ) cos(θ) (B.2)

β = cos2(θ)(r2 − 1) + 1 (B.3)

where r (the anisotropy of the polymer distribution) and
θ (the angle between the LC director and layer normal)
are constants of the material. A few results that will be
used repeatedly are stated below:

β = ρ2 + α2 d =
cos(θ)

√
r√

ρ
e =

sin(θ)√
ρ

l
−1/2
0 x′ =

√

ρ

r
x +

α√
ρr

z l
1/2
0 x′ =

√

r

ρ
x

l
−1/2
0 b =

1√
ρ
z l

1/2
0 b =

−α√
ρ
x +

√
ρz

l
−1/2
0 y = l

1/2
0 y = y l

1/2
0 z =

√
ρb

x′ =
1√
rρ

(cos2(θ)(
√

r − 1) + 1)x − (
√

r − 1)

ρ
sin(θ) cos(θ)z

b =
1√
ρ
((
√

r − 1) sin(θ) cos(θ)x + (cos2(θ)(
√

r − 1) + 1)z)

These results can easily be verified by expanding out
the left hand side in the x-y-z basis, for example, using
the definition of b, (3.3)

l
1/2
0 b =

l0z

|l1/2
0 z|

.

Remembering that n0 = (sin(θ), 0, cos(θ)) (in the x-y-z
basis) and l0 = (r − 1)n0 ⊗ n0 + I,

l
1/2
0 z = (

√
r − 1)(n0 · z)n0 + z,

squaring this gives

|l1/2
0 z|2 = 1 + 2(

√
r − 1)(n0 · z)2 + (

√
r − 1)2(n0 · z)2

= 1 + (2(
√

r − 1) + (
√

r − 1)2)cos2 θ

= 1 + (r − 1)cos2 θ

= ρ.

Similarly,

l0z =(r − 1)(n0 · z)n0 + z

=(r − 1) cos(θ) sin(θ)x + ((r − 1) cos2(θ) + 1)z

= − αx + ρz.

Putting these results together, we get the required result,

l
1/2
0 b =

−α√
ρ
x +

√
ρz.

1. Class 1: Reference state boundary normal

m1 ∝ db + e cos(b)x′.

a. Recap

It was shown in §IV that if a sample in the reference
state is split into two regions by a plane boundary with
normal m1 ∝ db + e cos(b)x′ then there is one (possibly
b dependent) rotation Q1 such that if the deformations

Λ1 = Q1l
1/2
0 Bb and Λ2 = l

1/2
0 B−b are applied on either

http://resolver.caltech.edu/CaltechSOLIDS:2008.004
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side of the boundary a the sample does not fracture. The
deformations that make up the stripe-domain satisfy the
continuity equation

Λ1 − Λ2 = a ⊗ m1 (B.4)

for one (unknown and unimportant) vector a.

b. Calculating Q1

Before the properties of the stripe-domain can be ad-
dressed Q1 must be calculated so that the deformations
that give rise to the texture are fully specified. This
is done by finding two constraints on Q1. First, if the
stripe-domain is to remain continuous under the deforma-
tions the texture boundary must map to the same plane
under both deformations. This means that the bound-
ary normal in the final state, k, can be calculated as the
transform of m1 under either deformation and both these
ways of calculating k must agree

k ∝ Λ−T
1 m1 ∝ Λ−T

2 m1.

Using Λ2,

k ∝ Λ−T
2 m1 ∝ (l

1/2
0 B−b)

−T m1

= l
−1/2
0 (db + e cos(b)(cos(b)x′ + sin(b)y))

giving

k ∝
(√

r cos(θ)

ρ
+

α sin(θ) cos2(b)√
rρ

)

z (B.5)

+ sin(θ) cos(b)

(

cos(b)
√

ρ√
r

x + sin(b)y

)

.

Similarly, using Λ1,

k ∝Q1

((√
r cos(θ)

ρ
+

α sin(θ) cos2(b)√
rρ

)

z

+ sin(θ) cos(b)

(

cos(b)
√

ρ√
r

x− sin(b)y

))

.

This reveals that Q1 must be a rotation that reverses
the y component of k. This observation does not uniquely
determine Q1 so another constraint is needed. This is
found by post-multiplying the continuity equation (B.4)
by y, giving

Q1l
1/2
0 Bby = l

1/2
0 B−by.

This shows that Q1 maps l
1/2
0 Bby onto l

1/2
0 B−by. Both

these vectors lie in the x-y plane as the rotations about
b (≡ z′) introduce an x′ component to the y vector and

the l
1/2
0 operator does not change y but transforms x′

into x. Together with the requirement that Q1 reverses
the y component of k, this determines that the axis of
Q1 is z. If φ is the angle between the component of k in
the x-y plane and the x axis, the angle of rotation is 2φ.
Inspecting k gives

tan2 φ =
r

ρ
tan2(b).

c. Calculating the liquid crystal directors

The director in the final state is different in the
two regions. Let it be n1 in the Λ1 region and n2

in the Λ2 region. Calculating these directors is triv-
ial — the director is not defined in the reference state
(which has an isotropic step length tensor) but is intro-

duced along n0 when the l
1/2
0 component of the defor-

mation is applied, and transforms as a line element un-
der the subsequent rotations. Therefore n1 = Q1n0 =
(cos(2φ)x + sin(2φ)y) sin(θ) + cos(θ)z and n2 = n0 =
x sin(θ) + cos(θ)z. This means that φ is (half) the an-
gle between the components of the LC director in the
LC plane in the two regions, and as such is a physically
meaningful variable that could be measured in the final
state.

d. Calculating the liquid crystal layer normals

In both regions the LC layer normals are aligned with
the z axis. This is shown by starting with b, the layer
normal in the reference state, and following how it trans-
forms under the deformations, for example, in the Λ1

region

(Q1l
1/2
0 Bb)

−Tb = Q1l
−1/2
0 Bbb = Q1l

−1/2
0 b = Q1z = z.

The proof in the second region is almost identical but
without the Q1.

e. Description of the stripe-domains

Having found the final state directors, layer normals
and boundary normal the stripe-domains are in principle
completely described. However, the above results can be
brought together with one simple relation. Let χ be the
angle between the boundary plane and the layer plane
(which is still the x-y plane). The tangent of this angle
can be calculated by inspecting k in (B.5),

tan(χ) =
sin(θ) cos(b)

√

cos2(b)ρ
r + sin2(b)

√

r
ρ cos(θ) − r−1√

rρ sin2(θ) cos2(b) cos(θ)
,

which simplifies to

tan(χ) = tan(θ) cos(φ).

This result mirrors its equivalent in the second class of
stripe-domains better if φ is replaced by γ = π/2 − φ.
Physically γ is the angle between the component of the
LC rods in the layer plane and the texture boundary
measured through the layer plane. Substituting for γ
gives

tan(χ) = tan(θ) sin(γ).
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This describes fully the boundary and director proper-
ties of this type of stripe-domain. The structure of the
texture is illustrated in Figure 2.

The soft textures described by Adams and Warner in
[5] are built out of this type. To bring these descriptions
into the Adams and Warner form the whole sample must
be rotated about the z axis by φ after deformation which
eliminates the y component of the texture normal k.

2. Class 2: Reference state boundary normal

m2 = y

a. Recap

It was shown in §IV that if a sample in the refer-
ence state is split into two regions by a plane bound-
ary with normal m2 = y then there is one (possibly b
dependent) rotation Q2 such that if the deformations

Λ′
1 = Q2l

1/2
0 Bb and Λ′

2 = l
1/2
0 B−b are applied on either

side of the boundary, the material does not fracture.
The interface satisfies the continuity equation

Λ′
1 − Λ′

2 = a′ ⊗ m2 (B.6)

for one (unknown and unimportant) vector a′.

b. Rotation of the sample after deformation

Rotating the whole sample after deformation does
not change any of the intrinsic properties of the stripe-
domain or m2 (which is defined in the reference state).
The calculations that follow are significantly simplified

if the entire sample is rotated by Q
−1/2
2 after the other

deformations as the vectors we are trying to calculate
(such as the layer normal) align better with the axes.
This additional rotation is incorporated into our nota-
tion by defining the deformation in one region as Λ1 =

Q
1/2
2 l

1/2
0 Bb and that in the other as Λ2 = Q

−1/2
2 l

1/2
0 B−b.

The continuity equation now reads

Λ1 − Λ2 = a ⊗ m2 (B.7)

where a = Q
−1/2
2 a′.

c. Calculating Q2

This calculation proceeds in a manner completely anal-
ogous to the (more detailed) calculation in §A1b.

Let k be the final state boundary normal. Calculating
it using Λ2 gives

k ∝ (Q
−1/2
2 l

1/2
0 B−b)

−T m2 = Q
−1/2
2 l

−1/2
0 B−by,

k ∝ Q
−1/2
2 (y cos(b) −

√

ρ

r
sin(b)x − α√

ρr
sin(b)z).

Similarly, using Λ1 gives

k ∝ (Q
1/2
2 l

1/2
0 Bb)

−T m2

= Q
1/2
2 (y cos(b) +

√

ρ

r
sin(b)x +

α√
ρr

sin(b)z).

Since both these ways of calculating k must give the same
answer this places one constraint on Q2. As in the first
case this does not uniquely identify Q2, but a second
constraint can be found be multiplying the continuity
equation by b, giving

Q2l
1/2
0 Bbb = l

1/2
0 B−bb,

Q2l
1/2
0 b = l

1/2
0 b.

This implies that the axis of Q2 is l
1/2
0 b. Since

l
1/2
0 b =

−α√
ρ
x +

√
ρz

is perpendicular to both Q
−1/2
2 k and Q

1/2
2 k, and Q2

maps between these vectors, the angle of rotation can be
found from the dot product of these two vectors. Defining

the angle as 2φ (so that angle of Q
1/2
2 is φ),

cos(2φ) =
cos2(b) − sin2(b)

(

ρ
r + α2

ρr

)

cos2(b) + sin2(b)
(

ρ
r + α2

ρr

) ,

which simplifies to

tan2(φ) =

(

ρ

r
+

α2

ρr

)

tan2(b).

The observation that the axis of Q2 is perpendicular

to both Q
−1/2
2 k and Q

1/2
2 k determines that

k = y.

d. Calculating the liquid crystal layer normals

The next step is to calculate the LC layer normals in
each region, d+ (in the first region) and d− (in the second
region). As before this is done by transforming b with
the deformation tensor in each region, giving

d± = (Q
±1/2
2 l

1/2
0 B±b)

−Tb = Q
±1/2
2 z.

Calculating these vectors explicitly is straightforward but
tedious. One must construct an orthonormal set of vec-
tors, one along the axis of Q, one in the direction of the
component of z perpendicular to the axis and one along

http://resolver.caltech.edu/CaltechSOLIDS:2008.004
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the cross product of these two directions. After decom-
posing z into this basis, the rotation is easy to implement.
The result of the calculation is

d± =
α

β

(

ρ (1 − cos(φ)) x ±
√

β sin(φ)y

−
(

ρ2

α
+ α cos(φ)

)

z

)

.

As the two layer normals are not equal, the LC layers
are bent at the texture boundary. The angle between
the LC layer plane and the boundary plane, χ, (which is
the same in both regions) can be found by taking the dot
product of d± and y, giving,

cos(χ) =
α√
β

sin(φ).

e. Calculating the liquid crystal directors

Further characterization of the solutions requires cal-
culation of the LC directors in the final state. The com-
ponent of the director along the LC layer normal trans-
forms with the layer normal, so only the component in
the layer needs to be calculated. As in case one, it is not
defined in the reference state (which has an isotropic step
length tensor) but is introduced into the system along x

when the l
1/2
0 deformation is imposed (which returns a

relaxed SmC state with a director) and transforms as a
line element under the subsequent rotations. If the com-
ponent of the LC director in the LC layer plane is defined
as c+ in the first region and c−in the second region,

c± = Q
±1/2
2 x.

This can be evaluated in the same manner as Q
±1/2
2 z

above yielding,

c± =
ρ

β

((

α2

ρ
+ ρ cos(φ)

)

x

±
√

β sin φy + α(cos(φ) − 1)z
)

.

f. Describing the Stripe Domain

As in the first case, the above results can be brought
together into one relation — if γ is the angle between the
component of the LC director in the LC layer and the
boundary plane, measured through the LC layer, then

sin(γ) =
ρ

α
cot(χ).

This is an important result as it links two quantities (γ
and χ) that can be measured in the final state. The
straightforward (but algebraically tedious) proof of this
result is given in Appendix B.

The structure of this stripe-domain is shown diagram-
matically in Figure 3.

3. The Shear Angle

The shear angle for both categories of stripe-domain is
given by (5.12). Since it is the same for both categories,
we can choose whether to use the type-1 or type-2 bound-
ary normal. Here we use the type-2 boundary, m = y

so,

Λ2m = l
1/2
0 B−by

= l
1/2
0 (cos(b)y − sin(b)x′)

= cos(b)y + sin(b)

√

r

ρ
x,

and similarly,

Λ−T
2 m = l

−1/2
0 B−by

= l
−1/2
0 (cos(b)y − sin(b)x′)

= cos(b)y + sin(b)

(
√

ρ

r
x +

α√
ρr

z

)

.

Putting these two results into eqn. (5.12) the shear angle
is

1

2
tan(ζ) = (B.8)

√

(

cos2(b) +
r

ρ
sin2(b)

) (

cos2(b) +

(

ρ

r
+

α2

ρr

)

sin2(b)

)

− 1.

Appendix B: Derivation of sin(γ) = ρ

α
cot(χ)

To calculate γ we need to calculate a vector in both the
layer and texture planes (g). This can be done by taking
the cross product of the layer normals on each side of
the interface and normalizing the result to a unit vector.
This procedure gives

g =

((

−ρ2

α − α cos(φ)
)

x − ρ(1 − cos(φ))z
)

√

β
(

ρ2

α2 + cos2(φ)
)

.

Since γ is the angle between g and c± it can be found
by taking their dot product. The following two rearrange-
ments significantly simplify the resulting expressions.

Firstly, using ρ2 + α2 = β,

ρ2

α2
+ cos2(φ) =

β

α2
− 1 + cos2(φ),

and using cos(χ) = α√
β

sin(φ),

β

α2
− 1 + cos2(φ) =

β

α2

(

1 − α2

β
sin2(φ)

)

=
β

α2
sin2(χ).
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Secondly, multiplying out,

(

α2

ρ
+ ρ cos(φ)

) (

ρ2

α
+ α cos(φ)

)

− ρα (1 − cos(φ))
2

(C.1)

= ρα

(

α2

ρ2
+

ρ2

α2
+ 2

)

cos(φ), (C.2)

and using ρ2 + α2 = β,

ρα

(

α2

ρ2
+

ρ2

α2
+ 2

)

cos(φ) =
β2

ρα
cos(φ).

Armed with these rearrangements, the dot product im-
mediately simplifies to

cos(γ) =
cos(φ)

sin(χ)
.

Using cos(χ) = α√
β

sin(φ) to substitute for φ and

pythagoras to turn the cos(γ) into a sin(γ) gives

sin(γ) =

√

1 − 1 − β
α2 cos2(χ)

sin2(χ)
(C.3)

=

√

(

1 − β

α2

) (

1 − 1

sin2(χ)

)

(C.4)

=

√

(

1 − β

α2

)

cot(χ). (C.5)

Finally, using once again ρ2 + α2 = β,

sin(γ) =
ρ

α
cot(χ)

which is the desired result.
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