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ABSTRACT 

We describe a method for estimating the motion and 
structure of a scene from a sequence of images taken 
with a camera whose geometric calibration parameters 
are unknown. 

The scheme is based upon a recursive motion es- 
timation scheme, called the “essential filter” [16], ex- 
tended according to the epipolar geometric representa- 
tion presented in [7] in order to estimate the calibration 
parameters as well. 

ture from motion” module that processes motion error, 
in order to recover the structure of the scene. 

The motion estimates can then be fed into any “struc- 

1. INTRODUCTION 

Camera motion estimation is a key task in many appli- 
cations ranging from image compression, to autonomous 
vehicle navigation, to recognition. Motion estimation 
from image sequences is usually performed in two steps: 
first the camera is calibrated, in order to estab- 
lish metric relationships between world coordinates and 
image-plane measurements. The internal parameters 
(pixel size, optical center, focal length), are usually es- 
timated 08-line. Once calibration is performed, we 
can estimate camera motion and ambient struc- 
ture recursively from the image sequence in a variety 
of ways [l, 14, 19, 12). 

Most of the recursive motion estimation schemes 
rely upon the exact knowledge of internal camera pa- 
rameters. However, experimental evidence shows that 
these can change drastically during a long sequence [4] 
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due to zooming and changing of the aperture. More- 
over, often it is not possible to access the physical de- 
vice which produced the sequence. Therefore, a motion 
estimation scheme should be able to estimate camera 
calibration while processing the sequence and estimat- 
ing motion and structure. 

Many approaches for camera calibration are avail- 
able in the literature; they can roughly be classified 
as: 

1. 

2. 

3. 

The 

Batch schemes, which rely on the knowledge of 
the structure by including a calibration rig in the 
field of view (see [lo] and references). 

Active devices, which rely on the knowledge of 
the camera motion by controlling the configura- 
tion (pose) of the camera [5,4, 31. 

Arbitmry structure and motion. Camera self cal- 
ibration is performed along with motion estima- 
tion [7]. 

first two approaches assume that the camera is 
available for measurements, by either controlling its 
motion or inserting a known object into the field of 
view. Therefore it seems that the third approach is the 
only feasible solution when the the device which pro- 
duced the sequence is not available, as for example in 
image compression applications or automation of image 
processing tasks for the movie industry. 

Faugeras et al. [71 propose a batch scheme which re- 
constructs the epipolar transformation of the camera, 
and then imposes the structure of such a transforma- 
tion by solving a set of polynomial equations, known 
as Kruppa’s equations. However, the scheme has some 
substantial drawbacks which make it unattractive for 
real world applications. In particular 

0 High sensitivity to pixel-noise 

0 Numerical instability 
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0 Motion parameters and internal parameters are 
treated alike. While camera-motion can vary ar- 
bitrarily during a sequence, it is conceivable that 
some parameters (for example the pixel size or 
aspect ratio) are constant over long periods of 
time 

0 Not all the information coming from a sequence 
is exploited. The scheme processes 3 images at  
a time and does not use temporal coherence (re- 
cursion) or a-priori information (such as reference 
values for focal length, initial confidence in the 
position of the optical center etc.). 

Hence we want a recursive scheme which, after each 
incoming image, updates the computation performed 
at the previous step. We also want the scheme to be 
causal so that it can be used for real-time implemen- 
tations. Azarbayejani et al. [l] perform partial calibm- 
tion by updating the focal length of the camera on-line 
together with camera motion. To our knowledge, the 
problem of estimating camera motion and calibration 
recursively from an image sequence has never been ad- 
dressed in the literature before. 

In this paper we present a scheme for performing 
ego-motion estimation and camera calibration recur- 
sively and causally for an image sequence. It does not 
need a calibration rig nor to control motion, while it ex- 
ploits redundancy at each step and computations from 
each previous step by recursion. A priori information 
about calibration can be used, if available, as initial 
conditions for the estimation scheme. Internal param- 
eter time constants are adjustable by tuning their ran- 
dom walk models. 

The scheme is based upon a recent method for re- 
cursive motion estimation [lS], extended to estimate 
camera parameters according to the representation of [7]. 
A key feature of our scheme is that the structure of the 
epipolar geometry is imposed explicitly as the structure 
of the state-space of the filter, so we do not need to 
solve explicitly complicated polynomial equations in or- 
der to enforce such a structure. From a different point 
of view, our filter can be viewed as a recursive differ- 
ential scheme for solving Kruppa's equations. 

We report some experiments on noisy synthetic im- 
age sequences, and are in the process of testing the 
scheme on real image sequences. 

2. FORMULATION OF THE SCHEME 

2.1. CAMERA MODEL: INTERNAL PARAM- 
ETERS AND EGO-MOTION 

The camera may be modeled as a perspective projec- 
tion map 

M : R 3  + R2 
x H x. 

The simplest instance is the so called 
model": 

"ideal pinhole 

It can also be represented as a linear map between 
real projective spaces, A? : W3 -+ RI'': in homo- 
geneous coordinates it is represented by a 3 x 4 matrix 
[ A I 0 ] where 

A = [ ': 0 I;:] 

is the internal parameter matrix. f is the focal length, 
(i0,jO) the coordinates of the optical center and (sz ,  sY) 
the pixel sizes along the image plane coordinates. The 
deviation from 90" of the angle between the optical axis 
and the CCD surface is usually on the order of lo, and 
we may therefore neglect it. 

As the camera moves inside the (static) scene, the 
points move in its reference according to the rigid mo- 
tion constraint: 

X ( t  + 1) = R ( t ) X ( t )  + T(t) ,  

where (T(t) ,  R(t))  represent the discrete camera mo- 
tion between the time t and t + l. The goal of a 
self-calibrating motion scheme is to estimate the inter- 
nal parameters and the camera motion from the time- 
varying projection x( t )  of a number of feature points. 

2.2. THE ESSENTIAL CONSTRAINT AND 
EPIPOLAR GEOMETRY 

Longuet-Higgins [l 11 introduced a simple coplanarity 
constraint which links the projective coordinates Z A 
r . ?  I 7 1 of a point at time t ,  the corresponding 2' at t+ l ,  

and the motion (T( t ) ,  R ( t ) )  undergone by the camera: 

x'; QX; = 0 Vi = l . . . N .  (3) -T - 
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where Q = R(TA) is called the essential matrix. The 
essential matrices form a space that has the structure of 
an algebraic variety [6] and of a differentiable manifold 
as well [18]. Given a number of such constraints, it is 
possible to estimate the motion which generated it [ll, 
20,13,6]. It can be proved easily that a 3 x 3 matrix is 
essential if and only if it has two equal singular values 
and zero determinant [13]. 

In the case of an uncalibrated camera, a similar con- 
straint can be derived based on the epipolar geometry: 
given %(t) at time t, its correspondent at t +  1, %(t + l ) ,  
must lie on the epipolar line tet+l. Such a line is de- 
scribed in projective coordinates by a linear function of 
%(t). The representing matrix is called the fundamen- 
tal matrix F ,  which is defined by the relation tet+l A 
F%(t).  It can be shown [7] that F A-TQA-l, where 
Q is an essential matrix. From the definition of the 
epipolar line, one may derive a generalization of the 
essential constraint [7]: 

The scheme presented in [7] consists in first estimating 
F from (4), and then imposing its structure a-posteriori 
by solving the Kruppa equations, which correspond to 
enforcing the fact that ATFA (is essential and there- 
fore) has two equal singular values and zero determi- 
nant. 

2.3. THE ESSENTIAL FILTER F O R  FUNDA- 
MENTAL MATRICES 

The essential filter is a motion estimation paradigm re- 
cently presented in [16]. It solves motion estimation as 
identification of the exterior differential system deter- 
mined by the essential constraint: 

%T(t + l)Q(t)%i(t) = 0 Vi = 1 : N. j q t )  = &(t) + ni(t) 
( 5 )  

{ 
We propose to extend the essential filter to estimate 
fundamental matrices, and impose the structure of the 
fundamental matria: explicitly by writing the estima- 
tor in local coordinates: the estimate at each step de- 
termines a matrix which is fundamental by construc- 
tion, and we do not need to enforce the structure by 
solving explicitly ill-conditioned polynomial equations. 
The structure of resulting update is very similar to the 
essential filter [16]: 

[ f  ( t +  1) = .1; [: ( t )  + 
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where ,$ i [ f ~ ~ , f s ~ , i ~ , j o ] ~ ;  L has the structure of the 
gain of an Implicit Extended Kalman Filter (IEKF) [9, 
8, 161. 

[< 8 4 illT E Etg, where R are the 
exponential coordinates of R = e'", and (e, 4) are the 
spherical coordinates of T, then we can write the com- 
plete set of equations for the filter: 

Prediction step 

If we call Q 

&(t + llt) = &(tlt) ii(Ol0) = 
P(t  + llt) = P(tlt) + R,(t) P(OI0) = Po 

Update step 

&(t + lit + 1) = &(t + lit)+ 

P(t  + llt + 1) = 
L(t + l)kT(t)A-TQ(&(t + llt))A-liii(t - 1) 

r(t + i ) ~ ( t  + ilt)rT(t + I)+ 
L(t + l)D+(t)&(t + l)DT(t)LT(t + 1) 

where 

L(t + 1) = P(t  + llt)CT(t + l)h-'(t + 1) 
A(t + 1) = C(t + 1)P(t + llt)CT(t + 1)+ I + D d t  + 1m& + l)DT(t + 1) 

where R, and R, denote the variance of the noises 
~ ( t )  and n(t)  respectively; the interested reader may 
find the detailed derivation in [17]'. 

3. EXPERIMENTAL ASSESSMENT 

We report a set of simulations on a noisy synthetic se- 
quence. In figure 1 we show the estimates of the trans- 
lation and rotation parameters. In figure 2 we show 
the estimates of the internal parameters. The noise on 
the image-plane was one tenth of a pixel, according to 
the performance of the best optical flow/feature track- 
ing techniques [2]. Convergence is reached in about 100 
frames. Each iteration consists of about 100 Kflops: an 
implementation using Matlab (not optimized) runs at 
.6Hz on a Sparc 10-20. We are currently experimenting 

'This paper can be obtained via the Worldwide Net Mosaic 
(http://avalon.caltech.edu/cds/techreports/) 
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on real image sequences and higher noise levels. More 
detailed experiments are reported in [15]. 

Note that, once the motion has been reconstructed, 
we may feed the estimates onto any Structure-From- 
Motion module that processes motion error 114, 191. 
However, the motion configurations that allow esti- 
mating accurately the scene structure, as for exam- 
ple fronto-parallel translation, are often not sufficiently 
exciting for estimating the camera parameters. Vice- 
versa, motions that allow a good estimation of the cam- 
era calibration are often ill-conditioned for estimating 
depth, as for example a spiral along the optical axis. 
Therefore there is an intrinsic conflict between the es- 
timation of the camera parameters and the structure 
of the scene. 
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