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We investigate the quantum and thermal phase diagram of fermionic polar molecules loaded in a bilayer
trapping potential with perpendicular dipole moment. We use both a BCS-theory approach that is most reliable at
weak coupling and a strong-coupling approach that considers the two-body bound dimer states with one molecule
in each layer as the relevant degree of freedom. The system ground state is a Bose-Einstein condensate (BEC) of
dimer bound states in the low-density limit and a paired superfluid (BCS) state in the high-density limit. At zero
temperature, the intralayer repulsion is found to broaden the regime of BCS-BEC crossover and can potentially
induce system collapse through the softening of roton excitations. The BCS theory and the strongly coupled dimer
picture yield similar predictions for the parameters of the crossover regime. The Berezinskii-Kosterlitz-Thouless
transition temperature of the dimer superfluid is also calculated. The crossover can be driven by many-body
effects and is strongly affected by the intralayer interaction which was ignored in previous studies.
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I. INTRODUCTION

Recent progress in trapping and cooling of polar molecules
[1–6] has enabled studies of many-body systems with long-
range anisotropic dipole-dipole forces, where new exotic
phases might exist [7,8]. The attractive part of the interaction
can, however, lead to chemical reaction losses [6]. A way
to stabilize the system is to load molecules in a one- or two-
dimensional optical lattice, where interesting low-dimensional
physics has been predicted [9–17]. A prominent example is
polar fermions loaded in a bilayer system with dipoles oriented
perpendicular to the layer plane [18]. In the limit of high
density or weak interaction, the system is very similar to
conventional superconductors, and the ground state should
be a BCS state [with interactions as in Fig. 1(a)]. In the
dilute limit, it is known that the interlayer interaction always
supports a bound state [19–21], and the ground state should
be a Bose-Einstein condensate (BEC) of dimers [Fig. 1(b)].
As a result, the BCS-BEC crossover in this bilayer system
could be richer than in the usual atomic Fermi gas, where
crossover is driven by the two-body physics of a Feshbach
resonance [22]. Here it is driven by many-body effects which
depend not only on the interaction strength but also on the
density. Furthermore, the intralayer repulsion can cause roton
softening and/or Wigner crystallization in the high-density
limit [15–17]. Therefore, a many-body theory including both
intra- and interlayer interactions is not only of quantitative
interest but also qualitatively important.

In this paper, we study the quantum and thermal phase
diagrams of fermionic polar molecules loaded in a bilayer
system including both intra- and interlayer interaction. The
quantum phase diagram is shown in Fig. 1(c). BCS (BEC)
ground states are found in the limit of weak (strong) interaction
and large (small) density. In between, we have the crossover
regime (crossover I), which can be determined by the chemical

potential calculated from many-body theories in the different
limits (see below). When intralayer repulsion is neglected,
the crossover region (crossover II) moves to lower interaction
strength. In addition, intralayer interactions could perhaps
give rise to a roton instability at large density and strong
interaction, although further analysis beyond the scope of
this work is needed. We also determine the Berezinskii-
Kosterlitz-Thouless (BKT) critical temperature [23,24] in the
strongly coupled regime, including the effective interaction
of the dimers. The maximum critical temperature obtained
is one-tenth of the Fermi energy and should therefore be
achievable in experimental setups in the near future.

We note that two other recent studies have considered a
system similar to the one studied here. The paper by Pikovski
et al. [25] considers the BCS and BEC phases based on
BCS theory at both zero and finite temperature. However,
these authors do not consider the full effect of the intralayer
interaction. When we neglect the intralayer interaction, our
results are consistent with those of Ref. [25]. A related study
by Baranov et al. [26] addresses the critical temperature
for the superfluid phase in the weak-coupling limit, taking
particle-hole correlations also into account. In contrast, here
we consider the finite-temperature phase diagram from the
strong-coupling limit. Extrapolation of our results to the
parameter regime of Ref. [26] would exceed the boundaries of
our approximations, and the current study should be viewed
as complementary to Ref. [26].

Our model and the assumptions we use are described Sec. II.
In Sec. III, we discuss the case of zero temperature and the role
of intralayer interactions in the BCS-BEC crossover. This is
achieved by considering the physics from both a weak- and a
strong-coupling point of view. The two approaches are shown
to yield consistent results. We proceed to discuss the finite-
temperature phase diagram in Sec. IV. Here we calculate the
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FIG. 1. (Color online) Schematic of a few particles in a bilayer
with (a) inter- (V1) and intralayer (V0) interactions in the BCS limit and
(b) the effective interaction (Veff ) between the dimers in the BEC limit
(see text). (c) Quantum phase diagram for a bilayer with fermionic
polar molecules in the interaction-density plane. Interactions are
characterized by U = mD2/h̄2d and by kF d , where m, D, d , and
kF are respectively the molecular mass, dipole moment, interlayer
distance, and Fermi momentum. The crossover I region includes the
effect of intralayer interactions, while the crossover II region does
not. In the upper right-hand corner we speculate that the system
could potentially display a roton instability as discussed in the text.

critical temperature for the superfluid phase within mean-field
theory and using the universal relation for the BKT transition
temperature. Section V contains a summary, a discussion of
experimental parameters to realize the predicted phases and an
outlook for future work.

II. MODEL

The Hamiltonian for polar molecules in the
bilayer system is given by H = ∑

kσ εkc
†
k,σ ck,σ +

1
2�

∑
qkk′,σσ ′ Vσσ ′(q)c†k+q,σ c

†
k′−q,σ ′ck′,σ ′ck,σ , where � is

the area of the layer plane, εk = h̄2k2/2m, and σ = ± is
the layer index. V+− = V−+ = V1 denotes the interlayer
interaction and V++ = V−− = V0 is the intralayer one. Here
we neglect interlayer tunneling. We assume occupation of
only the ground state in the transverse direction so that the
transverse degree of freedom is a simple Gaussian that can
be integrated out. This yields V0(q) = 8πD2

3
√

2πW
[1 − 3

2F (|q|)]
and V1(q) → −2πD2|q|e−|q|d as W/d → 0. Here q
is the in-plane momentum, D is the dipole moment,
W and d the layer width and interlayer spacing, and
F (q) = √

π/2Wq[1 − Erf(Wq/
√

2)]eq2W 2/2 with Erf(x)
the error function. The interlayer interaction is exact in the
strict two-dimensional (2D) limit (W � d), but we find it is
accurate enough (<10%) at W = 0.2d, which is the value

used throughout. In the weak-interaction limit, the intralayer
repulsion should renormalize the single-particle dispersion as
in Fermi-liquid theory. If the layer index is treated as a spin
degree of freedom, the gap equation is

�k = − 1

�

∑
q

V1(k − q)�q

2Eq
tanh

(
Eq

2kBT

)
, (1)

where Eq =
√

ξ 2
q + |�q |2 is the quasiparticle dispersion,

and ξq ≡ εq + �(q) − μBCS. The self-energy �(q) in the
Hartree-Fock approximation is [27] �(k) = 1

2�

∑
q[V0(0) −

V0(k − q)][1 − ξq

Eq
tanh(Eq/2kBT )]. To access the crossover

regime, the chemical potential μBCS must be determined
self-consistently via the density equation

n = 1

2�

∑
q

[
1 − ξq

Eq
tanh

(
Eq

2kBT

)]
. (2)

We use the first Born approximation (FBA) with a realistic
finite layer width for both intra- and interlayer interactions
in Eq. (1). The exponentially decreasing shape of V1(q)
means that use of the renormalized gap equations or the
FBA yields similar results as noted already in Ref. [25].
The FBA is generally poor at strong coupling. However, since
the crossover takes place at low density, we treat the intralayer
in a weak-coupling sense in the current work. Inclusion of
higher-order terms will be considered in future work.

Since the interlayer interaction V1 is attractive at short
distance, the dominant gap is s wave. Therefore, for simplicity,
we neglect higher-partial-wave components and calculate
�k = �|k| from Eq. (1) by iteration. In Fig. 2(a), we show
�k/�0 for different values of the dimensionless coupling
U = mD2/h̄2d with kF d =

√
4πnd2 = 0.4. When U is small,

the maximum of �(k) is at k/kF = 2.5, which is where V1(k)
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FIG. 2. (Color online) (a) Normalized gap �k/�0 as a function
of k/kF at kF d = 0.4 and U = 1 (solid) and U = 5 (dashed).
(b) Temperature dependence of �0(T )/EF as a function of T/TF for
kF d = 0.4 (EF = 0.16E0). (c) BCS critical temperature as a function
of kF d at U = 2 in units of E0 = h̄2/2md2. (d) Ratio of the roton
wavelength λr at the instability to the dimer size lB as a function of
kF d .
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is most attractive. When U is larger, the intralayer interaction
renormalizes the single-particle dispersion; the structure of �k

disappears and the maximum is at k = 0. In Fig. 2(b) we show
�0(T )/EF as a function of T/TF , where EF and TF are the
Fermi energy and temperature.

III. ZERO-TEMPERATURE RESULTS:
INTRALAYER-INTERACTION EFFECTS

ON THE BCS-BEC CROSSOVER

When the density is reduced, the ground state is expected to
be a dimer BEC. Within BCS theory, this regime can be defined
by having a negative chemical potential (μBCS < 0). From
Eq. (2), we can determine the μBCS = 0 boundary as shown in
Fig. 1(c). The two solid lines that bound the two crossover
regions are calculated by including (μBCS) and neglecting
(μ0

BCS) the intralayer repulsion respectively. As expected, the
repulsion strongly suppresses the μBCS < 0 region, and for
densities larger than a critical value of kF d ∼ 0.77, μBCS is
positive for any U . We always find a μ0

BCS < 0 region when
the intralayer interaction is neglected. This shows that the
intralayer interaction brings not only quantitative contributions
but also qualitative and important changes of the quantum
phase diagram. The effect of intralayer repulsion on the
crossover physics can also be seen in the transition temperature
Tc as shown in Fig. 2(c). It has a maximum at kF d ∼ 1, similar
to crossover in a quasi-2D superconductor [28]. In contrast to
BCS results for Fermi gases with short-range interaction, the
decrease of Tc at high density is caused by the long-range
intralayer repulsion.

In order to investigate the many-body physics of the BEC
limit (i.e., the strong-interaction or low-density limit) in more
detail, we go beyond BCS theory, which is based on Fermi-
liquid theory at high density. Starting from the extremely dilute
limit, the bound dimer is the main constituent with binding
energy EB . For small density, we neglect the intralayer term but
include the Fermi pressure in the chemical potential: μ0

BEC =
EF − EB/2, where EB is obtained numerically [19–21]. We
define the crossover regime (crossover II) as the region
bounded by μ0

BCS = 0 and μ0
BEC = 0, the latter given by the

line with triangles in Fig. 1(c). The crossover II region is
quite narrow, which indicates that the BCS theory and the
strong-coupling results are very similar. The expression for
μ0

BCS given above holds exactly for zero-range interactions
[29] and indicates that the crossover happens when the dimer
size becomes comparable to the interparticle distance. While
the interlayer dipole interaction behaves similar to a zero-
range interaction, the intralayer dimer-dimer interaction can
have significant effects on μBEC as we now demonstrate by
deriving an effective interaction between dimers. We note that
a recent Monte Carlo study of the BCS-BEC crossover in two
dimensions also finds that, in the BEC limit, the dimer-dimer
and atom-dimer interactions are important corrections that
are not taken into account in the usual BCS theory without
self-energy corrections [30].

The coordinates of the four molecules are denoted by
r1, . . . ,r4 as shown in Fig. 1(b), where (r1,r2) are for the
left dimer and (r3,r4) for the right dimer. We are interested
in a deep bound state, where the dimer size is smaller than
the interdimer distance, i.e., |ρ| � |r|,|r ′|, where ρ = (r1 +

r2)/2 − (r3 + r4)/2 is the interdimer distance and r = r1 −
r2 and r ′ = r3 − r4 are the relative coordinates in each dimer.
Straighforward algebra and integration over the dimer bound-
state wave function φ(r) yield the effective dimer-dimer inter-
action Veff(ρ) = ∫

d r d r ′ |φ(r)|2|φ(r ′)|2 ∑
s=±1,α=0,1 Vα(ρ +

srα), where r0,1 ≡ (r ∓ r ′)/2. In the strong-interaction
and dilute-density limit, we can approximate φ(r) by a
Gaussian profile: φ(r) = (lB

√
π )−1 exp(−|r|2/2l2

B), where

lB =
√

2h̄2/mEB is the radius of the dimer bound state. As
a result, Veff has the following simple Fourier transform:

Veff(k) = [2V1(k) + 2V0(k)] exp
( − |k|2l2

B/8
)
. (3)

The Gaussian approximation for φ(r) fails for U � 2; how-
ever, we have checked that our results are qualitatively
unchanged if the exact solution is used [31]. Notice that Veff

takes the strong interlayer interaction into account through
the dimer wave function. The FBA is used for the intralayer
term, which is reasonable since the crossover happens at low
density. For the roton instability, the FBA was used in quasi-2D
studies of dipolar bosons [32,33], and we expect it to remain
a fair approximation at larger densities as well. We note that
dipolar interactions are different from short- or zero-range
interactions. Zero-range interactions in 2D always allow a
two-body dimer bound state [29], and a state of four bosons
will also be bound [34]. This result is different from that in 3D,
where the interaction must be sufficiently attractive to produce
bound states. In the current setup, the dimer-dimer system is
unbound [35].

The effective interaction has the property that Veff(0) is
nonzero due to the intralayer term. However, the molecules are
fermionic, and the Fock exchange contribution could cancel
this term as is the case with true short-range interactions in
interacting single-component Fermi gases. However, Veff(q)
also has large contributions from qd > 0, and this should have
an influence on the phase diagram. This is supported by recent
studies of the density-wave instability where the effect of
exchange is found to be very large, shifting the instability
into the strong-coupling regime [36–40]. The importance
of exchange effects has also been discussed in relation to
ferroeletricity with polar molecules [41]. Here we estimate the
effects in the bosonic dimer limit by including the intralayer
potential through Veff(0).

Using Veff, the chemical potential in the BEC limit can
be estimated as μBEC = nVeff(0)/2 − EB/2 (we neglect the
Fermi pressure, which is much smaller than the interaction
energy for strong interactions). In Fig. 1(c), the solid line with
crosses is given by μBEC = 0 and is the upper bound of the
crossover regime including intralayer interaction (crossover
I). Notice in particular that the BEC region shrinks to lower
density when the intralayer interaction is included, and there is
no dimer condensate for kF d � 0.42. The ratio of interparticle
distance to dimer size is 5 or more along the μBCS = 0 and
μBEC = 0 lines. Without intralayer interaction the ratio is
around 2.5, again demonstrating how the crossover physics is
strongly modified by the intralayer term. We have estimate the
chemical potential from both BCS and BEC limits, giving the
bounds of the crossover regime with and without the intralayer
interaction. Our results indicate that, in a realistic experiment,
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the intralayer repulsion can significantly affect the regime
where a dimer condensate is observable.

From the effective interaction between dimers,
Veff, we can also calculate the dispersion h̄ωd (k) =√

εk/2[εk/2 + 2nVeff(k)] of the collective Bogoliubov mode
of a dimer superfluid, in analogy to the case of dipolar
bosons [33]. With increasing U we find roton softening
around kd = 2π , which corresponds to a wavelength of
λr = 2π/k ∼ d. This softening leads to system collapse in
the high-density and strong-interaction regime, as shown in
Fig. 1(c). To investigate the nature of the instability, we plot
λr/ lB in Fig. 2(d) and observe that λr is more than a factor of
2 larger than lB for all densities. This implies that, at least in
the low-density limit, it is a many-body effect.

The roton analysis assumes a well-defined dimer picture.
We find the instability in the upper right-hand corner of
Fig. 1(c), i.e., at higher densities and large U . While the dimer
picture should prevail for large U , the higher densities imply
that some fermionic nature could perhaps arise. A similar
effect should arise in a fermionic picture but it is not easily
calculated since fluctuations beyond BCS theory are needed.
So at this point the findings for the roton instability remain
speculative. This is an interesting topic for future work. We
note that density waves in a single layer with fermionic polar
molecules have been predicted recently [42,43]. A rough
estimate indicates that the roton instability lies inside the
region where a density wave in single layers is predicted.
However, the authors of Refs. [42,43] neglect the Fock
contributions, which are expected to be large [36–40]. The
exact region of the density-wave instability is therefore not yet
known. In any case, we expect the system to be unstable in
the upper right part of the zero-temperature phase diagram of
Fig. 1.

IV. FINITE-TEMPERATURE RESULTS:
INTRALAYER-INTERACTION EFFECTS

ON THE CRITICAL TEMPERATURE

We now investigate the finite-temperature phase diagram.
In the BCS limit, we can use Eq. (1) to obtain the transition
temperature Tc as shown by the dashed line in Fig. 3. We
note that the intralayer interaction has very little influence
on Tc at kF d = 0.4. It is known that, in the weak-interaction
limit, Tc is very close to the true transition temperature in
a full BKT theory [44]. However, this calculation fails in the
strong-interaction or dilute limit. At strong coupling, we obtain
the BKT transition temperature from the universal relation
kBTBKT = h̄2πns(TBKT)/2m, where ns(T ) is the superfluid
density at temperature T [23,24]. According to Landau’s two-
fluid model, we have ns(T ) = n − nn(T ), with normal-fluid
density given by nn(T ) = h̄2

16mkBT

∫
d2q

(2π)2 [ q

sinh[ωd (q)/2kBT ] ]
2 [45].

In Fig. 3 we show TBKT of a dimer superfluid as a function of U

for kF d = 0.4 (solid black line). The dimer result differs from
the BCS theory prediction in the weak-coupling limit, while it
becomes saturated at TBKT = 0.125TF for large U . In Ref. [25],
Tc and TBKT was calculated from the BCS superfluid state. For
small U we find the same result for Tc. For dipolar bosons,
the authors of Ref. [46] find TBKT ∼ 0.1TF for all values of U

shown in Fig. 3. In order to compare to that study we need to
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FIG. 3. (Color online) Transition temperature (TBKT, solid black
line) as a function of interaction strength for kF d = 0.4. BCS result
(Tc, dashed blue line) is shown for comparison. The dashed vertical
line marks the position of μBCS = 0 [see Fig. 1(c)].

assume point dimers with twice the dipole moment, which is of
course not the case for small U , where TBKT is reduced as the
dimer size grows. Our strong-coupling dimer approach to the
finite-temperature physics can be considered complementary
to both Refs. [25,46]. The good agreement at intermediate and
large U with the other approaches provides support that we
capture the essential physics using the effective interaction
between dimers.

V. DISCUSSION

We have studied fermionic polar molecules in a bilayer with
perpendicularly polarized dipole moments. As the density and
dipole strength vary, an analog (but with different physics)
of the celebrated BCS-BEC crossover is predicted. We find
that the intralayer repulsion (and dimer-dimer interaction) is
crucial quantitatively and also to some extend qualitatively:
It shrinks the region of dimer condensation so that no dimer
state is expected when the density is larger than a critical value,
and it also causes a roton instability in the high-density and
strong-interaction regime. Our work is thus important for the
study of BCS-BEC crossover physics in 2D systems, and our
results should be observable within the parameter regime of
near-future experiments.

It is worth stressing that our study considers the physics
of the bilayer with fermionic polar molecules from different
points of view. The BCS theory is usally more reliable in
the weak-coupling regime, but can be extended into the
crossover regime by solving the gap and number equations
self-consistently. As the bilayer setup will always have a
two-body bound state with one molecule in each layer, it is
reasonable to consider these dimers as the relevant degree of
freedom in the strongly coupled regime. The results presented
above indicate that the two approaches yield consistent
results, with or without inclusion of the repulsive intralayer
interaction.
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The crystalline phases [15–17] are also ground-state
candidates due to the intralayer repulsion. For W/d = 0.2
used in our calculations, these phases could appear below
the roton instability region in Fig. 1. The finite extent of
the dimers is, however, still a concern, and further work
is needed to determine the crystal phases in the bilayer
setup.

In order to detect the phases a number of techniques
could be applied. Dimerization in the layers should be
detectable by Bragg scattering [47] or in situ nondemolition
detection [48,49], whereas rf spectroscopy can probe the
gap. To probe the finite-temperature physics, one can detect
the associated vortices by matter-wave heteredyning [50]. To
estimate parameters for relevant systems, we take d = 0.5 μm,
which yields U = 1.22 for KRb molecules at D = 0.566 D
and U = 4.15 for LiCs at D = 1.0 D (the permanent dipole
moment of this molecule in the ground state is about D = 5.4
D [51]). For densities n = 105–108 cm−2 we have kF d =
0.06–1.8. The critical density to reach μBCS < 0 is about
n ∼ 0.2 × 108 cm−2, whereas the dimer BEC requires n �
0.6 × 107 cm−2. Unfortunately, as TF = E0(kF d)2/kB this
means that extremely low temperatures (�1 nK) are required
to reach TBKT.

Interesting directions for future work include investigation
of more than two layers or tilting of the dipoles with respect
to the plane. With dipoles that are no longer perpendicular,
one can still show that a two-body bound dimer will be
present for any value of the dipole moment [52], although the
dimer binding energy is reduced [53]. In the single-layer case,
p-wave superfluidity can occur for an extended range of tilting
angles [11], and we expect similar effects for a bilayer. This
setup can be explored with the same methods used here. In
a setting with multiple layers, more phases should be expected,
such as coherent density waves [36], pairing [47], and bound
states with more than two molecules [35,54].
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