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ABSTRACT 
A new method for normalizing and quantizing images is presented. 
The method is based on calculating a local reference frame for the 
image gray levels. ”he levels of the reference frame are calculated 
using biased diffusions that are linked to the original image. The 
method is conceived to be integrated with sensing elements on the 
image plane of a camera. Its mathematical properties are analyzed 
and its performance is experimentally demonstrated. 

A circuital implementation has been designed, constructed and 
tested; it consists of a 20 nodes 1-D non-linear resistive grid. 
Experimental results are shown. 

1. INTRODUCTION 

Consider the image in Fig. 1. It has been acquired indoors with 
a high-end commercial camcorder. The gain of the image sensor 
of the camera has been set automatically so as to capture as well 
as possible both the brightly lit and the darker areas in the scene. 
Unfortunately, due to the limited dynamic range of the sensor a 
‘perfect’ gain setting is impossible: both the brighter and darker 
areas of the image are saturated. The human visual system solves 
this problem by allowing the gain to be different in different areas 
of the image: higher in regions of dim lighting and lower where 
the contrast is high. This way the information that is carried by the 
variations of contrast through the image is lost, however for the 
purpose of human image analyisi this appears to be irrelevant. In 
this paper we present a method of image contrast normalization that 
is built along similar lines. The contrast level is locally (implicitly) 
estimated and compensated for by a set of diffusive networks. The 
system that we propose may be implemented by means of simple 
electronic circuitry and may be embedded in the sensing circuitry 
of an electronic camera. A scheme presenting a different technical 
solution with the same functional characteristic has been previously 
proposed by Moore and collaborators [3]. 

The importance and difficulty of normalizing contrast in im- 
ages are well known. A number of computational schemes have 
been proposed for normalizing automatically the contrast in im- 
ages. The most popular are probably hisrogrum equulizurion and 
homomorphicfiltering (see any recent image processing textbook, 
e.g. [ 11, for a complete description). Histogram equalization con- 
sists in changing the colormap of the image with the monotonic 
transformation that transforms the histogram of the image gray 
levels into a constant. Homomorphic filtering is motivated by at- 
tributing all variations in image contrast to dishomogeneous light- 
ing conditions; if one makes the hypothesis that such dishomo- 
geneitits are lowpass. then they may be eliminated by highpass 
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Figure 1: 

filtering the log of the image since lighting contributes to the im- 
age as a multiplicative factor. Well-known difficulties with these 
techniques are that histogram equalization is too global and treats 
all arcas of the image equally, while the lowpass hypothesis un- 
derlying homomorphic filtering is often false. and ringiris pattems 
may be generated. A more detailed discussion of the prcls and cons 
of these and other classical contrast normalization techniques goes 
beyond the scope of this paper. 

2. CONTRAST ESTIMATION AND IMA(;E 
NORMALIZATION 

It is difficult to give a precise and synthetic definititm of what 
‘contrast normalization’ exactly means. One possible approach, 
quite common in engineering, consists of three steps (a) concen- 
trate one’s attention on a subset of all possible images, deally this 
is a subset that is representative of the more general class of inter- 
est and for which a clear dedefinition of normalization s possible, 
(b) develop a normalization algorithm for the chosen subset. (c) 
experiment with and asses the algorithm on the general class of 
images of interest. As our ‘working subclass’ we chocse here the 
set of piecewise constant signals with a finite number cif disconti- 
nuities that we will call ‘edges’ from now on. Since we wish to 
develop a local algorithm we must use a concept of “le’ X that 
will be a free parameter in the algorithm. The meaning ,af ‘contrast 
normalization’ is now easy to define: all isolated edps (i.e. fur- 
ther than one scale length from other edges ) should be considered 
significant, regardless their height, while edges which are close by 
( closer than one scale length ) bigger edges should be considered 
insignificant and normalized to a punitive smaller height. 
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call U the brightness function. We CM summarize the proper- 
ties that the normalization operation N(-) should have as follows: 

0 Causality: Edges of U should correspond to edges of N (U),  

and viceversa. 
0 Normalization: Uges after normalization should have 

height 5 1. In particular isolated edges of N(u) should 
have height= 1. 

0 Invariance to scaling in the codomain: N(cy - U) = 
sign(a)N(u). For a canstant and different from zero. 

0 Invariancetooffsek N ( u + a )  = N(u). Foraconstaut. 
0 Invariance to scaling in the domain: Calling NA (U(  .)) the 

namelizatia operator at a scale A, and 8 a positive scaling 
constant, then NA should be such that NA(U(:.))(Z) = 
N+(u(* ) ) (+ )  

0 Invariance to translations: 
N ( U ( *  - t))(.) = N(u(*))(s - t ) .  

2.1. Max-meen-min normalization 

The simplest way to build such a normahtion map is to define 
N ( . )  as: N ( u )  = where U,,, ( u-middle) is the average 
of U. and UT and UB (U-top, and u-bottom) the maximum and 
minimum of U( -) over the whole domain. It is easy to see that such 
a normahtion sathh? the first, third, and fourth criterion. 

For an image containing a single step edge this normalization 
would also satisfy the second criterion. In general this is not 
the case; the problem with this constant nomalization is that it 
preserves the ratio of the contrast of the edges throughout the 
image, while we would like it to be normalized to 1. 

If the maximum, minimum, and average are computed instead 
on neighbowhoods of size equal to the scale at which we are 
looking at the imagt the sbcond criterion can be satisfied. In other 
words UT = UT(Z). UM = UM(Z) and UB = UB(Z) have to be 
local maximum. average, and minimum. 

Not all methods to compute the three functions are good 
though: in UT(Z). UM(I) ~f UB(Z) w~ldin@oductedges 
in the normalized function N(u) violating the first requirement. 
In order not to introduce new “features” in the normalized image 
one has to ensure that UT(.). UM(.) or UB(.) are“smoother” than 
the features of U(-) one wants to detect. We will discuss next how 
to generate UT(Z), UM(X) or ug(z)  that do not violate the first 
requirement. 

Consider the functions US ( I) that minimize the following cost 
function : 

C(v) = asd+(u,v) + Psd-(u, v)  + AS(v) (1) 
where U is the function to be normalized. S(v)  measures the 

smoothness of v, A is a scale parameter determining the rela- 
tive weight of the smoothness term in the cost function ( big- 
ger X implies smaother minima of the cost function ), d+(u, v) 
and L(u, v) are the “distance?’ of U from v “from above” and 
“from below” i.e. are such that d+(u, v) + d-(u, v) = d(u, U), 
d( e,  .) being some distance in Lz and such that d+ (U, U) = d( U, w )  
and L ( u ,  U) = 0 on the intervals where U(.) > v(z), and that 
d-(u, v)  = d(u, U) and d+(u, v) = 0 on the intervals where 
U(.) < U(.). Notice that thechoice of d(., a )  detmnines uniquely 

For all positive values of a and P the m i m i “  can be com- 
d + ( ~ ,  V) and d-(u, U). 

puted solving be mesponding Euler equation. 

Call : 
0 UM the function minimizing the cost when as = 1 and 

UT the function minimizing the cost when as = 00 andPS = 

0 UB thefunctionminimizingthecostwhency~ = 1 andPS = 

These functions can be seen respectively as : 

UM the A-smooth function best approximating U, 

UT the A-smooth function best approximating U in the set 
T(u) of functions above U, i.e. functions U that satisfy 
v L U, 

0 UB the A-smooth function best approximating U in the set 
B(u) of functions below U ,  i.e. the functions v that satisfy 
v 5 U. 

We shall take these three functions as local avera ge, maximum 
and minimum. 

If the smoothness function is appropriate the rea lting normal- 
ization will satisfy the desired properties. In order to satisfy the 
third and fourth requirement the smoothness term nas to be the 
integral of the square of a linear differential operato .. and the dis- 
tance term has to depend only on the difference (U - v) and be 
linear on the positive and negative semilines. 

Take for example : S(v)  = s( %)*dz and d(u v) = J(U - 
v)’dz. The cost function is convex for all positive vdues of cy and 
/3 and it’s mimimiw can be computed solving the corresponding 
mer equation 

where f depends on the choice of cy and P. 

by simulating the diffusion-type equation: 

Ps = 1, 

1. 

00. 

0 = A * AU + f ( ~  - V) 

The solution of this kind of equation can be iteratively found 

av 1 _ -  - AV + - f ( ~  - V )  
at A 

where the choice of the function f will determir e the conver- 
c e n ~ e  to UM, UT. or US. 

More in detail: 
F o r a = @ =  1 :  

a v  1 - = AV + -(U - V) at A 

Fora = 00, andp = 1 : 

V r  at which ( U  - U)(.) < 0, and 

aVzatwhich(u-v)(z) > O  
Fora= I , a n d p = o o :  

a v  1 -(z) = AV(.) + -(U - U)(.) at A 

Vz at which (U - v)(r) > 0, and 
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2.3. Analysis 

Given a compact set Q C R” (the image plane) and a bounded 
functionu : Q 4 R(theimagedata)considerthe‘energy’function 
E defined on functions U : Q -+ R as follows: 

U 

--- 
U T  

Figure 2: The structure of a diffusive network composed of ideal 
diodes and resistors, computing the top and bottom functions. 

Vz at which (U - u) (z )  < 0 

resistor circuit shown in fig. 2. 

if the scale of the middle function U M  is equal or finer ( smaller ) 
than the scale of the top and bottom functions U T ,  and U B .  

This kind of diffusion can be performed by the simple diode- 

I t iShpktoVuifythatUT 2 U 2  U 8  andUT 2 U M  2 UB 

2.2. Local reference frame normalization 

In the previous section we have described a method for contrast 
normalization based on dividing the image by the difference of 
maximum and minimum. In this section we present a general- 
ization of that method based on computing a full local frame of 
reference for the gray level values of the image. 

Consider the cost function defined by Eq. (1). We have seen 
that by picking appropriate values for a and ,L3 (namely 1 and 00) 

we may obtain the mean, top and bottom functions (a formal proof 
is given in the next section). 

If instead of picking only three discrete set of values for a and 
p we may make a and p functions of a parameter -y so that when 
y = - 1 we have a ( y )  = 1 and P(y) = 00, with a monotonically 
non-decreasing and p non-increasing so that a(0) = 1, p(0) = 1 
and a( 1) = 00, p( 1) = 1. this way we may generate a continuum 
of smooth functions ranging from the ‘bottom’, through the ‘mean’ 
to the ‘top’ function. This family of functions U, (with U - I  = 
bottom, uo=mean and  top) willconstituteaframeofreference 
for the image v in the following way: 

Define y * ( r )  the value of y such that v(z) = u,(z);  we may 
define the normalized image to be: 

Naturally this intuitive idea has sense only if the functions u7 
are computable with a simple electrical network, are smooth and 
do not intersect, i.e. if uV1 (z) 2 q 2 ( z )  for Vz and V ~ I  2 7 2 .  In 
the next section we study a specific realization of the cost function 
that generates a family U, having the desired properties. Some of 
the proofs are sketchy - for a detailed version sec 141. 

E(u)  = AS(U) + d(u,u)  (3) 
where A E (0, m), E is the A-weighted sum of a ‘sm mthness’ 
term S which assigns higher energy to functions U that 7 ary a lot, 
and a ‘distance’ term d that assigns higher energy to fuictions U 

that are far from v. The definion of these functions b a d  on L2 
norms will be adopted here: 

S ( U )  = JIvU(z)12dz 

d ( U ,  u )  = 1 Iu(z) - u(s)12dz 

n 

(notice that to simplify the notation what we call ‘distaice’ is in 
fact the square of the usual L*-induced distance). 

Define the A-mean, the A-maximum, and the A-minimm of v 
as the as the functions p M m : Q - R that solve the ‘ollowing 
minimization problems: 

Definition 1 

p = argminE(u) 
M = argmin E(u)  

UYV 

m = argminE(u) (6) 
u<v 

Define the ‘-/-skewed parabola’ F,(.) for 7 E (-1 1) in the 
following way: 

Definition 2 

F,(.) = f-(r)(.)2- + f+(7)(X (7) 

where (.)+ and (.)- denote the positive- and negative-,,wtfunc- 
tions, and where the fk sati& the following requirements: 

I .  f+ : (-1,l) --.) (1, +CO) 

2. 71 < 72 * f+(?’I) 5 f+(72) 
3. f+(y) = 1 when -1 5 -y 5 0, 
4. f+(y + 1) = +w, 

5. f-(r) = f+(-r) 
Notice that F’(.) is constructed from the standara parabola 

(.)’ in the following way: when - 1 < 7 < 0 the left branch of 
the parabola is ‘raised’ by multiplication with f- > 1, the more 
so the bigger 171, while when 0 < y < 1 the left branch of the 
parabola is raised by multiplication with f+ > 1. Therefore the 
skewed parabola F,(w) is monotonically nonincreasing for 
w < 0 and monotonically nondeaeasing for 20 > 0. 

Using F, define a ‘-y-distance’ d ,  between functitms as fol- 
lows: 

d,(u,  v) = F V ( U  - v)dz  ( 8) J, 
Notice that d,,o(u, v) = d(u, v); moreover d,=l(u, u )  = 

d(u, u )  if U 2 v while it is 00 if on any set of nonzero measure 
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Figure 3: ’Ihe weighting functions f- (7) and f+ (7). 

F,<O(W - 4 
1 1 

F,,o(V - 4 

Figure 4: The modified parabola F, (v - U). 

u < v. Similarly for d,=-l with the appropriate inquality sip 
inversions. 

Using the new distance d ,  define a new energy function E, as 
in (3): 

E,(u) = AS(u) + d-,(u, v )  (9) 
Define the A-?-mean U? of v as the minimum of E,: 

Definition 3 
U, = argmin E-,(u) (10) 

The behaviour of U, is described by the followingpropositions: 

Proposition 1 U-, is the unique solution of the differential equa- 
tion: 

AAu - f - ( ~ ) ( u  - U)- + f + ( ~ ) ( u  - w)+ = 0 I E R 
v u = o  x E OR 

(11) 
where the gradient and Iaplacian are taken with respect to the 

‘space’ variables I. 

Proof: 
The energy function (9) is convex, therefore it has a unique 

minimum. The differential quation ( 11) is the Euler quation of 
the variational problem (10). 

0. 

Proposition 2 Thefunctions U, are ordered with respect to 7, i.e. 
ifyl < 72 then uT1 (x) _< uT2(x) for all E E R with the exception 
of zero-measure subsets of R. 

Proof: 
By contradiction, showing that if url (E) > u,,(x) in a subset 

I of n then one may docsease the sum of the energies by swapping 

U,, and U,, in I since restricting ourselves to the set I we have 
E71(%,) + %(%2) > E7,(u,z) +E,Z(%I). 

Detailed argument: 
Suppose that url (z) > uy2 (x) in a subset I of $2. Partition I 

in the subsets Al ,  A2, B,  C such that: 
uT1(x) 2 ~ ( x )  > u,,(z) forz  E AI, 
u,,(x) > v(x) 2 ur2(z) for E E A2. 
uYI(x) > u7,(x) > v(x) for z E B and 

For convenience of notation define the functions w, = U,, - v. 
Now compare the distances on the subsets: 
Al, A2 - In A1 wTI 2 0 > wT2. therefore d,,(wT1) 2 

d-,l(w,2) and d,,(w,,) > d7,(wrl). The same hrwppens in A2 
modulo exchanging quality and inquality sips.  

Observe that for positive argument ds, is positiv: and mono- 
tonically incseasing. Then dlYI ( wT1 ) + d,, ( wr2)  = d,, (w,, ) + 
dY2(wY1) + d,, (tu-,,). The same may be shown in C notmng that 
0 > w,, > w7, and that for negative arguments d, , is negative 
and monotonically decreasing. 

Following the derivations in the previous two paragraphs no- 
tice that by swapping uT1 and U,, in I all terms in tbie sum of the 
energy functions are unchanged with the exception of the distances 
d,, and d,, that decrease on I. Therefore contradicti m is reached. 

0. 
Lastly we show that M and m are the upper an( I lower limits 

We start by showing that at the minimum U, the energy func- 

v > uyl(x) > U,&) fo r s  E c. 

B, C - In B wUrl > w,, > 0. Call d67 2: d,, - dT2. 

M w , , )  + M w 7 2 )  > d,,(~?I) + d d W 7 2 )  i- 4 2 p 7 2 )  = 

of the functions U,. 

tionE,tendstoEfory + fl. 

ProoF: 
The proof is carried out for y -+ 1. The same technique may 

By definition of U, (see (10)) V6u s.t. 6u : 2 + R and 
be used to prove the 7 --$ - 1 limit. 

6u = 0 on ail: 

This is true in particular for a constant variation 5u E 1. 
The gradient of 6u 1 is of course q u a l  to zero. Expand 

E,(u, + h . 1)  around E,(u.,) using for convenience h 2 0 

E,(u, + h . 1) = O(h2) + (14) 

[f+W - f-(7)] [(U - 4: + - 4-1 
+ I** 

where Rlt is the subset of R on which -h < (U - v: < 0. Notice 
that the integral on Rf is O(h2) since by hyp. R has finite measure 
p(R) (andthereforeRA alsohasfinitemeasure),and, bydefinition 
of Rlt the upper bound of Iu - 0 1  on Rf is h. An upper bound for 
the modulus of the integral is therefore If+(r) - f - ( 7 ) l p ( a ) h 2 .  
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Figure 5: Normalization and qUMtiZatiOn to 3 bits using 8 diffusive 
levels with A = 10 pixels of dginal  in Fig. 1. 

Equation (15) therefwe reduces to: 

E,(u, + h .  1) = 0 ( h Z )  + (15) 

Er(%) + 2hJ f+(T>(% - V I +  - f-(r)(u, - v)-ds  

f+(r) /(U, - v)+ds = f4r)  / ( U y  - v ) -dz  

f I ' ( r )C 2 f4-Y) (/.(Uy - v ) - d z ) 2  I 

From (13) and (16) we ~ c e  that forV7 

(16) 

Now notice that (U, - v)+ has an upper bound M in R (e.g. 
clearly (U-, - v)+ < max(v) - v). Mareover by definition for y > 

the 1.h.s. of (16). Squaring both terms and dividing both by f- (7) 
(which is bounded away from WO) we obtain: 

1 f+(y) I 1. ThereforeC = Mp(R) 2 f+(7) J,(u, - ~ ) + d r ,  

I J, f-(r)(u-, - V t d Z  (17) 

Figure 6 Ihe  structure of a diffusive network composcd of ideal 
diodes and resistors, computing the top and bottom func:tions. 
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Figure 7: Experimental data of output voltage response are plotted 
versus node position for different values of y and using a small 
diffusion lengtb 

-- 
E(%). 

0. 
Proposition 1 shows that the normalization functions may be 

computed using a network of the type shown in Figure 6. 

3. HARDWARE IMPLEMENTATION 

A 20 nodes 1-D non-linear resistive grid has been implemented in 
a MOSIS tiny-chip and tested. Static input pattems are externally 
set by analog pads while the output pattern is scanned out by a 
static shift register [2] and read-out by an oscilloscope. Results 
are shown in Fig. 7 where several output patterns are compared 
with input data. Gamma values rve displayed in each picture. If 
we disregard the noise introduced by the SCBMK, it is apparent 
how the circuit displays full functionality providing a complete 
family of outputs, bounded by an envelope of local maxima and an 
envelope of local minima, where "local" is defined by the diffusion 
lenght A. Full details on the circuit are reported in 141. 
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