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at the surface in figure 5 ( d ) ,  it is interesting to note that the sub-surface flow still retains 
its initial direction. From Stage V on (figure 5e) ,  the direction of the surface flow 
complies again with that of the sub-surface flow. At Stage VI, the lower core of the 
vortex ring rises toward the free surface. A similar sequence of surface-velocity fields 
marks the major stages for the semi-clean case. 

3.4. Surface-normal and surface-parallel uorticity jields 
Figure 6 shows the simultaneous temporal and spatial evolution of the vorticity fields 
that correspond to the velocity fields of figure 5.  Owing to the symmetry of the flow 
field at the surface, only the half-plane I’ < 0 is shown. During Stage I (figure 6a) ,  the 
first appearance of a closed surface-normal vorticity contour becomes visible. Between 
Stages 111 and IV, a tail pattern appears upstream of the connected vortex which 
essentially coincides with the merging of the stagnation regions SI and S2. Eventually, 
the tail pattern grows and amalgamates with the initial vortex and leads to the 
formation of a larger vortical region at the surface. 

The vorticity fields in the plane of symmetry indicate the approach and gradual 
elongation of the upper core of the vortex ring. It is important to note that the first 
appearance of surface-normal vorticity during Stage 1 occurs off the plane of symmetry 
and before the forward tip of the vortex reaches the free surface. The location of the 
surface-normal vorticity is above the region where the vorticity contours in the 
symmetry plane become parallel to the free surface (figure 6a) .  This interesting 
behaviour demonstrates that the connection process does not occur in the forward tip 
region, but in the side regions of the approaching vortex. The induced velocity field of 
the surface-normal vorticity is opposite to that of the sub-surface flow, which results 
in a major reduction of the velocity magnitude and the subsequent flow reversal in the 
region between S1 and S2 at the free surface. This observation is supported by the 
velocity fields at Stages 111-V (figure 5c-e) where the flow reversal starts at the surface 
and subsequently propagates into the bulk until the whole tip region changes its flow 
direction. 

A very noticeable feature in the plane of symmetry is the formation of strong 
vorticity-gradient regions between the upper core of the vortex ring and the free 
surface. At Stages I and I1 (figure 6 a ,  b), these regions can be identified by the 
concentrated vorticity contours. During Stage I1 I ,  the strong gradients disappear, 
while at Stage IV, they reappear again. During the completion of the connection 
process between Stages V and VI, the strong gradients close to the surface disappear. 
The observed process is an indication of the advection of the upper-core vorticity field 
toward the surface and its simultaneous removal at the surface. 

For the semi-clean case, figures 7 and 8 show the evolution of the vorticity field at 
the surface and in the plane of symmetry. As in the clean case, figure 7(a:f) depicts a 
similar evolution of the dynamics of the stagnation regions and the vorticity field. 
Figure 8 (a-e) indicates the existence of a surface-parallel secondary vortex with 
clockwise vorticity upstream of the upper core of the vortex ring. In figure 6 ( a ,  b), a 
similar, but much weaker secondary vortex can also be observed in the clean case. 
Similar to the clean case, Stages I1 and III (figure 8 a , b )  indicate a compression of the 
vorticity contours which results in the formation of strong vorticity-gradient regions 
close to the surface. At Stage VI, these vorticity gradients disappear. 

FIGURE 5.  Results of the simultaneous velocity field measurements a t  the free surface and in the plane 
of symmetry z = 0 from the clean interaction case. (u) Stage I ,  t = 4.3 s;  ( b )  Stage 11, I = 4.6 s ;  (c) 
Stage 111. t = 4.7 s; ( d )  Stage IV, t = 5.0 s ;  ( e )  Stage V, f = 5.3 s; ( , f )  Stage VI, t = 8.6 s. 
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FIGURE 6. For caption see facing page 
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4. Vorticity and vorticity flux at the free surface 
The results in 93 showed that, as the vortex ring approaches the free surface, its 

vorticity field in the symmetry plane weakens, while the surface-normal vorticity gains 
strength at the surface. The disappearance of surface-parallel vorticity from the 
symmetry plane indicates the disconnection process, while the appearance of surface- 
normal vorticity is an indication of the connection of the vortex ring to the free surface. 

In this section, some analytical concepts are developed in order to describe and 
correlate the observed events at the free surface and in the plane of symmetry. The role 
of the strong vorticity-gradient regions, the dynamics of their removal, and the reasons 
for the existence of a secondary vortex in the clean and semi-clean case are discussed 
in detail. In conjunction with the experimental data, the analytical concepts are used 
to describe the evolution of the total circulation, and the condition and flux of vorticity 
at the surface. 

4.1 . Free-surfuce Lwrticitx condition 
The issue of vorticity generation and vorticity flux at a free surface has only recently 
received recognition through the works of Lugt (1987, 1988), Lundgren (1988), Gharib 
et al. (1994) and Rood (1994a, h, 1995). Based on those investigations, the surface flux 
and boundary conditions are derived in the Appendix tjA.2. In general, the motion of 
the free surface is governed by the unsteady Navier-Stokes equation (Rood 1995): 

?U v -+-+gl. - - - + u u x - v v x o .  (; :: "j - c't 

where u = ( u , ~ ,  w )  and w = ( m ) , ( o y , w z )  are the velocity and vorticity vectors in a 
Cartesian coordinate system, p is the pressure, p is the density and g is the gravitational 
acceleration. 

The initial surface motion is induced by the irrotational velocity field of the 
approaching vortex ring. Therefore, it is reasonable to assume that the vorticity is zero 
and stays negligible during that initial phase (i.e. up to Stage I in our experiments). 
Therefore, the vector products on the right-hand side are negligible, and equation (1) 
can be integrated along the constant-pressure surface to obtain an expression for the 
surface elevation : 

According to equation (2) and the schematic in figure 9, in the area downstream of 
the vortex (stagnation region SI), the fluid starts to accelerate in the negative x- 
direction and, therefore, rises due to the positive contribution of the acceleration 
integral. In this region, the free surface is characterized by negative surface velocities 
and a positive radius of the curvature. Upstream of the vortex, the velocity increases 
and the acceleration decreases. Therefore, the second term in equation (2) dominates 
and causes a trough at the surface which is characterized by a negative radius of 
curvature. As figure 9 shows, the change of the surface curvature between the 
stagnation regions indicates the existence of an inflection point (marked by I). 

According to the Appendix 9A.2 and the schematic in figure 15(h), the surface- 

FIGURE 6. Simultaneous vorticity field of the clean interaction case obtained from the velocity fields 
presented in figure 5. vorticity contours: (o,,,, = ~ ~ ~ 0 . 5  s I ,  A ~ O ~ ,  = A(,)? = 0.5 s l .  ( ~ ~ f )  Stages I-VI, 
times as in figure 5.  
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FIGURE 9. Schematic of the various vorticity conditions at the free surface due to the approaching 
vortex ring, the subsequent surface deformation, and the formation of a secondary vortex. Regions 
with high density of surface contaminations (i.e. relatively small surface tension) are indicated by 
thick lines. 
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parallel vorticity component w,  at the free surface can be obtained in a local two- 
dimensional curvilinear coordinate system : 

where 7,ir is the shear stress imposed by the air on the surface, g is the surface tension, 
R, is the local radius of curvature, and us and u, are the surface-parallel and surface- 
normal velocity components, respectively. Equation (3) defines the boundary condition 
and possible sources of surface-parallel vorticity at the surface. However, the existence 
of these sources does not necessarily imply that surface-parallel vorticity would flux 
into the body of motion. 

In the absence of any strong air motion, the shear stress imposed by air on water can 
be neglected (i.e. 7,ir = 0). The combined effects of the third and fourth terms are 
manifested as unsteady changes of the surface slope (see the discussion in the Appendix, 
5A.2 and equation (A 9)). It is therefore important to note that the free-surface 
vorticity condition can change during the approach to the vortex ring according to the 
evolution of the surface-deformation field. 

The irrotational velocity field of the approaching vortex ring can redistribute the 
surface contaminants by transporting clean fluid from the bulk towards the surface. 
The latter results in the generation of surface-tension gradients. In the schematic of 
figure 9, regions with a high density of surface contaminants are indicated by a thick 
line. 

By inspecting the schematic in conjunction with equation (3), one can identify 
regions that can possess a positive or negative vorticity condition near the surface. In 
the region between S1 and I, where S l  is assumed to be close to the maximum height 
of the surface, the radius of curvature is positive, and the surface velocity is negative. 
Therefore, the term -u,/R is positive, which indicates the condition of positive 
vorticity in this region. In the same region, the surface-tension gradient acr/as is 
negative and, therefore, the term - l/,u(a~/c?s) is positive which also results in the 
condition of positive vorticity at the surface. Upstream of the inflection point, the 
radius of curvature is negative and the terms -u,/R and - l/,u@cr/as) are negative 
which supports the existence of negative vorticity near the surface. The role of the term 
&,/as can be clarified by inspecting the surface deformation induced by the 
approaching tip of the vortex ring in figure 9. Under these conditions, one can 
conjecture that, between S1 and I, the term au,/as is positive and, between I and S2, 
it is negative. Consequently, the contribution of this term supports the previously 
described surface condition of positive vorticity in the region between S1 and I and 
negative vorticity in the region between I and S2. 

4.2. Flux of vorticity at the free surface 
According to Lugt (1988) and Rood (1995), the viscous flux of surface-parallel vorticity 
through the surface can be derived in a two-dimensional curvilinear coordinate system 
(see the Appendix 5A.3) and results in 

where w, and u, are the surface-parallel vorticity and velocity components, p is the 
pressure at the surface, and 0 is the angle between the surface and the gravitational 
acceleration. Obviously, any analysis based on equation (4) can only be made in a local 
sense, since the surface is free to make vertical excursions and change its shape. 



Vortex disconnection and connt’ction at N free 5iirfuce 75 

FIGURE 10. Vorticity-flux terms and net vorticity flux on the centreline Y at various stages during 
the clean interaction. 

A positive value of v(C?~,/(?r) indicates an inward flux (in the negative r-direction) of 
positive vorticity, while a negative value indicates an outward flux (in the positive r- 
direction) of positive vorticity. Assuming a constant-pressure surface (c‘p/(?s = 0) and 
small surface slopes (gcos 0 z 0), the integration of equation (4) along s from - 00 to 
+ 00 yields that the net surface-parallel vorticity contribution only arises from the 
temporal acceleration of the surface flow, i.e. 

where us = 0 as s + -t oc for all times. 
However, in order to understand the local dynamics of vorticity near the surface, the 

temporal and advective acceleration terms must be taken into account. Figure 10 
shows the resulting temporal and advective acceleration terms -c‘u,/c?t and - u,c?u,/?s 
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on the centreline for various stages of the free-surface interaction. At Stage I (figure 
10a), the region of positive vorticity in the schematic of figure 9 is dominated by a net 
inward flux of positive vorticity. This flux term reaches a maximum in the mid-region 
between Sl and I and decreases to zero at the inflection point I. The initial inward flux 
of positive vorticity in the region between S1 and I should result in the early appearance 
of positive vorticity very close to the free surface. The limited resolving power of the 
DPIV system and the difficulties involved with the near-surface illumination did not 
allow us to detect this vorticity region. However, since the positive vorticity region 
interacts with the same-sign vorticity of the upper core of the vortex ring, the vorticity 
contours should spread toward the free surface. This spreading can be seen clearly in 
figure 6(b). 

As figure 10(a) shows, a net inward flux of negative vorticity dominates the region 
upstream of the inflection point, where the condition of negative vorticity already exists 
due to the surface deformation and the surface-tension gradient (see $4.1). According 
to the schematics in figure 9, this flux causes an accumulation of negative vorticity in 
the sub-surface region which leads to the self-induced roll-up of the observed 
secondary vortex (Kaden 1931). These features are expected to be more prominent in 
flows with higher Froude numbers (i.e. larger surface deformations) such as numerically 
simulated by Ohring & Lugt (1995), for example. 

Between Stages I1 and IV (figure lob, c), when the surface velocities between S1 and 
S2 start to decrease and eventually reverse, the distribution of the net flux shifts to a 
negative value as the upper core of the vortex ring collides with the surface. Note that 
the net outward flux of positive vorticity is mainly due to the -au,/at term and not the 
-uU,au,/as term. During Stages I11 and IV, this flux is responsible for the removal of 
positive and surface-parallel vorticity from the sub-surface region between S1 and I. 
Therefore, it facilitates the subsequent removal of vorticity from the plane of symmetry 
that lies between the regions where the surface-normal vorticity was first observed to 
appear. Similarly, the inward flux of negative vorticity in the region between I and S2 
adds more to the existing negative vorticity and, therefore, accentuates the formation 
of the secondary vortex. 

4.3. The secondary vortex 
The existence of the secondary vortex can be seen clearly in the surface-parallel vorticity 
fields of the clean case (figure 6) and, with a much stronger appearance, in the semi- 
clean case in figure 8. As was discussed in $4.2, in the case of a clean and non- 
contaminated surface, and in the absence of any surface deformation, the secondary 
vortex cannot be formed. Owing to the curvature of the upper part of the vortex ring, 
the induced surface-velocity field will have a finite-size span during the early 
interaction. The finite-size region is clearly visible in the shadowgraph images of figure 
3 and suggests that the secondary vortex has a finite length with decreasing vorticity 
strength towards its ends. The diminishing vorticity magnitude in the end regions of the 
secondary vortex allows for a non-surface-normal termination of this vortex. 
Therefore, on the free surface, we should not expect the appearance of surface-normal 
vorticity due to the secondary vortex. 

4.4. Temporal evolution of the circulation at the surface 
In the present studies, the temporal evolution of the circulation in the bulk and at the 
free surface is used to demonstrate the connection process. Figure 11 shows the 
circulation that is lost by the upper core of the vortex ring and gained due to the 
connected vorticity at the free surface. In the clean and semi-clean flow cases, the loss 
of circulation in the plane of symmetry occurs at a similar rate. The initially slow decay 
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FIGURE 1 1. Temporal evolution of the circulation at the free surface and in the plane of 
symmetry 3 = 0 for the clean and semi-clean case. 

of the circulation is followed by a rapid loss and a subsequent asymptotic decay 
towards zero. In their numerical studies, Leighton & Swean (1991) report a similar gain 
and loss of vorticity at the free surface and in the plane of symmetry. 

In comparison to the semi-clean case, the gain of free-surface circulation in the clean 
case is characterized by a relatively steep slope and a slightly delayed appearance. The 
steeper slope suggests that the connection process in the clean case has a shorter time 
scale than in the semi-clean case. In both flow cases, the final level of circulation at the 
surface is the same and accounts for approximately 85 % of the initial circulation of the 
vortex ring. Figure I1  also shows that the evolution of the secondary vortex is 
characterized by a circulation maximum at the beginning and a rapid decay by the end 
of the connection process. 

4.5. Vortex connection timescale 
One of the intriguing features that Bernal & Kwon (1989) reported was the rapid 
nature of the connection process. In $4.2, it was shown that the main mechanism for 
the disconnection of the vortex ring near the surface is the rapid viscous flux of 
vorticity. From the evolution of the circulation in figure 11, the timescales for the 
disconnection and connection process can be observed to be similar, i.e. the time for 
the flux of surface-parallel vorticity out of the plane of symmetry approximately 
corresponds to the time that the circulation takes to reach a maximum value at the 
surface. For example, based on the slope of the loss and gain of circulation, the results 
in figure 11 suggest a disconnection timescale of 2.5 s and a connection timescale of 
2.2 s in the clean case. In the semi-clean case, the disconnection and connection 
timescales are similar at approximately 2 s and 2.5 s, respectively. 

In combination with the vorticity-flux equation (equation (4)), which is mainly 
applicable during the disconnection process and the outward flux of surface-parallel 
vorticity, the resulting disconnection timescale can be used to obtain an estimate for the 
timescale of the connection process. In $ 5 ,  we will conjecture on the underlying reasons 
for this close relation between the two timescales. 

With the assumption that only temporal surface accelerations are responsible for the 
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FIGURE 12. Surface-parallel vorticity and velocity profiles at t = 5.0 s: (a)  semi-clean case, 
(b)  clean case. 

connection process (see figure lob,  c and the discussion at the end of $4.2), an 
expression for the disconnection and connection timescales can be obtained from 
equation (4) in the form of 

where Au is the velocity difference and AwJAr is a best fit value for the vorticity 
distribution between the free surface and the location of the vorticity maximum in the 
plane of symmetry. 

In a first-order estimate, the vorticity gradient near the surface is approximated by 
an average value which introduces a lengthscale based on the local vorticity thickness. 
Figure 12 shows the near-surface velocity and vorticity profiles at  t = 5.0 s which 
corresponds to the point in time where the vortex ring is half-way through the 
disconnection and connection process (see figure 11). In the clean case, the maximum 
value of AwJAr is 17.5 cm s-l, and the corresponding velocity difference Au is 
0.4 cm s-I. Equation (6) gives a connection timescale of At z 2.3 s which is surprisingly 
close to the experimentally observed value of 2.2 s obtained from the evolution of the 
circulation in figure 11. In the semi-clean case, a similar estimate gives a connection 
timescale of At w 4.1 s which is larger than the observed value of 2.5 s, but close 
enough to be considered as a good first-order estimate. 

The relevant parameters in estimating the disconnection and connection time (1.e. 
Awz, Au, and Ar) strongly depend on the angle of approach, vorticity structure in the 
core region, and the Reynolds number of the flow. This is a vast parameter space that 
was not covered in our studies. However, the dependency on the angle of approach 
(Bernal & Kwon 1989) and the distribution of vorticity in the core region makes the 
possibility of finding a global scaling law slim. 

5. Kinematics and dynamics of the approaching vortex ring 
In $3.1, we mentioned that the generated vortex rings have a core to vortex-ring 

diameter ratio of approximately 0.6. This implies that the vortex rings in our 
experiments have a relatively thick core, and, therefore, their kinematics and dynamics 
cannot be modelled as single vortex filaments. As the vortex ring approaches the free 
surface, but is not yet close enough to be influenced by the surface deformation, the 
vorticity field in the plane of symmetry (figure 6 a )  suggests that the upper part of the 
vortex ring is staggered backward in the negative x-direction. A similar behaviour has 
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been reported for flow cases where two vortex rings approach each other at an oblique 
angle (Schatzle 1987). In our case, the initially non-deformed surface acts as a shear- 
free symmetry plane. According to Ashurst & Meiron (1987), this stretching action is 
due to the interaction of the vortex ring with its image vortex above the free surface 
(see figure 1 of Ashurst & Meiron). Zhang & Yue (1996), who recently simulated the 
interaction of a vortex ring with a free surface, report a similar behaviour. 

The strain field that is induced on this backward-staggered region by the velocity 
field of the vortex ring plays an important role in determining the mechanisms that are 
responsible for the connection process. Figure 13 shows a sequence of schematics of the 
approaching vortex ring and its interaction with the free surface. To justify the 
illustrated dynamics, we start by considering the regions where the top portion of the 
vortex ring bends downward away from the plane of symmetry and the surface. In 
figure 13 (b), those regions are identified as side regions. They possess surface-normal 
vorticity components in the bulk and, therefore, are the most plausible candidates to 
connect to the free surface first. This conjecture is supported by the numerical 
observations of Kida, Takaoka & Hussain (1989), who report the side regions as the 
primary connection sites of vortex rings that approach each other at  an oblique angle. 

To examine this conjecture, we apply the vorticity-transport equation and evaluate 
the various terms for the deformed vortex ring close to the free surface. In this analysis, 
viscous effects and effects of surface deformations are neglected; a local Cartesian 
coordinate system with the velocity vector u = (u, u, w) and the vorticity vector o = 
(w5, wv, wz)  is used. From the maternal change 

Dw 
Dt 
- _  - (o .V)u ,  (7) 
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FIGURE 14. Schematic of the strain rate and vorticity field during the initial approach of the 
vortex ring. 

the rate of change of the surface-normal vorticity vector (y-component) due to tilting 
is 

(8) 

According to figure 14, near the tip region of the vortex ring, the z-component of the 
vorticity vector is dominant (i.e. w, = O), while the y-component of the induced 
velocity field is symmetric about the plane of symmetry z = 0 (i.e. av/az = 0). 
Therefore, equation (8) yields - 

u w  2 = 0, 
Dt (9) 

and states that the tilting and subsequent connection of vortex filaments to the free 
surface cannot be expected to occur near the central tip region of the vortex ring. 

In the side region z < 0, w, and &/ax are both negative. Therefore, the tilting term 
w, av/ax is positive and contributes to the production of positive surface-normal 
vorticity (wy > 0). Regarding the tilting term w, av/az in the region z < 0, w, and av/az 
are both positive and also contribute to the production of a positive w,-component. 
Similarly, in the side region z > 0 and for both tilting terms, the vorticity and strain- 
field analysis results in the production of negative surface-normal vorticity (wy < 0). 
These results are consistent with the observations in $4 and figure 6, where the first 
appearance of surface-normal vorticity was observed to occur in the side regions. 

It is important to note that the free-surface condition of zero shear stress requires 
that the vortex filaments connect normal to the free surface (see the Appendix, §A. 1). 
The Helmholtz theorem requires that a vortex filament does not terminate in the bulk 
of the fluid, but rather extends to the boundaries. Therefore, any disconnected vortex 
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filament near the free surface is required to connect normal to the surface. Such an 
argument would apply in the region that bridges the surface-connected side regions. 
Owing to the removal of positive vorticity from the symmetry plane in this bridging 
region, disconnected vortex filaments connect to the free surface and add to the 
strength of the already connected vortices (Stages I1 to V in figures 6 and 13). This 
process explains the link between the loss of surface-parallel vorticity from the plane 
of symmetry and the gain of circulation at the surface. 

The appearance of the tail pattern in the surface-vorticity field during Stage TI1 
(figure 6c)  and its evolution can be attributed to the rapid forward motion of the 
stagnation region S2. This motion, which is due to the induced velocity field of the 
surface-normal vorticity in the side regions, can generate strong local surface-velocity 
gradients (u- and w-components). The rate of change of these gradients can be 
considered to be a source of surface-normal vorticity (Rood 1995). We observed the 
existence of those gradients in our experiments. However, owing to the required triple 
derivations and the inherent increase in the noise level, it is difficult to obtain reliable 
estimates of the surface-normal vorticity flux terms from the surface-velocity data. 

6. Concluding remarks 
The physical model described suggests that the connection of an approaching vortex 

ring to a free surface occurs in two steps. The first step involves the connection of the 
regions of the vortex ring that already possess components of surface-normal vorticity 
near the surface. We showed that the action of the local strain-rate field supports this 
early connection process. 

DPIV measurements show that the second step, which involves the disconnection of 
the connected regions of the vortex ring, is associated with a strong outward flux of 
vorticity from the central top region of the approaching vortex ring. Such removal of 
vorticity due to local surface decelerations facilities the connection of surface-normal 
vorticity to the surface, which is required by the kinematic condition imposed by the 
shear-free surface condition. The connection and disconnection timescales were 
estimated based on the local vorticity flux and the local viscous flow properties near the 
surface. The estimates agree very well with the measured values. It was shown that the 
approaching vortex is capable of generating a secondary vortex and that a less clean 
surface is capable of generating a stronger secondary vortex. While we commented on 
the subject of surface-normal vorticity flux through the surface, high-spatial- and 
temporal-resolution DPIV measurements must be conducted in order to properly 
address this issue. 

This work has been supported by the Office of Naval Research, ONR-URI grant 
N00014-92-5-1610. The authors would like to thank Dr Willert for his contributions 
during the initial processing of the DPIV data. The valuable discussions with Dr Rood 
and Dr Ashurst on the subject of vortex kinematics and vorticity flux have been 
essential to our presentations in the paper. 

Appendix 

A free surface can be distinguished from a no-slip, solid boundary by its inability to 
support shear and its ability to make free vertical excursions. A flat surface condition 
can be used to demonstrate the special condition that a vortex filament has to follow 

A. 1. Vorticity elements and free surface 
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FIGURE 15. (a)  Local Cartesian coordinate system. (b) Local curvilinear coordinate system. 

in order to connect to a free surface. The flat surface condition is proper when the 
radius of curvature approaches infinity. However, one can always think of local 
interactions where precise flat surface conditions with non-zero slope can be used. In 
a local Cartesian coordinate system with the velocity vector u = (u, v, w) (see figure 
15a), the vorticity vector is given by 

0 = (wzr wy, 4, 
with the components 

a w  av au a w  av au 
OJ =--- w = - - -  w = - - -  ay aZ3 y aZ ax’ * ax ay. 

Using the flat surface condition (v = const.) and the zero-shear-stress condition at the 
surface ( T ~ ~  = T~~ = 0), the following terms can be eliminated: av/az = av/ax = 
au/ay = aw/i3y = 0. This leaves only the w,-component of the vorticity vector re- 
maining at the flat free surface and forces vortex lines to terminate normal to the 
surface. In contrast, the no-slip wall only permits the existence of wall-parallel vorticity. 

The surface-normal termination of vortex lines applies only at the surface. 
Immediately below the surface, surface-parallel vorticity can exist without violating 
any surface condition. However, as a consequence of the kinematic condition, vortex 
filaments cannot terminate within the fluid, and disconnected filaments will have a 
tendency to connect normal to the nearby surface. 

A.2. Vorticity boundary conditions at a free surface 
As has already been shown by Lugt (1987, 1988), flow beneath a shear-free and curved 
surface produces surface-parallel vorticity at the interface. Both analyses treat only the 
steady case where the net-vorticity production below the surface remains zero. 
Following Lundgren (1988) and Gharib et al. (1994), we present the derivation of a 



Vortex disconnection tri i t l  cotiiicv~lioii lit 11 $YYJ surfuce 83 

more general expression for the boundary condition of surface-parallel vorticity in the 
unsteady flow case. Using a curvilinear coordinate system (see figure 15b), the analysis 
is performed for the two-dimensional flow case (i.e. the radius of curvature R, in the 
r ,  z-plane is infinite). 

The shear stress rrS on the surface has two components: (i) the stress T , ~ ~  imposed 
by the air on the liquid and (ii) the stress ?n/c's created by surface tension gradients: 

This interfacial shear stress is balanced by the stress on the fluid element below the 
surface : 

where u, and u,. are the surface-parallel and surface-normal velocity components and 
R,  is the local radius of curvature (Schlichting 1987). The corresponding vorticity 
component parallel to the boundary (i.e. the free surface here) is given by 

At the interface r = 0, the stresses balance and using equation (A 5 )  to replace the 
term c?u,/c?r yields the expression for the surface-parallel vorticity 

Equation (A 6) is the boundary condition for the contaminated and deformed surface 
and contains four sources of vorticity: (i) the shear force imposed by the adjoining 
medium which, in the case of air, is negligible; (ii) the force due to surface tension 
gradients; (iii) the curvature of the surface itself as already set forth by Lugt (1987); 
(iv) the vertical motion of the surface which has the characteristics of an unsteady term. 

It is interesting to note that, if the shape of the free surface is described by the 
function y = y/(x, I )  in two-dimensional Cartesian coordinates, the surface-normal 
velocity component and the surface-parallel vorticity component can be expressed as 

c?q 
i t '  

z ' = -  

and 

The term c?q/?s defines the one-dimensional slope S of the free surface (i.e. S = &~/2x), 
and therefore, equation (A 8) becomes 

A comparison of equations (A 6) and (A 9) shows that the combined effect of the last 
two terms in  equation (A 6) can be thought of as being equivalent to an unsteady 
change of the li.ce-surfi.tce slope. 
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A.3. Vorticitypux at a free surface 
Rood (19944 has presented a rigorous approach to extend Lugt's (1987) formulation 
to the case of unsteady vorticity flux at a free surface. Here, we present a similar though 
less rigorous derivation by using the continuity and momentum equation in a two- 
dimensional curvilinear coordinate system (figure 15 b) : 

R, au, au, u 
+-+A = 0, ___ 

R,+r as ar R,+r 

au, R, au au u,u, -+- us>+ u++- 
at R,+r as ar R,+r 

+ 2R, -+ au, R,r -__- au,aR, Rsur !!.!$) (A 1 1 )  (R,+r)' as (R,+r)3 as as (R,+r)3 as ' 

where g is the gravitational acceleration and 0 is the local angle of the free surface to 
the gravitational vector. 

The viscous flux of surface-parallel vorticity (0,-component) is obtained by 
differentiating equation (A 5 )  with respect to r :  

In equation (A 12), the term R,/(R,+r)a2u,/i3sar can be substituted by the 
corresponding term of equation (A 10) which is first differentiated with respect to s. 
The substitution yields 

R; a2u, azu, 1 au, %-- - _ _ _ ~ _ _ _ _ _  
ar (R,+r)' i3s2 ar' R,+r ar 

aRs (A 13) 

The comparison of equation (A 13) with the momentum diffusion on the right hand 

US 2 ~ ,  au, R, au +-- (R, + r)' (R, + r)' X - ( R ,  + r)3 I' $-',I as' 
side of equation (A 1 1 )  yields the viscous flux of surface-parallel vorticity : 

With the expression for vorticity (equation (A 5))  

au u Rs aur 
0) = - - s - s  +-- ar R,+r R,+r as' 

equation (A 14) becomes 

At the surface, where r = 0 and u, = 0, the surface-parallel vorticity flux results from 
equation (A 15)  : 

(A 16a) 
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with the total head of the surface defined by 

H = ;u; +-+gscos P 0. (A 16b) 
P 

Equations (A 16) predict that any removal or introduction of surface-parallel vorticity 
through the interface is balanced by a change in the hydrodynamic head H and/or a 
local surface acceleration/deceleration. 
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