A Caltech Library Service

The patterning and functioning of protrusive activity during convergence and extension of the Xenopus organiser

Keller, Ray and Shih, John and Domingo, Carmen (1992) The patterning and functioning of protrusive activity during convergence and extension of the Xenopus organiser. Development, 116 (Supp.). pp. 81-91. ISSN 0950-1991.

PDF - Published Version
See Usage Policy.


Use this Persistent URL to link to this item:


We discuss the cellular basis and tissue interactions regulating convergence and extension of the vertebrate body axis in early embryogenesls of Xenopus. Convergence and extension occur in the dorsal mesoderm (prospective notochord and somite) and in the posterior nervous system (prospective hindbrain and spinal cord) by sequential cell intercalations. Several layers of cells intercalate to form a thinner, longer array (radial intercalation) and then cells intercalate in the mediolateral orientation to form a longer, narrower array (mediolateral intercalation). Fluorescence microscopy of labeled mesodermal cells in explants shows that protrusive activity is rapid and randomly directed until the midgastrula stage, when it slows and is restricted to the medial and lateral ends of the cells. This bipolar protrusive activity results in elongation, alignment and mediolateral intercalation of the cells. Mediolateral intercalation behavior (MIB) is expressed in an anterior- posterior and lateral-medial progression in the mesoderm. MIB is first expressed laterally in both somitic and notochordal mesoderm. From its lateral origins in each tissue, MIB progresses medially. If convergence does not bring the lateral boundaries of the tissues closer to the medial cells in the notochordal and somitic territories, these cells do not express MIB. Expression of tissue-specific markers follows and parallels the expression of MIB. These facts argue that MIB and some aspects of tissue differentiation are induced by signals emanating from the lateral boundaries of the tissue territories and that convergence must bring medial cells and boundaries closer together for these signals to be effective. Grafts of dorsal marginal zone epithelium to the ventral sides of other embryos, to ventral explants and to UV-ventralized embryos show that it has a role in organising convergence and extension, and dorsal tissue differentiation among deep mesodermal cells. Grafts of involuting marginal zone to animal cap tissue of the early gastrula shows that convergence and extension of the hindbrain-spinal cord are induced by planar signals from the involuting marginal zone.

Item Type:Article
Related URLs:
URLURL TypeDescription
Additional Information:© 1992 The Company of Biologists Limited. We thank Dr Connie Lane, Dr Amy Sater, and Dr Jeremy Green for their insightful comments and suggestions.
Subject Keywords:convergence, extension, morphogenesis, motility, gastrulation, Xenopus
Issue or Number:Supp.
Record Number:CaltechAUTHORS:20120315-112816323
Persistent URL:
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:29731
Deposited By: Tony Diaz
Deposited On:20 Mar 2012 21:59
Last Modified:03 Oct 2019 03:44

Repository Staff Only: item control page