
ON Lp BOUNDS FOR KAKEYA MAXIMAL FUNCTIONS

AND THE MINKOWSKI DIMENSION IN 2#
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A

We prove that the bound on the Lp norms of the Kakeya type maximal functions studied by Cordoba
[2] and Bourgain [1] are sharp for p" 2. The proof is based on a construction originally due to Schoenberg
[5], for which we provide an alternative derivation. We also show that r# log (1}r) is the exact Minkowski
dimension of the class of Kakeya sets in 2#, and prove that the exact Hausdorff dimension of these sets
is between r# log (1}r) and r# log (1}r) [log log (1}r)]#+ε.

1. Introduction

Consider the following two Kakeya type maximal operators. The first, studied in

[2], Mδ :L#(2#)*L#(2#), is defined for δ" 0 as

Mδ f(x)¯d sup
x`R`2δ

1

R&
R

r f r, (1)

where 2δ is the set of rectangles R `2# of size 1¬δ. The second was introduced by

Bourgain in [1]. We denote it by Kδ :Lp(2#)*Lp(S"), and it is defined as

Kδ f(e)¯d sup
x`2#

1

T δ

e
(x)&

T
δ

e(x)

r f r,

where T δ

e
(x) is the 1¬δ rectangle oriented in the e-direction with x at its centre.

In [2, Proposition 1.2], Cordoba proves that for p& 2,

sMδsp
# 0log

1

δ1
"/p

. (2)

In [1, (1.5)], Bourgain shows that for p& 2,

sKδsp
# 0log

1

δ1
"/p

. (3)

More precisely, both authors prove their results in the case p¯ 2. The case p" 2

then follows from the obvious bounds rMδ f r¢ % r f r¢ and rKδ f r¢ % r f r¢ and the

Marcinkiewicz interpolation theorem.

For the case p¯ 2, these bounds were known to be sharp; for example, consider

the function [3]

fδ(x)¯d

1

2
3

4

1 rxr! δ,

δ}rxr δ% rxr% 1,

0 rxr" 1.
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The key to showing that (2) and (3) are sharp lies in a certain ‘optimal ’ construction,

due to Schoenberg [5], of a thin set which contains a unit length line segment in every

direction. Unaware of his result, we came up with a different construction of

essentially the same set. This is the content of Theorem 1.

R. For p ` [1, 2), it can be proved, using arguments analogous to those for

the case p¯ 2, that

sKδsp
# δ "−#/p, sMδsp

# δ "−#/p.

These are known to be sharp: consider the function fδ(x)¯d χ
D(!,

δ)
, where D(0, δ) is the

disc of radius δ about 0.

We need the following notation.

E Let l be a line segment l¯²(x, ax­b) :x ` [0, 1]´. We consider lines with

a(l )¯d a ` [0, 1] and b(l )¯d b ` [®1, 0].

E For δ" 0 and such an l, let Rδ(l ) be the triangle defined by the set of vertices

²(0, l(0)), (0, l(0)®δ), (1, l(1))´, where l(x) denotes a shorthand for a(l )x­b(l ).

E Let R]
δ(l ) be the triangle obtained by translating Rδ(l ) by 2o2 along the

direction of l.

E For a set EZ2#, let rE r denote its Lebesgue measure, and let E(δ) denote its

δ-neighbourhood.

E x
n
# y

n
means that there exists a C" 0 such that x

n
%Cy

n
. The symbol E is

short for both $ and #.

T 1. For any n, there exist 2n line segments ²ln
i
: i¯ 0, 1,…, 2n®1´ with

a(ln
i
)¯ i2−n such that the triangles R

#
−n(ln

i
) satisfy the following two properties.

(i) )5
i

R
#
−n(ln

i
))! 1

n
.

(ii) The translated triangles R]
#
−n(ln

i
) are disjoint.

R. Though not mentioned in [5], (ii) would follow from Schoenberg’s

work as well.

Let

E
n
¯d 5

#
n

i="

R
#
−n(ln

i
). (4)

Then E
n

has a unit length line segment with any given slope a ` [0, 1], it is composed

of triangles with eccentricity 2n, and rE
n
r! 1}n, so we have the following result.

C 1. The bounds (2) and (3) are sharp for p" 2.

Proof. Let E
n

be defined as in (4), and let f
n
¯d χ

En

. Then by (i) of Theorem 1,

r f
n
r
p
! (1}n)"/p. On the other hand, let Mh be defined as in (1) but with rectangles of size

3o2¬δ instead of 1¬δ. Then one can check that Mh
δ f(x)"C" 0 for x `5

i
R]

#
−n(ln

i
),
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and it follows that rMh
#
−n( f

n
)r
p
$ 1. But rMh

δ( f )rp E rMδ( f )rp, therefore the bound in (2)

is necessarily sharp. As for K
#
−n, it is not hard to show that K

#
−n(χ

En

) (θ)&C" 0 for

θ ` [0,π}4], which implies that (3) is sharp for p& 2.

A Kakeya set in 2# is a set of Lebesgue measure 0 which contains a unit length

line segment in every direction in the plane.

The triangles mentioned above allow us to constructively prove the following.

L 1. There exists a (compact) Kakeya set E such that for any ε! 1,

rE(ε)r#
1

log (1}ε)
. (5)

Since the reversed inequality is the rule for Kakeya sets, we can now prove the

following.

T 2. The exact Minkowski dimension of the class of Kakeya sets in 2# is

h(r)¯ r# log
1

r
.

Finally, we provide some partial results for the exact Hausdorff dimension

of the class of Kakeya sets. Specifically, we show that it is between r# log (1}r) and

r# log (1}r) (log log (1}r))#+ε for any ε" 0.

2. The basic construction

A few more notations are useful.

E A G-set for us means a compact set EZ [0, 1]¬2, such that for any a ` [0, 1]

there exists a (unit length) line segment l
a
ZE with slope a.

E By the upper edge of the triangle Rδ(l ) we mean the segment l, and by the lower

edge we mean the segment between (0, l(0)®δ) and (1, l(1)). The vertical edge

is the third segment.

E For a set EZ2#, let rE r
x

be the (one-dimensional) Lebesgue measure of its

cross-section at x.

E For k¯ 0, 1,…, 2n®1, we denote by ε
i
(k) the ith binary digit in the expansion

k

2n
¯3

n

i="

ε
i
2−i, ε

i
` ²0, 1´.

Proof of Theorem 1. We first provide the geometric view of the construction

which closely follows that of Sawyer [4] and Wolff [6]. Start with a triangle with

vertices at (0, 0), (0,®1), (1, 0). Cut it into two triangles by adding a vertex at

(0,®1}2), and then slide the lower triangle upward until the vertical edges of the two

triangles overlap completely. At the kth stage (k¯ 1, 2,…, n®1), you have 2k

triangles. Cut each of these into two triangles by adding a vertex in the middle of the

vertical edge. For each of these newly created pairs, slide the lower triangle upward

until the upper edges of the two triangles intersect at x¯k}n. This construction

leaves us with 2n triangles of equal area (2−n−"), and it is obvious that the union of

these is a G-set. We next show that this construction satisfies (i) and (ii) of the

theorem.
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We define our set of 2n lines l
!
,…, l

#
n
−"

(these correspond to the upper edges of the

triangles in the above construction) as follows: l
k

has slope

a(l
k
)¯d

k

2n
,

and with ε
i
¯d ε

i
(a(l

k
)),

b(l
k
)¯d ®3

n

"

ε
i
2−i­3

n

"

ε
i01®

i®1

n 1 2−i ¯3
n

"

1®i

n
ε
i
2−i.

Note that 3ε
i
(1®(i®1)}n)2−i is the total upward translation that was applied to the

kth line (triangle) in our construction. It is, at times, convenient to index our lines

by their strictly increasing slopes : ²l
a
: a¯ 0, 1}2n, 2}2n,…, (2n®1)}2n´. With this

notation,

l
a
(x)¯3

n

i="

0x­
1®i

n 1εi 2−i,

where ε
i
¯ ε

i
(a). To prove (ii), it suffices to show that for a" ah , l

a
(1)& l

ah
(1). There

exists a k ` ²1,…, n´ such that ε
i
¯ εh

i
for i ` ²1,…,k®1´, and ε

k
¯ 1" 0¯ εh

k
, so

l
a
(1)®l

ah
(1)¯

n­1®k

n
2−k­ 3

n

k+"

n­1®i

n
(ε

i
®εh

i
)2−i

&
n­1®k

n
2−k® 3

n

k+"

n­1®i

n
2−i " 0.

To prove (i), it suffices to show that for any x ` [0, 1],

) 5
#
n
−"

i=!

R
#
−n(l

i
))

x

!
1

n
. (6)

For k¯ 1, 2,…, n, we show that (6) holds in I
k
¯d [(k®1)}n,k}n], by grouping the

lines into 2k−" sets of lines determined by the first k®1 binary digits of their slopes.

The triangles corresponding to each of these sets contribute at most (2"−k®2−n)}n

to the measure of the cross-section at any x ` I
k
. Since there are 2k−" such sets, (6)

follows. More precisely, let k ` ²1, 2,…, n´. For j¯ 0, 1,…, 2k−"®1, we define

L
j
¯d (la : εi(a)¯ ε

i 0 j

2k−"
1 for i¯ 1, 2,…,k®1* .

Let l
a
`L

j
and, with ε

i
¯ ε

i
(a), let r¯d 3k−"

"
ε
i
2−i (or r¯ j}2k−"). Then

l
a
(x)¯ 3

k−"

"

0x­
1®i

n 1 ε
i
2−i­3

n

k

0x­
1®i

n 1 ε
i
2−i,

so for x ` I
k
,

l
a
(x)¯ l

r
(x)­3

n

k

0x­
1®i

n 1 ε
i
2−i

% l
r
(x)­0x­

1®k

n 1 ε
k
2−k

% l
r
(x)­0x­

1®k

n 1 2−k

¯ l
r+#

−k(x).
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Similarly,

l
a
(x)& l

r
(x)­ 3

n

k+"

0x­
1®i

n 1 ε
i
2−i

& l
r
(x)­ 3

n

k+"

0x­
1®i

n 1 2−i

¯ l
r+#

−k
−#

−n(x).

Thus, for any j ` ²0, 1,…, 2k−"®1´ and with r¯ j}2k−", the set of triangles

²R
#
−n(l ) : l `L

j
´ is bounded, for x ` I

k
, from above by the line l

r+#
−k(x), and from below

by l
r+#

−k
−#

−n(x)®2−n(1®x), the latter being the lower edge of R
#
−n(l

r+#
−k

−#
−n). Hence

) 5
l`Lj

R
#
−n(l ))

x

% l
r+#

−k(x)®[l
r+#

−k
−#

−n(x)®2−n(1®x)]

¯ l
#
−k(x)®[l

#
−k

−#
−n(x)®2−n(1®x)].

But the lines l
#
−k(x) and l

#
−k

−#
−n(x)®2−n(1®x) are parallel, so

) 5
l`Lj

R
#
−n(l ))

x

% l
#
−k 0k®1

n 1®9l#−k
−#

−n 0k®1

n 1®2−n 01®
k®1

n 1:
¯ 0®93n

k+"

k®i

n
2−i®2−n 01®

k®1

n 1:
¯

2"−k®2−n

n
.

Hence

)5
l

R
#
−n(l ))

x

% 2k−"
2"−k®2−n

n
!

1

n
.

3. The exact Minkowski dimension

Let F be a subset of 2#. For a monotone increasing function f on 2 and δ" 0, we

define

-
f
(F, δ)¯d inf (N[f(r) :5

N

i="

D(x
i
, r)[F and r! δ* .

Let -
f
(F)¯d supδ -f

(F, δ). By the exact Minkowski dimension for the class of

Kakeya sets, we mean a monotone increasing function h such that :

E for any Kakeya set E, -
h
(E )" 0;

E there exists a Kakeya set E with -
h
(E )!¢.

C 3.1. For any n, there exists a G-set, Gn, such that

rGn(2−n)r#
1

log 2n
.



218 . 

Proof. Consider the set of triangles E
n
¯5

i
R

#
−n(ln

i
) that was constructed in the

proof of Theorem 1. Let I be the identity map on 2#. Then by (i) of the theorem,

r6I(E
n
)r¯ )5

i

6I(R
#
−n(ln

i
)))! 36

n
. (7)

Let a¯d a(ln
i
) ` [0, 1] and b¯d b(ln

i
) ` [®1, 0]. We define the triangle RW n

i
by its vertices

as follows:

V(RW n
j
)¯d ²(1, a­6b®2[2−n), (1, a­6b®3[2−n), (2, 2a­6b®2[2−n)´.

Since V(R
#
−n(ln

i
))¯²(0, b), (0, b®2−n), (1, a­b)´, it is easy to verify that RW n

i
is a

translation of R
#
−n(ln

i
), and that

RW n
i
(2−n)Z 6I(R

#
−n(ln

i
)).

Hence r5
i
RW n

i
(2−n)r! 36}n, and translating the triangles RW n

i
to the left gives our G-set.

R. The set Gn constructed in the above claim is contained in [0, 1]¬
[®6, 6].

When δ¯ 2−n, we shall also refer to Gn as Gδ.

Proof of Lemma 1. The proof is an adaptation of a standard limiting argument

(for example, Lemma 1.3 and Corollary 1.4 in [6]). Let ε
n
¯d 2−#

n. Then it suffices to

prove that (5) holds for ε
n
. Suppose that there exists a sequence of G-sets, F

n
, such that

(i) F
n
(ε

n
)ZF

n−"
(ε

n−"
),

(ii) rF
n
(2ε

n
)r# 2−n.

Let E¯d 4
n
F
n
(ε

n
). Then by (i), E is a G-set. Moreover,

E(ε
n
)Z (F

n
(ε

n
)) (ε

n
)¯F

n
(2ε

n
),

hence (ii) proves the lemma. Next, we inductively construct the sequence F
n
.

Start with, say, F
!
¯G"/#. Given F

n
, we define F

n+"
so that (i) and (ii) will

be satisfied. Since F
n

is a G-set, it contains a unit length line segment l
mj

for slopes

m
j
¯ jδ, where δ is short for δ

n+"
¯d ε

n
}256¯ 2−#

n
−), and j¯ 0, 1,…, δ−"®1. Let

Aδ

j
:2#!2# be given by Aδ

j
((x, y))¯d (x, l

mj

(x)­δy). Note that Aδ

j
affinely maps

[0, 1]¬[®6, 6] onto the parallelogram S δ

j
¯d ²(x, y) :x ` [0, 1] and ry®l

mj

(x)r% 6δ ´.

Let η stand for η
n+"

¯d 2−#
n
+"", and define

F
n+"

¯d 5
j

Aδ

j
(Gη).

Since Aδ

j
maps segments with slope µ to segments with slope δµ­m

j
, F

n+"
is a G-set.

Since δ¯ ε
n
}256, for each j,

[Aδ

j
(Gη)] (ε

n+"
)Z (l

mj

) (12δ­ε
n+"

)ZF
n
(ε

n
),

and (i) follows.
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As for (ii), note that with δ ` (0, 1] and m ` [0, 1],

(x
"
®x

#
)#­[m(x

"
®x

#
)­δ(y

"
®y

#
)]#! δ#ρ#

implies

(x
"
®x

#
)#­(y

"
®y

#
)#! 5ρ#.

Hence

[Aδ

j
(Gη)] 0δη

4 1ZAδ

j
[Gη(η)],

and so as 2ε
n+"

¯ δη}4,

F
n+"

(2ε
n+"

)¯5
j

[Aδ

j
(Gη)] 0δη

4 1Z5
j

Aδ

j
[Gη(η)].

Since Aδ

j
reduces areas by a factor of δ, by Claim 3.1,

rAδ

j
[Gη(η)]r%Cδ

1

log η−"

,

which implies that

rF
n+"

(2ε
n+"

)r%3
j

Cδ
1

log η−"

¯
C

log η−"

.

The proof is now completed by observing that

log
1

2ε
n+"

E 2n+"E log
1

η
n+"

.

Proof of Theorem 2. For any r" 0 and a covering of a Kakeya set E by N
r
discs

of radius r, we have N
r
r#$ rE(r)r, so by (3),

N
r
h(r)¯N

r
r# log

1

r
$ rE(r)r log

1

r
$ 1.

Thus -
h
(E, δ)$ 1, and so -

h
(E )" 0. On the other hand, let E be the Kakeya set

obtained from the construction in Lemma 1. For any δ" 0, there exists a covering

of E by Nδ E rE(δ)r}δ# discs of radius δ. With this covering and by Lemma 1, we have

-
g
(E, δ)#Nδ δ# log

1

δ
# rEδr log

1

δ
# 1.

As for the exact Hausdorff dimension of the class of Kakeya sets in 2#, our results

are not sharp. You can borrow the lower bound of h& r# log (1}r) from the analysis

of the Minkowski dimension, but the upper bound we currently have is strictly larger.

C 3.2. Let E be a Kakeya set, and for ε" 0, let

hε(r)¯
d

r# log
1

r 0log log
1

r1
#+

ε

.

Then there exists a Cε " 0 such that for any covering of E by 5
i
D(x

i
, r

i
) with

r
i
! δ,3

i
hε(ri)&Cε.
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Proof. The proof is a variation on Lemma 2.15 in [1]. Let

J
k
¯d ² j : 2−#

k % r
j
% 2−#

k−"´,

and let ν
k
¯d rJ

k
r. Since, for small r and c" 1, h(cr)! c#h(r), we can assume without

loss of generality that r
i
¯m

i
2−#

k with m
i
` ²1, 2,…, 2#

k−"´. Each disc D(x,m[2−#
k) can

be covered by #m# discs of radius 2−#
k, and since

h(m[2−#
k)

m#h(2−#
k)

$
log 2#

k−" [log log (2#
k−")]#+ε

log 2#
k [log log (2#

k)]#+ε
E

1

2
,

we can assume, without loss of generality, that r
j
¯ 2−#

k for all j ` J
k
.

Retaining the notation in [6], denote D(x
j
, r

j
) by D

j
, and let

E
k
¯d Ef( 5

j`Jk

D
j
) , Dh

j
¯d D(x

j
, 2r

j
), Eh

k
¯d 5

j`Jk

Dh
j
.

Let e `S ". Since E is a Kakeya set, there exists a unit length line segment in the e-

direction, l
e
, contained in E. Suppose that rl

e
fE

k
r"C}k"+

ε for some C" 0. Then, as

explained in [6], K
#
−#

k(χ
E
h
k

) (e)"C}k"+
ε, thus

)(e `S " :K
#
−#

k(χ
E
h
k

) (e)"
C

k"+
ε*)& )(e `S " : rl

e
fE

k
r"

C

k"+
ε*)

$

,

where rF rk is the outer measure of F. Note that rEh
k
r# ν

k
(2−#

k)#, so (3) with p¯ 2 yields

ν
k
h(2−#

k)$
rEh

k
r log 2#

k

(1}k)#+ε
$ )(e `S " :K

#
−#

k(χ
E
h
k

) (e)"
C

k"+
ε*) .

Summing over k, we find that

3
j

h(r
j
)$ )5

k

(e `S " : rl
e
fE

k
r"

C

k"+
ε1)

$

.

But for each e `S ", 3
k
rl
e
fE

k
r¯ 1, so if we let C¯d (3

k
1}k"+

ε)−", then by the

pigeonhole principle, the union is S ", and therefore 3
j
h(r

j
)$ 1.

A. I should like to express my gratitude to Tom Wolff for his

invaluable advice.
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