ON L? BOUNDS FOR KAKEYA MAXIMAL FUNCTIONS
AND THE MINKOWSKI DIMENSION IN R®
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ABSTRACT

We prove that the bound on the L? norms of the Kakeya type maximal functions studied by Cordoba
[2] and Bourgain [1] are sharp for p > 2. The proof'is based on a construction originally due to Schoenberg
[5], for which we provide an alternative derivation. We also show that r?log(1/r) is the exact Minkowski
dimension of the class of Kakeya sets in R?, and prove that the exact Hausdorff dimension of these sets
is between r?log(1/r) and r?log(1/r)[loglog (1/r)]**:.

1. Introduction

Consider the following two Kakeya type maximal operators. The first, studied in
[2], M;: LA(R?)+— L*(R?), is defined for 6 > 0 as
a 1 '
M, fx)= sup | |f], (M
reReR; R
where R; is the set of rectangles ReR? of size 1 x J. The second was introduced by
Bourgain in [1]. We denote it by Kj: L?(R*)— L?(S"), and it is defined as

K, fle) = sup

reR? Tﬁ(x) Tﬁ(x)

/1,

where T9(x) is the 1 x J rectangle oriented in the e-direction with x at its centre.
In [2, Proposition 1.2], Cordoba proves that for p > 2,

1\V»
i, % (1ogg) 0

In [1, (1.5)], Bourgain shows that for p > 2,

1\V»
1, % (1ogg) " ©

More precisely, both authors prove their results in the case p = 2. The case p > 2
then follows from the obvious bounds |M;f],, <|f|, and |K;f], <|f|, and the
Marcinkiewicz interpolation theorem.
For the case p = 2, these bounds were known to be sharp; for example, consider

the function [3]

1 |x| < 0,

f()(x)i o/Ix| o< |x <1,
0 |x| > 1.
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The key to showing that (2) and (3) are sharp lies in a certain ‘optimal’ construction,
due to Schoenberg [5], of a thin set which contains a unit length line segment in every
direction. Unaware of his result, we came up with a different construction of
essentially the same set. This is the content of Theorem 1.

REMARK. For pe[l,2), it can be proved, using arguments analogous to those for
the case p = 2, that

1K, < ot27, [ My], < o'
a

These are known to be sharp: consider the function f(x) = y,, 5, Where D(0, ) is the
disc of radius ¢ about 0.

We need the following notation.

o Let / be a line segment /= {(x,ax+b):xe[0,1]}. We consider lines with
a(l) = ael0,1] and b(l) = be[—1,0].

e For 0 > 0 and such an /, let Ry (/) be the triangle defined by the set of vertices
{(0,1(0)), (0, /(0)—0), (1, (1))}, where I(x) denotes a shorthand for a(/)x+ b(l).

o Let R;(Z) be the triangle obtained by translating Ry(/) by 24/2 along the
direction of /.

e For a set E = R? let |E| denote its Lebesgue measure, and let E(J) denote its
o-neighbourhood.

e x, <y, means that there exists a C > 0 such that x, < Cy,. The symbol = is
short for both = and <.

THEOREM 1. For any n, there exist 2" line segments {I7:i=0,1,...,2" —1} with
a(l?) = i27" such that the triangles R,—(I?) satisfy the following two properties.

(i ‘U Ron(1)

(1) The translated triangles R’an(l ") are disjoint.

<-.
n
REMARK. Though not mentioned in [5], (ii)) would follow from Schoenberg’s
work as well.
Let
a 2"
E, = Ry(I}). 4
i=1

Then E, has a unit length line segment with any given slope a€[0, 1], it is composed
of triangles with eccentricity 2", and |E,| < 1/n, so we have the following result.

COROLLARY 1.  The bounds (2) and (3) are sharp for p > 2.

Proof. Let E, be defined as in (4), and let f, Z Le, Then by (i) of Theorem 1,

|/,], < (1/m)"'?.On the other hand, let M be defined as in (1) but with rectangles of size
3v/2x dinstead of 1 x d. Then one can check that M, f(x) > C > 0 for xe | J, R,-(/}),
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and it follows that |[M,-«(f,)|, = 1. But |M,(f)l, ~ |M,(f)|,, therefore the bound in (2)
is necessarily sharp. As for K,-», it is not hard to show that K,-(y, ) () = C > 0 for
0€e[0, /4], which implies that (3) is sharp for p > 2.

A Kakeya set in R? is a set of Lebesgue measure 0 which contains a unit length
line segment in every direction in the plane.
The triangles mentioned above allow us to constructively prove the following.

LEMMA 1. There exists a (compact) Kakeya set E such that for any ¢ < 1,

[E(e)| < 5)

1
log(1/e)’

Since the reversed inequality is the rule for Kakeya sets, we can now prove the
following.

THEOREM 2. The exact Minkowski dimension of the class of Kakeya sets in R* is

h(r) = r? log%.

Finally, we provide some partial results for the exact Hausdorff dimension
of the class of Kakeya sets. Specifically, we show that it is between r*log(1/r) and
r*log (1/r) (loglog (1/r))*** for any ¢ > 0.

2. The basic construction

A few more notations are useful.

o A G-set for us means a compact set £ < [0, 1] x R, such that for any ae[0, 1]
there exists a (unit length) line segment /, = E with slope a.

e By the upper edge of the triangle R (/) we mean the segment /, and by the lower
edge we mean the segment between (0, /(0)—0) and (1,/(1)). The vertical edge
is the third segment.

e For a set E < R? let |E|, be the (one-dimensional) Lebesgue measure of its
cross-section at x.

e Fork=0,1,...,2"—1, we denote by ¢,(k) the ith binary digit in the expansion

k_

2n Z gi 2_i? gie{os 1}

=1

Proof of Theorem 1. We first provide the geometric view of the construction
which closely follows that of Sawyer [4] and Wolff [6]. Start with a triangle with
vertices at (0,0), (0, —1), (1,0). Cut it into two triangles by adding a vertex at
(0, —1/2), and then slide the lower triangle upward until the vertical edges of the two
triangles overlap completely. At the kth stage (k=1,2,...,n—1), you have 2*
triangles. Cut each of these into two triangles by adding a vertex in the middle of the
vertical edge. For each of these newly created pairs, slide the lower triangle upward
until the upper edges of the two triangles intersect at x = k/n. This construction
leaves us with 2" triangles of equal area (27"7'), and it is obvious that the union of
these is a G-set. We next show that this construction satisfies (i) and (ii) of the
theorem.
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We define our set of 2" lines /,, ..., [,»_, (these correspond to the upper edges of the
triangles in the above construction) as follows: /, has slope

ARES

and with ¢, = ¢ ,(a(l,)),

n . n '_1 . n 1_ : .
b)) — Y &2+ Zei(l—l—)2l ) S
1 1 n 1 n

Note that ) &,(1 —(i—1)/n)27" is the total upward translation that was applied to the
kth line (triangle) in our construction. It is, at times, convenient to index our lines
by their strictly increasing slopes: {/,:a =0,1/2",2/2",...,(2"—1)/2"}. With this
notation, . .
[(x) =Y (x+;l)si 27,
= n

where ¢, = ¢,(a). To prove (ii), it suffices to show that for a > 4, /(1) = I;(1). There
exists a ke{l,...,n} such that ¢, = ¢, for ie{l,...,k—1},and g, =1 >0=¢,, so

n+1— n+1— ~

(1) —=1;(1) = 1ok, F+ Z (;—8)2"
k+1
>n—}-l—kz_k_ Zn+l_12_i>0-
n o N

To prove (i), it suffices to show that for any xe[0, 1],
2"—1

U R, <— ()

For k=1,2,...,n, we show that (6) holds in 7, Z [(k—1)/n,k/n], by grouping the
lines into 2*7! sets of lines determined by the first k— 1 binary digits of their slopes.
The triangles corresponding to each of these sets contribute at most (2'*—27")/n
to the measure of the cross-section at any xe,. Since there are 2°7' such sets, (6)
follows. More precisely, let ke{l,2,...,n}. For j=0,1,...,25'—1, we define

{l S(a)—é‘(2k 1)forz—l2 k—l}.

Let [,e L, and, with ¢, = ¢,(a), let r Z Y ¥1e, 27" (or r =j/2""). Then
k-1

L(x)=) (x—I—E)si 274 Z (x+b)si 27,
n ” n

1
so for xel,,

L(x)=1(x)+ Xn: (x + %) g27"

11—k e
p >£k2

< L(x)+ (x + 1;k> 27k

= lr+27}”"(x)'

< L(x)+ (x +



ON L? BOUNDS FOR KAKEYA MAXIMAL FUNCTIONS 217

Similarly,

[(x)=1(x)+ i (x—i—l i)ei 2

k+1 7
" 1—i\ .,
>1(x)+ Y |x+— |27
K+l h
=gk _yn(X).
Thus, for any je{0,1,...,2"'—1} and with r=j/2"" the set of triangles

{R,-n(l):1e L;} is bounded, for xe I, from above by the line /,,,-+(x), and from below
by [ ,,+_,n(x)—27"(1 —Xx), the latter being the lower edge of R,-(/,.,+_,»). Hence

U RD)

leL;

S o t(X) = [[ gty n(X) = 27"(1 = X)]

x

= LX) = [lyr yn(x) =27"(1 = X)].

But the lines /,-#(x) and /,-x_,-»(x) —27"(1 — x) are parallel, so

k—1 k—1 k—1
I

nofe—7 k—1
=0—| Y =221
0|2 (15

21—1{: _ 2771
7}1 .

U Rosll)

leLj-

Hence

) 21—k_2—n
<= <,
x

U Rz‘"(l)

3. The exact Minkowski dimension

Let F be a subset of R% For a monotone increasing function fon R and 6 > 0, we
define

N
M (F, ) Z inf{N-f(r): U D(x;,r) > Fand r < 5}.
i=1
Let 90t (F) L sup, M (F,6). By the exact Minkowski dimension for the class of
Kakeya sets, we mean a monotone increasing function / such that:
o for any Kakeya set E, M, (E) > 0;
o there exists a Kakeya set £ with M, (E) < co.

Cram 3.1. For any n, there exists a G-set, G”, such that

1
"2 S =
e
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Proof. Consider the set of triangles E, = | J, R,-»(/") that was constructed in the
proof of Theorem 1. Let I be the identity map on R? Then by (i) of the theorem,

l6I(E,)| =

U6KRfdMD‘<%? )

Let a = a(lMel0,1] and b Z b(I)e[—1,0]. We define the triangle Iéf by its vertices
as follows:

V(R £ {(1,a+6b—2-27"),(1,a+6b—3-27"), (2, 2a+ 6b—2-27")}.

Since V(R,—(I})) = {(0,b),(0,6—27"),(1,a+b)}, it is easy to verify that Ié;‘ is a
translation of R,-x(/}'), and that
RI27") < 61(Ry(1})).

Hence || J, Iéf’(2’")| < 36/n, and translating the triangles ﬁ;’ to the left gives our G-set.

REmARKS. The set G" constructed in the above claim is contained in [0, 1] x
[—6,6].
When 6 = 27", we shall also refer to G" as G°.

Proof of Lemma 1. The proof is an adaptation of a standard limiting argument
(for example, Lemma 1.3 and Corollary 1.4 in [6]). Let ¢, Z 22" Then it suffices to
prove that (5) holds for ¢,. Suppose that there exists a sequence of G-sets, F,, such that

(i) F(e,) < F (&, )

(i) |F,(2e,)l <27

Let E= (. F.(¢,)- Then by (i), E is a G-set. Moreover,

Ee,) < (E(e,))(e,) = F(2¢,),

hence (ii) proves the lemma. Next, we inductively construct the sequence F,.
Start with, say, F, = G'2. Given F,, we define F,,, so that (i) and (i) will
be satisfied. Since F, is a G-set, it contains a unit length line segment /,, for slopes
a n A
m; = jo, where ¢ is short for o,,, =¢,/256=2"""% and j=0,1,...,0'—1. Let
A2:R* > R* be given by A2((x,y)) L (x.1,, (x)+0y). Note that A9 affinely maps

[0,1] x[—6,6] onto the parallelogram S;’i{(x,y):xe[o,l] and |y—lm]_(x)| <60},

d n
Let # stand for #,,, = 27> "', and define

d N
E., =4/
J

Since 47 maps segments with slope x to segments with slope du+m;, F,,, is a G-set.
Since ¢ = ¢,/256, for each j,

[43(GN](e,) = (1) (120 +2,,,) < F(&,),

and (i) follows.
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As for (ii), note that with 6€(0, 1] and me[0, 1],
(X1 = Xp)* +[m(x; — x,) +0(y; — p)I* < 0%p*
implies
(v, =) +(y1 —1,)* < Sp*.
Hence
i) < )

and so as 2¢,. , = on/4,

2,0 = U4 (a7 = U 41601

Since A2 reduces areas by a factor of 4, by Claim 3.1,

1
logn

[ 43(G" ()] < Co

—-1°
which implies that
C
|Fa(2e,,)l < ) CO =1
e e g logn logy™
The proof is now completed by observing that

~ 2"~ log

gn+1 }7n+1

log

Proof of Theorem 2. For any r > 0 and a covering of a Kakeya set E by N, discs
of radius r, we have N, r* 2 |E(r)], so by (3),

N, h(r) =N, r* log% = |E(r)| log% =1
Thus M, (E,0) = 1, and so M, (E) > 0. On the other hand, let E be the Kakeya set

obtained from the construction in Lemma 1. For any J > 0, there exists a covering
of Eby N; ~ |E(d)|/6* discs of radius d. With this covering and by Lemma 1, we have

1 1
M, (E,J) < N;o° logg < |Ejl logg <1
As for the exact Hausdorff dimension of the class of Kakeya sets in R?, our results
are not sharp. You can borrow the lower bound of / > r*log (1/r) from the analysis
of the Minkowski dimension, but the upper bound we currently have is strictly larger.
Cram 3.2. Let E be a Kakeya set, and for ¢ > 0, let

1 2+e
h(r) = r’log— (loglog ) .

Then there exists a C,> 0 such that for any covering of E by J, D(x;
r[ < 69 Ziht:(ri) > CII'

r;) with

1’2
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Proof. The proof is a variation on Lemma 2.15 in [1]. Let

a . _ok _ok—1
Jo= 2 < <2,

and let v, Z |J,]. Since, for small r and ¢ > 1, h(cr) < ¢®h(r), we can assume without

loss of generality that r, = m, 272" with m,e{1,2,..., 22"y Each disc D(x,m-27%") can
. . ok .

be covered by < m? discs of radius 272", and since

h(m-27%") _ log 2*" ' [loglog 2 " 1
n,l‘zh(z—zk) ~ log 22"' [log log (22’“)]2+:: 2’

we can assume, without loss of generality, that r, = 27" for all JjeJ,.
Retaining the notation in [6], denote D(x,,r;) by D,, and let

a ~ d ~ d ~
E.=En(U D), D,=D(x,2r), E.= U D,
jedy jedy

Let eeS*. Since E is a Kakeya set, there exists a unit length line segment in the e-
direction, /,, contained in E. Suppose that |/, n E,| > C/k'** for some C > 0. Then, as
explained in [6], K,+*(yz ) (e) > C/k'*, thus

=

C
{e eSt: Kz—z’“(XE*k) (e) > ﬁ}

bl

*

k1+e

{eeSlzllenE,J >£}

where |F|, is the outer measure of F. Note that |E,| < vk,(Z‘Zk)Z, s0 (3) with p = 2 yields

v h(27%) 2

E |log2* <
% =~ {ee S' Ky (xz,) (€) > k””}

Summing over k, we find that

2 h(r) 2

U{eeSlz|leﬂEk.| >%)

k *

But for each eeS', ), |LNE,]|=1, so if we let cZ ()., 1/, then by the
pigeonhole principle, the union is S*, and therefore ) i(r;) 2 1.
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