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Abstract

We analyze the unlocalized “Cheshire charge” carried by “Alice strings.” The
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1. Introduction

In a spontaneously broken non-abelian gauge theory, charge conjugation can be

a local symmetry. That is, the unbroken gauge group H may contain both a U(1)

factor generated by Q, and an element X of the disconnected component of H such

that XQX−1 = −Q. Such a model contains topologically stable cosmic strings with

a remarkable property—when a charged particle is transported around the string, the

sign of its charge flips. (The sign of the charge is gauge dependent, but the feature

that the sign changes has an unambiguous and gauge–invariant meaning.) This string,

which acts as a charge–conjugation looking glass, was first discussed by A. S. Schwarz,

who dubbed it the “Alice” string.
[1]

(The possibility that charge conjugation could be

a local symmetry was noted earlier by Kiskis.
[2]

)

A closed loop of Alice string can carry electric charge, and the charge lost by a

particle that winds around the string is transferred to the loop. A charged string loop

is a peculiar object. It has a long–range electric field, from which its charge can be

inferred, yet there is no localized source of charge anywhere on the string or in its

vicinity.
[3−5]

Such charge with no locally identifiable source has been called “Cheshire

charge.”
[4]

An Alice string can also carry magnetic Cheshire charge, and can exchange

magnetic charge with magnetic monopoles.
[3,6,7]

The properties of Alice strings that carry Cheshire charge, and the processes by

which charge is exchanged between strings and point particles, have been analyzed

previously.
[4−7]

. In this analysis, it is very convenient to employ the unitary gauge.

However, in the presence of an Alice string, the gauge transformation that imposes

the unitary gauge condition is necessarily singular; it introduces a gauge artifact

surface on which fields (the electric and magnetic fields in particular) satisfy nontrivial

boundary conditions. At the price of introducing this gauge–artifact singularity, one

arrives at an appealing and vivid description of the charge–transfer phenomenon.

In this paper, we analyze Cheshire charge using a different approach. In the

case of magnetic charge, we note that the charge on a string is really a topological

charge, and that the transfer of charge from magnetic monopole to string has an

1



essentially topological origin. The transfer of topological charge can be described in a

manifestly gauge–invariant way. By using global methods, one assuages the concern

that the conclusions of previous work were an unfortunate artifact of an illicit gauge

choice.

Even in the case of electric charge, global methods provide new insights. We

will trace the mechanism of electric charge transfer to a generic topological property

of non-abelian vortices—namely, that when one vortex winds around another, the

quantum numbers of both are modified.

The rest of this paper is organized as follows: In Section 2, we briefly review

the simplest model that contains an Alice string, and recall the analysis of Cheshire

charge in Ref. 4-7. In Section 3, we describe the long–range interactions between

non-abelian string loops, and use the properties of these interactions to develop a

semiclassical theory of Cheshire charge and charge transfer.

In Section 4, we note the subtleties inherent in defining magnetic charge in the

presence of loops of Alice string. For the purpose of defining the magnetic charge

carried by a particular string loop, it is convenient to introduce an (arbitrary) “base-

point,” and a canonical surface (or homotopy class of surfaces) that encloses the

loop and is tied to the basepoint. In general, the canonical surface can be chosen in

topologically inequivalent ways, and the enclosed magnetic charge depends on this

choice. It is just this ambiguity that underlies the transfer of charge from a magnetic

monopole to a string loop. We will find that, as a monopole winds around a string

loop, the canonical surfaces that are used to define the magnetic charge of both the

monopole and the loop are deformed to new (topologically inequivalent) surfaces.

Therefore, the charges defined by the original canonical surfaces are modified; charge

transfer has taken place.

Section 5 contains some concluding remarks.

2



2. Alice Strings

The simplest model that contains an Alice string has gauge group SU(2) and

a Higgs field Φ that transforms as the 5-dimensional irreducible representation of

SU(2). We may express Φ as a real symmetric traceless 3× 3 matrix that transforms

according to

Φ → MΦM−1 , M ∈ SO(3) . (2.1)

If Φ has an expectation value (in unitary gauge) that can be expressed as

〈Φ〉 = v · diag [1, 1, −2 ] , (2.2)

then the unbroken subgroup of SU(2) is H = U(1) ×S.D. Z2. The unbroken group

H has two connected components. The component connected to the identity can

be pictured as rotations about a z-axis. Since SU(2) is a double cover of the ro-

tation group, this component, which is isomorphic to U(1), can be expressed as

Hc = {exp[iθQ] | 0 ≤ θ < 4π}, where Q is the SU(2) generator Q = 1
2σ3.

There is also a connected component not connected to the identity of the form

Hd = {X exp[iθQ] | 0 ≤ θ < 4π}. This component consists of rotations by 180◦

about axes that lie in the xy-plane. (X is any such rotation.) Each element Y

of Hd anticommutes with Q, Y QY −1 = −Q; it is a “charge–conjugation” operator

embedded in the unbroken local symmetry group.

The elements of Hd represent the possible values of the “magnetic flux” of the

topologically stable cosmic string excitations of the theory in 3+1 dimensions (or

vortex excitations in 2+1 dimensions). In general, the magnetic flux carried by a

cosmic string is an element of the unbroken group H that encodes the result of parallel

transport along a closed path that encloses the string. To define the magnetic flux

we must specify a basepoint x0 and a closed loop C that starts and ends at x0 and

encircles the string exactly once.(See Fig. 1.) Then the flux is given by the untraced
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Wilson loop operator

h(C, x0) = P exp






i

∫

(C,x0)

dxi Ai






. (2.3)

The flux takes values in H(x0), the subgroup of the underlying group G that stabilizes

the condensate at the point x0 (since parallel transport around C must return the

condensate to its original value).

One can determine what happens to the charge of a particle that travels around

an Alice string by considering the behavior of the unbroken symmetry group H(x0) as

it is parallel transported around the string.Consider the situation depicted in Fig. 2,

with a single Alice string enclosed by a circle parameterized by φ, 0 ≤ φ ≤ 2π. At

each point on the circle labeled by φ, there is a subgroup H(φ) embedded in G that

stabilizes the condensate Φ(φ) at that point. The gauge vector potential Aµ relates

these subgroups through the equation

H(φ) = U(φ)H(0)U(φ)−1 , (2.4)

where

U(φ) = P exp



i

φ
∫

0

dφAφ



 . (2.5)

Note that U(2π) = h(C, x0). It is certainly true that H(0) = U(2π)H(0)U(2π)−1,

because H(2π) = H(0), but the analogous relation does not hold for the generators

of H. Since U(2π) ∈ Hd, we have

U(2π) Q U(2π)−1 = −Q . (2.6)

An analogy can be made to the Möbius strip to make it apparent why Q is deformed

into −Q upon parallel transport around the circle. The U(1) subgroups {H(φ)} of
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SO(3) can be represented as undirected lines in ℜ3 through the origin that coincide

with the axes of the rotation of the U(1) subgroups. Choosing a generator Q(φ) for

H(φ) at each φ is equivalent to choosing a direction for each of these lines. As φ

varies from 0 to 2π, the lines are twisted into a Möbius strip. There is no continuous

way to choose a direction on each of them.

The Möbius twist in the unbroken symmetry group H(x) described above may

be discussed more formally in terms of the “global unrealizability” of the unbroken

symmetry.
[8,4,5]

Let M denote the spatial manifold consisting of ℜ3 with the cores of

the strings excised. At each point x ∈ M is defined the unbroken symmetry group

H(x) that stabilizes the Higgs condensate Φ(x). All these subgroups are isomorphic

to the same abstract group H. This structure is a fiber bundle E with model fiber H

over the base manifold M. The structure group of the bundle is also H, and H acts

on the fibers by conjugation. Locally, in any contractable open subset U ⊂ M, the

fiber bundle has the structure U ×H. But generally there does not exist a continuous

mapping

f : M× H → E . (2.7)

This is because the open sets Uα covering M can be patched together in a nontrivial

way using nontrivial transition functions. In more physical terms, a continuous map-

ping of the form f is a “global realization” of the unbroken symmetry H considered

as an abstract group. (In mathematical language, such a mapping is known as a

trivialization of the fiber bundle E.) Clearly, such a realization is not possible in the

presence of an Alice string, because such a mapping f would induce a continuous

choice of Q(φ) for 0 ≤ φ < 2π, and we just showed that no such continuous choice

exists. (“Global unrealizability” of the unbroken symmetry also occurs when there

are monopoles with non-abelian magnetic charge.
[9]

)

The Möbius twist implies that a charged particle initially with charge q will have

charge −q after winding around an Alice string. Of course, the sign of the charge can

be changed by a gauge transformation, and therefore has no unambiguous physical

meaning. But the statement that the sign changes upon transport around the string
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is gauge invariant and meaningful. Suppose, for example, that two charges of like

sign are initially brought close together; they repel. (See Fig. 3.) Then one charge

travels around an Alice string while the other stays behind. When they are brought

together again, they attract. Yet the total charge, as measured by an observer far

away from the string loop and the point charges, cannot have changed. Where did

the missing charge go?

This puzzle is resolved by Cheshire charge.
[4,5]

In order to understand what hap-

pened to the charge, it is convenient to choose a particular gauge—the unitary gauge

in which the Higgs field takes the value eq. (2.2) everywhere. However, the gauge

transformation that implements the unitary gauge condition is singular; it has a dis-

continuity, or cut, on a surface that is bounded by the string loop. (In other words,

one can transform to unitary gauge everywhere outside a thin pancake that encloses

the string loop. Inside the pancake, the Higgs field twists very rapidly, and the gauge

potential is very large. The singularity arises as the width of the pancake shrinks to

zero.) As a result, fields on the background of the string loop obey peculiar boundary

conditions—the electromagnetic field changes sign on the cut, and charge of a charged

matter field flips there.

Because of the peculiar boundary conditions satisfied by the electromagnetic field

at the cut, there are solutions to the classical field equations in which the cut appears

to be a source of electric (or magnetic) charge, as in Fig. 4. There is not actually any

measurable charge density on the cut; the cut is an unphysical gauge artifact. Yet

the string loop is charged—it has a long range electric field that can be detected by a

distant observer. This electric field has no locally identifiable source; it is “Cheshire

charge.”

The charge transfer process is sketched in Fig. 5. The initial electric field of a

charge-q particle in the vicinity of a string loop is shown in Fig. 5a, and Fig. 5c–e

shows how the field changes as the particle travels around the path in Fig. 5b. When

the particle crosses the cut, its apparent charge flips from q to −q, and the cut seems

to acquire the compensating charge −2q. It is clear from the final configuration in
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Fig. 5e that charge 2q has been exchanged between the particle and the loop.

Yet there is no gauge–invariant way to pinpoint when the charge transfer took

place. The configuration of the electric field lines is gauge invariant, but the direction

of the arrows on the field lines is gauge dependent. We can move the cut by performing

a singular gauge transformation; this alters the apparent time of the charge transfer

without actually changing the physics of the process.

The charge transfer can be characterized in a gauge–invariant manner, as follows:

The nontrivial irreducible representations of H are two-dimensional, and can be la-

beled by the absolute value of the U(1) charge. The tensor product of two irreducible

representations decomposes into irreducible representations according to

|q1| ⊗ |q2| = |q1 + q2| ⊕ |q1 − q2| . (2.8)

For the charge–loop system described above, the total charge is |q|. This charge

determines (the absolute value of) the electric flux through a large closed surface

that encloses the system, and is of course conserved during the exchange process.

Initially, the loop is uncharged and the particle has charge |q|. The exchange process

leaves (the absolute value of) the charge of the particle unchanged, but produces an

excitation of the loop with charge |2q|.

So far, we have considered a particular model with Alice strings. Much of the

physics discussed in this paper is independent of the details of that model. We will

briefly describe a more general class of models in which Alice–like behavior occurs.
[1]

Let the unbroken group H to be a subgroup of the simply-connected gauge group G.

Topologically stable cosmic strings occur only when π0(H) is nontrivial, so suppose

that H has several connected components. Groups of this sort may be constructed

as the semi-direct product of a continuous part Hc, which is a connected compact Lie

group, and a discrete group D. The semi-direct product Hc×S.D.D is a generalization

of a direct product, defined by a group homomorphism

ϕ : D → Aut[Hc] , (2.9)
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where Aut[Hc] is the group of automorphisms of Hc. Group multiplication is defined

using the rule

(h1, d1) ◦ (h2, d2) = (h1 · ϕd1
(h2), d1 · d2) . (2.10)

Strings will have Alice properties if the mapping ϕ is nontrivial.

In the example described earlier, D = Z2 and the nontrivial automorphism re-

verses the sign of the generator Q of Hc = U(1). As an example of generalized Alice

behavior, consider a model with

H = [SU(2)1 × SU(2)2] ×S.D. Z2 , (2.11)

where the nontrivial automorphism is a “parity” operator that interchanges the two

SU(2) factors. (With suitable Higgs structure, the gauge group G = SU(4) can

be broken to this H .) This model contains an Alice-like string. If an object with

representation content (R1, R2) under SU(2)1 × SU(2)2 is transported around this

string, its representation content is changed to (R2, R1), and the missing quantum

numbers are transferred to the string.

We should also note that a string might exhibit Alice-like behavior, for dynamical

reasons, even when such behavior is not topologically required.
[4]

That is, the flux of a

dynamically stable string might assume a value h that is not in the center of H , even

though there are elements of the center that lie in the same connected component as h.

Then only the subgroup of H that commutes with the flux h can be globally defined

in the presence of the string. However, in this case, strictly speaking, the position

dependence of the unbroken symmetry group H(x) is not described by a topologically

nontrivial bundle. This is because we can trivialize the bundle by smoothly deforming

the flux h to an element of the center of H . The bundle is nontrivial only if no element

of the center is contained in the same connected component as the flux; that is, only

if the Alice behavior is topologically unavoidable.
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3. Electric Charge

In this section, we describe the electrically charged Alice string, and the charge

transfer process, in semiclassical language.
[10]

In quantum theory, the electric charge of a state reflects the transformation prop-

erties of the state under global gauge transformations. The Alice string classical

solution is not a charge eigenstate, but it has a “charge rotor” zero mode. Semiclassi-

cal quantization of the zero mode is achieved by constructing linear combinations of

the classical string states that do have definite charge.
[4,5]

We need to worry, though,

about what is meant by a “global” gauge transformation, since we have seen that

gauge transformations are not globally realizable. Fortunately, for the purpose of

defining the total charge of a state, it is sufficient to consider a gauge transformation

that is constant on and outside a large sphere that encloses all of the charged objects.

Inside the sphere, we may deform the gauge transformation so that it vanishes on the

core of each string, and on a surface bounded by each string.
[5]

There is no topological

obstruction to constructing this gauge transformation. Strictly speaking, since the

flux of a string is defined relative to a basepoint, we should think of the large sphere

not as a “free” surface, but rather as a surface tied to the basepoint x0. That is, the

gauge transformation takes the same value at x0 as on the sphere. (If the total mag-

netic charge enclosed by the sphere is nonzero, then there is a further obstruction, so

that the gauge transformations in the disconnected component Hd cannot be defined

on the sphere.
[9]

. We defer the discussion of magnetically charged string loops until

the next section, and suppose, for now, that the magnetic charge is zero.)

The magnetic flux of the string, defined by eq. (2.3), takes values in the discon-

nected component Hd of the unbroken group H(x0) that stabilizes the condensate at

the basepoint x0. In general, this flux transforms under a transformation g ∈ H(x0)

according to

h(C, x0) → gh(C, x0)g
−1 . (3.1)

In the case of an Alice string, let |θ〉 denote the string loop state with flux h(C, x0) =
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XeiθQ. Under a global H transformation, the transformation property eq. (3.1) be-

comes

U(eiωQ) |θ〉 = |θ − 2ω〉 , (3.2)

U(XeiωQ) |θ〉 = |2ω − θ〉 , (3.3)

where U is the unitary operator acting on Hilbert space that represents the global

gauge transformation.

One can construct linear combinations of these “flux eigenstate” string states that

transform irreducibly under H . Let

|q〉 =

4π
∫

0

dθ√
4π

ei θ

2
q |θ〉 (3.4)

(where Q is an integer). It transforms as

U(eiωQ) |q〉 = eiωq |q〉 ; (3.5)

U(XeiωQ) |q〉 = eiωq |−q〉 . (3.6)

The two states |q〉 and |−q〉 thus comprise the basis for an irreducible representation

of H .

Only integer-|q| representations of H occur in this decomposition; an Alice string

cannot carry half–odd–integer |q|. String loops are invariant under the center of

SU(2), and so can have no “two-ality.”

The semiclassical quantization of the charge rotor of the Alice string is strongly

reminiscent of the corresponding treatment of bosonic superconducting strings.
[11]

But

the physical properties of the string are actually remarkably different. Alice strings

do not carry persistent currents. Instead, they carry electric charge (or magnetic

charge, as we will discuss in the next section).

10



Now we will discuss the charge transfer process. It will be enlightening to imagine

that the charged object that winds through the string loop is itself a loop of Alice

string. Then the charge transfer can be regarded as a consequence of a topological

interaction between non-abelian string loops. (We will see in the next section that

magnetic charge transfer results from a related topological interaction.)

Consider the system of two string loops C1 and C2 shown in Fig. 6a. Suppose that

each string is a flux eigenstate, with

h(C1, x0) = h1 ,

h(C2, x0) = h2 .
(3.7)

Now suppose that the loop C2 winds through C1 as in Fig. 6b. To determine the

magnetic flux of the loops after the winding, it is convenient to consider the paths

C ′

1 and C ′

2 in Fig. 6c. During the winding procedure, these paths are dragged back

to the paths C1 and C2. Therefore, the flux associated with the paths C1 and C2

after the winding is the same as the flux associated with the paths C ′

1 and C ′

2 before

the winding. One sees that C ′

1 = C1 and C ′

2 = C1
−1 ◦ C2 ◦ C1. (Our convention is

that C2 ◦ C1 denotes the path that is obtained by traversing first C1, then C2.) We

therefore find that, after the winding, the flux carried by the string loops is
[12−14]

h′(C1, x0) = h(C ′

1, x0) = h1 ,

h′(C2, x0) = h(C ′

2, x0) = h1
−1h2h1 .

(3.8)

In the case of Alice strings, we denote by |θ1, θ2〉 the two–string state with flux

h1 = Xeiθ1Q and h2 = Xeiθ2Q. Then, if string 2 winds through string 1, eq. (3.8)

becomes

|θ1, θ2〉 → |θ1, 2θ1 − θ2〉 . (3.9)

If we construct charge eigenstates as in eq. (3.4), we find from eq. (3.9) that the effect
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of the winding is

|θ1, q2〉 → eiθ1q2 |θ1,−q2〉 , (3.10)

and

|q1, q2〉 → |q1 + 2q2,−q2〉 . (3.11)

Just as in the classical analysis of Section 2, the sign of q2 flips, and loop 1 acquires

a compensating charge.

Of course, we can also analyze (somewhat more straightforwardly) the case in

which the charge that winds is a point charge rather than a charged loop. Then

eq. (3.10) follows directly from the gauge transformation property of the charged

particle.

4. Magnetic Charge

4.1. Twisted Flux

In the above discussion of semiclassical quantization, we assumed that the mag-

netic flux was a constant along the string. But if the unbroken group H is continuous,

as in the Alice case, the flux can vary as a function of position along the string loop.

Furthermore, if H is not simply connected, then the flux might trace out a noncon-

tractible closed path in H . Then the string loop evidently carries a type of topological

charge. This charge is precisely the magnetic charge of the loop.

To define this charge carefully, we should, as usual, select an arbitrary basepoint

x0 and consider the magnetic flux defined by eq. (2.3). As the path C is smoothly

deformed with the basepoint x0 held fixed, this flux varies smoothly in a given con-

nected component of the group H(x0).To be specific, consider the family of paths

{Cφ | 0 ≤ φ < 2π}, shown in Fig. 7. These paths sweep out a degenerate torus that

encloses the string loop. This family {Cφ} is associated with a closed path in H(x0)
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that begins and ends at the identity; namely,

h(Cφ, x0)h
−1(Cφ=0, x0) , 0 ≤ φ < 2π . (4.1)

We have thus found a natural way of mapping a two-sphere that encloses the string

loop to a closed loop in Hc, the component of H connected to the identity.

By smoothly deforming the family {Cφ}, we may obtain the family of closed paths

{C ′

φ} shown in Fig. 8. Loosely speaking, h(C ′

φ, x0) is the flux carried by the string

at the point where C ′

φ wraps around the core of the string. Thus we see that the

homotopy class of the path defined by eq. (4.1) describes how the flux of the string

twists as a function of position along the string.

On the other hand, the family {Cφ} is equivalent to the family of paths {C ′′

φ}
shown in Fig. 9. But this is just the family of paths used by Lubkin

[15,16,6]
to define

the topological Hc magnetic flux inside a two-sphere. We learn that the element of

π1(Hc) that characterizes how the magnetic flux of the string twists is the same as

the magnetic charge on the loop.
[10,6]

More generally, in the presence of many string loops and pointlike monopoles, we

can define the magnetic charge inside any region R whose boundary ∂R is homeo-

morphic to S2. The result is a homomorphism

h(2) : π2[M, x0] → π1[Hc(x0)] , (4.2)

where M denotes the manifold that is obtained when all string loops and monopoles

are removed from ℜ3.

13



4.2. Role of the Basepoint

We should now explain why it is important to specify a basepoint x0 for the

purpose of defining the magnetic charge. Naively, it seems that it should be possible

to define the magnetic charge enclosed by a “free” surface that is not tied to any

basepoint, since the enclosed charge is just the magnetic flux through the surface.

But trouble arises if we allow the magnetic charges to move. We can deform the free

surface so that it is never crossed by any moving magnetic monopoles or string loops.

Nevertheless, the magnetic flux through the surface can change if the surface winds

through an Alice string loop.

It will be easier to keep track of charge transfer processes if we define magnetic

charge using a surface that is tied to a basepoint. As the charges move, we can

again deform the surface so that no monopoles or strings cross it, while keeping

the basepoint fixed (as long as no monopoles or strings cross the basepoint). Then

the magnetic charge enclosed by the surface remains invariant. However, when a

monopole winds around a string loop, the surface enclosing the monopole becomes

deformed to a new, topologically inequivalent surface. We can then find how the

charge of the monopole has changed by expressing the new surface in terms of the

old one. This procedure is closely analogous to our discussion in Section 3 of how the

flux of a loop is modified when it winds around another string. There we defined the

flux using a standard path that became deformed to a new path due to the winding.

We can analyze the exchange of magnetic charge using a similar strategy, except that

a surface, rather than a path, is used to define the charge.

In order to define the magnetic charge enclosed by a free surface Σ̄ that is homeo-

morphic to S2, then, we specify not just the surface, but also a path that attaches the

surface to the basepoint x0. Of course, this path can be chosen in many topologically

inequivalent ways; the different choices are classified by π1[M, x0]. Thus, π1[M, x0]

classifies the ambiguity in associating a free surface with an element of π2[M, x0].

There is a corresponding ambiguity in the value of the magnetic charge (given by the

homomorphism h(2) defined in eq. (4.2)) that is associated with a free surface. We
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resolve this ambiguity by simply choosing a standard convention for the path from

the free surface to the basepoint, and sticking with this convention throughout the

process under study.

The ambiguity is illustrated by Fig. 10, which shows two inequivalent surfaces Σ

and Σ′ with basepoint x0 that are obtained by “threading” the free surface Σ̄ to the

basepoint in two different ways. As shown in Fig. 10d, the surface Σ′ can be deformed

to a degenerate tube, beginning and ending at x0, joined to the surface Σ. Since the

degenerate tube is equivalent to a closed path β, we may say that the two surfaces

differ by an element of π1[M, x0].

The ambiguity in associating a free surface with an element of π2[M, x0] can be

characterized by a natural homomorphism

τ : π1[M, x0] → Aut (π2[M, x0]) (4.3)

that takes (homotopy classes of) closed paths to automorphisms of π2[M, x0]. The

mapping τ is defined in the following way: Let β ∈ π1[M, x0] and Σ ∈ π2[M, x0].

(Below we use the symbols β and Σ to denote both homotopy equivalence classes and

particular representatives of the classes.) Then τβ is an automorphism that takes Σ

to a new surface Σ′,

τβ : Σ → Σ′ , (4.4)

where Σ′ is the surface Σ with the degenerate tube β added on. More precisely, let

β(t), 0 ≤ t ≤ 1 be a parametrized path, with β(0) = β(1) = x0, and let Σ(θ, φ), 0 ≤
θ ≤ π, 0 ≤ φ ≤ 2π be a parametrized surface with Σ(0, φ) = x0. Then the new

surface Σ′ is

Σ′(θ, φ) =

{

β(2θ/π) if 0 ≤ θ ≤ π/2 ,

Σ(2θ − π, φ) if π/2 ≤ θ ≤ π .
(4.5)

Now consider how changing the threading of a free surface to the basepoint mod-

ifies the magnetic charge enclosed by the surface. Recall that eq. (2.3) maps a path
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that begins and ends at the basepoint to an element of the group H(x0). If the path

is deformed to a homotopically equivalent path, the group element remains in the

same connected component of the group. Thus, eq. (2.3) defines a homomorphism

h(1) : π1[M, x0] → π0[H(x0)] . (4.6)

If the surface Σ is changed to the surface Σ′ by adding the degenerate tube β, then

the magnetic charge enclosed by the new surface is related to the magnetic charge

enclosed by the original surface according to

h(2)(Σ′) = h(1)(β)−1 h(2)(Σ) h(1)(β) . (4.7)

That is, h(2)(Σ′) is the closed path in Hc (beginning and ending at the identity) that

is obtained when h1(β) acts on the closed path h(2)(Σ) by conjugation. In the case of

the Alice string, eq. (4.7) simply says that, if β is a path that winds around a string

loop, then the magnetic charges enclosed by Σ and Σ′ differ by a sign.

4.3. Charge Transfer

Eq. (4.7) is the key to understanding the magnetic charge transfer process, as we

will show. First, though, we should recall that π2[M, x0] has a group structure that

allows magnetic charge to be added. The group multiplication law,

◦ : π2[M, x0] × π2[M, x0] → π2[M, x0] , (4.8)

can be defined as

(

Σ1 ◦ Σ2

)

(θ, φ) =

{

Σ1(2θ, φ) if 0 ≤ θ ≤ π/2 ,

Σ2(2θ − π, φ) if π/2 ≤ θ ≤ π .
(4.9)

where Σ1, Σ2, and Σ1 ◦ Σ2 are homotopy equivalence class representatives. Group

multiplication in π2 is commutative. Group inversion may be expressed in terms of
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class representatives as

Σ−1(θ, φ) = Σ(π − θ, φ) . (4.10)

We turn to the situation depicted in Fig. 11. Two string loops C1 and C2 are

shown. We denote by β1 and β2 two standard paths, beginning and ending at the

basepoint x0, that wind around the string loops. (These are elements of π1[M, x0].)

We denote by a1 and a2 two standard surfaces, based at x0, that enclose the string

loops. (These are elements of π2[M, x0].) The magnetic charges of the two loops,

given by the homomorphism eq. (4.2), are h(2)(a1) and h(2)(a2), respectively.

Now suppose that the loop C2 winds through the loop C1 along the path shown

in Fig. 11b. We want to determine the magnetic charges of the two loops after this

winding. To do so, consider the surfaces a′1 and a′2 shown in Fig. 11c-d. During the

winding, these surfaces are dragged back to the surfaces a1 and a2, if the surfaces

are deformed so that no surface ever touches a string loop. Therefore, the magnetic

charge enclosed by a1, after the winding, is the same as the magnetic charge enclosed

by a′1, before the winding. Similarly, the magnetic charge enclosed by a2, after the

winding, is the same as the magnetic charge enclosed by a′2, before the winding.

It remains to find the magnetic charges enclosed by a′1 and a′2 before the winding.

Fig. 12a shows a deformation of a′2 that makes it manifest that a′2 can be expressed

as

a′2 = τβ1
(a2) , (4.11)

where τβ1
is the automorphism of π2[M, x0] defined by eq.(4.4)–(4.5). In Fig. 12b,

the surface a′1 is expressed as the sum of two surfaces. The first (outer) surface is just

a1 ◦ a2, the surface that encloses both loops. The second (inner) surface is (a′2)
−1; it

is the same as a′2, except with the opposite orientation. We see that

a′1 = a1 ◦ a2 ◦ (a′2)
−1 . (4.12)

Finally, we apply eq. (4.7) to find the magnetic charges after the winding; the result
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is

h(2)′(a1) = h(2)(a′1) = h(2)(a1 ◦ a2)
[

h(2)′(a2)
]

−1
,

h(2)′(a2) = h(2)(a′2) = h(1)(β1)
−1 h(2)(a2) h(1)(β1) .

(4.13)

Of course, the total magnetic charge is unchanged, because h(2)(a1◦a2) = h(2)′(a1◦a2).

In the case of the Alice string, the magnetic charge can be labeled by an integer

p—the charge in units of the Dirac charge. If the magnetic charges on the string

loops are initially p1 and p2, and then loop 2 winds through loop 1, eq. (4.13) says

that the charges become modified according to

|p1, p2〉 → |p1 + 2p2,−p2〉 , (4.14)

in accord with the analysis in Section 2.

4.4. Dyons

We may also consider dyonic Alice string loops, that carry both magnetic and

electric charge. The classical magnetically charged Alice string loop has a charge

rotor zero mode, just like the magnetically neutral loop considered in Section 3, and

we may proceed with semiclassical quantization in the same manner as before. The

only difference from the previous discussion is that, for the magnetically charged

loop, there is a topological obstruction to defining global gauge transformations in

the disconnected component of the unbroken group H , similar to the obstruction

discussed in Ref. 9. (The obstruction occurs because the automorphism that reverses

the sign of Q is incompatible the matching condition of a magnetic monopole.) Thus,

we obtain states that transform irreducibly under the connected component Hc =

U(1), but the states do not transform as representations of the full group.

By decomposing the classical string with magnetic charge p into irreducible rep-

resentations of U(1), as in Section 3, we find states |q, p〉 with electric charge q, where
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q is any integer. Reanalyzing the charge transfer process, we find that, when loop 2

winds through loop 1, the charge assignments change according to

|q1, p1; q2, p2〉 → |q1 + 2q2, p1 + 2p2;−q2,−p2〉 . (4.15)

Naturally, both magnetic charge and electric charge are exchanged.

We will comment briefly on how the analysis is modified when the vacuum θ-angle

is nonzero. The nonvanishing vacuum angle alters the U(1) transformation properties

of states with nonzero magnetic charge, so that eq. (3.5) is replaced by
[17]

U(eiωQ) |q, p〉 = exp

[

iω

(

q +
θ

2π
p

)]

|q, p〉 , (4.16)

where Q is the U(1) generator, and q is the charge of the state defined in terms of the

electric flux through the surface at spatial infinity. Thus, for magnetically charged

string loops, as for all magnetically charged objects, the charge spectrum is displaced

away from the integers by −θp/2π. But otherwise, the discussion of electric and

magnetic charge transfer is not altered; in particular, eq. (4.15) still applies.

4.5. Linked Loops

The homomorphism defined in eq. (4.2) assigns a magnetic charge to any region

whose boundary is homeomorphic to S2. But if two string loops link, the magnetic

charge on each individual loop is not well defined in general. Only the total magnetic

charge of the two loops can be defined. The magnetic field of a pair of linked loops

has some interesting properties that we will briefly discuss.

In general, two non-abelian string loops can link only if the commutator of their

fluxes is in the connected component of the unbroken group.
⋆

This feature is a conse-

quence of the “entanglement” phenomenon. Suppose that a string loop with flux h1

and a string loop with flux h2 cross each other, and become linked. After they cross,

⋆ We thank Tom Imbo for a helpful discussion about this.
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a flux h1h2h1
−1h2

−1 must flow from one loop to the other.
[18,19,14]

If this commutator

is not in the connected component of H , then the commutator flux is itself confined

to a stable string. Thus, the two loops must be connected by a segment of string

that carries the commutator flux. On the other hand, if the commutator is in the

connected component of H , then the commutator flux is unconfined, and the flux

will spread out uniformly over the h1 and h2 loops. The linked loops will have a

long–range magnetic dipole field, though the total magnetic charge of the linked pair

is zero.

In the case of the Alice string, consider two linked loops that carry flux Xeiθ1Q

and Xeiθ2Q, respectively. The commutator flux ei2(θ2−θ1)Q is in Hc, so that linking is

allowed. The strength of the dipole field is proportional to θ2 − θ1 (mod 2π). If we

fix the positions of the loops and specify initial values for θ1 and θ2, then, since the

dipole field costs magnetostatic energy, the angle θ2 − θ1 will oscillate and the dipole

field will become time dependent. These oscillations will cause emission of radiation,

and θ2 − θ1 will decay, eventually approaching zero.

5. Concluding Remarks

In any model in which a connected gauge group G breaks to a group H that has

a disconnected component, there will be topologically stable strings. If, in addition,

H contains noncontractible closed paths, then the magnetic flux of a string loop can

have a topologically stable twist. Thus, the string loop can carry magnetic charge.

Note, in particular, that in order for a string loop to be capable of carrying magnetic

charge, there is no need for charge conjugation to be a local symmetry.

But if the string is not an Alice string, the magnetic charge will not be Cheshire

charge—instead, the magnetic charge will be localized on the string. A loop with

Cheshire magnetic charge will have Coulomb energy of order

ECoulomb ∼ p2

e2 R
, (5.1)

where p is the charge in units of the Dirac magnetic charge, e is the gauge coupling,
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and R is the size of the loop. If the charge is localized on the string, the Coulomb

energy is enhanced by a factor of order log(R/r), where r is the thickness of the

string.

When the charge p is large, classically stable string loop configurations can be

constructed, such that the Coulomb potential energy prevents the loop from collaps-

ing. If the charge is Cheshire charge, then the size R and mass m of a stable loop

are, in order of magnitude,

R ∼
(p

e

)

κ−
1
2 , m ∼

(p

e

)

κ
1
2 , (5.2)

where κ is the string tension. Though classically stable, these string loops are not

expected to be absolutely stable; they will emit elementary monopoles via a quantum

tunneling process, assuming that the emission is kinematically allowed.

As we have seen, any phase transition that produces Alice strings must also

produce magnetic monopoles. This observation significantly restricts the role that

Alice strings can play in cosmology. The process that produces the strings will also

produce an unacceptably large abundance of monopoles.
[20]

If such a process occurred

in the very early universe, it (presumably) must have been followed by inflation that

reduced the monopole abundance to an acceptable level. But, of course, the inflation

would also make Alice strings extremely scarce.

One caveat should be mentioned. The remark in the previous paragraph ap-

plies to any model such that the unbroken gauge group H contains a U(1) factor

and a charge conjugation operator that reverses the sign of the U(1) generator Q.

But it need not apply to models that exhibit the generalized Alice-like behavior con-

sidered at the end of Section 2. In particular, a model with the unbroken group

H = [SU(2)1 × SU(2)2] ×S.D. Z2 contains generalized Alice strings. But since H is

simply connected, this model contains no magnetic monopoles.

Finally, we remark that the discussion of magnetic charge transfer in Section 4

also applies to the line and point defects that arise when a global symmetry group G
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becomes spontaneously broken to a subgroup H . (Such defects can occur in certain

condensed matter systems, such as nematic liquid crystals.
[19]

) By a standard argu-

ment,
[16,6,19]

the magnetic charge, classified by π1[H ], is seen to be equivalent to the

topological charge of the order parameter Φ, classified by π2[G/H ] (assuming that G

is simply connected). Thus, our previous analysis applies, without modification, to

the transfer of topological charge between a “global monopole” and a “global Alice

string.”

Recently, Brekke, Fischler, and Imbo
[21]

have independently investigated the prop-

erties of magnetically charged Alice strings.

We thank Mark Alford, Rick Davis, Tom Imbo, Kai-Ming Lee, John March-

Russell, Sandip Trivedi, and Piljin Yi for interesting discussions.
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FIGURE CAPTIONS

1) The curve C, starting and ending at the point x0, encloses a loop of cosmic

string.

2) A circle, parametrized by φ, encloses an Alice string. Corresponding to each

point of the circle is an unbroken symmetry group H(φ) that stabilizes the

condensate Φ(φ) at that point.

3) Initially two particles carry charge of the same sign. But after one of the

particles travels around the string, the particles carry charge of opposite sign.

4) The surface S is a cut at which the electric field changes sign. The loop in (b)

carries Cheshire charge.

5) A particle that initially has positive charge travels through a loop of Alice string

along the path shown in (b). The electric field during the process is indicated

schematically in (c)–(e).

6) The flux on the two string loops C1 and C2 is defined with respect to the base-

point x0 and the paths C1 and C2. When C2 winds through C1 as in (b), the

paths C ′

1 and C ′

2 are dragged to C1 and C2.

7) The family of closed paths {Cφ | 0 ≤ φ < 2π} sweeps out a degenerate torus

that encloses the Alice string loop.

8) A family of closed paths {C ′

φ} obtained by smoothly deforming the family {Cφ}.
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9) A family of loops C ′′

φ that sweeps over the surface of a sphere. The loops C ′′

0

and C ′′

2π are degenerate.

10) The free surface Σ̄ in (a) can be threaded to the basepoint x0 in inequivalent

ways, two of which are illustrated in (b) and (c). The surface (c) can be de-

formed to (d), which differs from (b) by the degenerate tube β that begins and

ends at the basepoint.

11) The magnetic flux of the string loops C1 and C2 is defined in terms of the paths

β1 and β2 shown in (a), and the magnetic charges of the loops are defined in

terms of the surfaces a1 and a2; the paths and the surfaces are based at the

point x0. When C2 winds through C1 as in (b), the surface a′1 shown in (c) is

dragged to a1, and the surface a′2 shown in (d) is dragged to a2. The arrows on

the surfaces indicate outward–pointing normals.

12) Deformations of the surfaces shown in Fig. 11c-d. In (a), the surface a′2 has

been deformed to the degenerate tube β1 plus the surface a2. In (b), the surface

a′1 has been deformed to the surface a1 ◦ a2 that encloses both loops, plus the

inverse of a′2 (that is, a′2 with the orientation reversed); the surface (a′2)
−1 is

the sum of the degenerate tube (β1)
−1 and the surface (a2)

−1.
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