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Abstract. I describe some recent developments concerning the role of non-commutative Yang–
Mills theory in string theory.
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In this paper, I will report on work with N Seiberg [1] in which we attempted to understand
in a more systematic framework the relation of string theory to non-commutative Yang–Mills
theory. Such a relationship was first uncovered by Connes, Douglas and Schwarz in the context
of matrix theories [2]. Two of the papers most relevant to this paper are that of Schomerus
[3], attempting to extract a non-commutative parameter directly from conformal field theory,
and that of Nekrasov and Schwarz on instantons on non-commutativeR4 [4]. For additional
references to the extensive literature, I refer to [1]. Further aspects of the subject have been
explained by Seiberg [5].

The original application of non-commutative Yang–Mills theory to string theory [2] was
to compactification onT2 (orTn with n > 2) in the limit of small area, with a fixed, non-zero
value of

ϑ =
∫
T2
B.

HereB is the Neveu–Schwarz 2-form field that couples to the elementary string worldsheet6

via the familiar coupling
∫
6
B.

Instantons

At first sight, the discussion in [2] seemed to be quite tied to the small-area limit. Nekrasov
and Schwarz [4] then gave a fascinating application of non-commutative Yang–Mills theory
to string theory that did not involve small area at all. They considered string theory instantons
onR4 in the presence of a constant, non-zeroB-field, and claimed that they have the same
moduli space as instantons on a non-commutativeR4, with a non-commutativity parameter
determined byB.

To be more specific, in flatR10 considerN parallel 3-branes, with the worldvolume a flat
R4 linearly embedded inR10. On the worldvolume of this system, there is aU(N) gauge
symmetry, with unbroken four-dimensionalN = 4 supersymmetry. Now introduce a constant
B-field, that is aB-field with constant componentsBIJ , I, J = 1, . . . ,4. Note that in the
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presence of the branes, a constantB-field cannot be gauged away (as this would generate a
constant magnetic fieldF on the branes; to describe the situation more accurately, there is a
gauge-invariant combinationF +B that cannot be gauged away).

Now, let us look at gauge configurations on the branes that preserve half of the
supersymmetry. In the field theory limit, these are Yang–Mills instantons, that is, solutions
of the instanton equationF +

IJ = 0 (hereF + is the self-dual projection ofF ). The classical
instanton equation is scale-invariant, and classical instantons come in all sizes.

Going over to string theory, for sufficiently big instantons, the classical instanton equation
is in fact a good approximation. As the instanton shrinks, we generically expect thatα′

corrections will become important. However, as explained in section 2.2 of [1], with a suitable
regularization there are in fact noα′ corrections to the instanton moduli space ifB = 0.
One shows this by writing down the sigma model for open strings ending on the 3-branes
with boundary coupling to gauge fields, with a certain kind of Pauli–Villars regularization.
Spacetime supersymmetry is equivalent to the existence of a certainSU(2) group ofR-
symmetries, and this condition gives the classical instanton equation. For further details on
this argument, consult [1].

In particular, it follows from this that atB = 0, the stringy instanton moduli space is the
same as the classical one, and thus there is asmall-instanton singularity, the singularity that
appears in the moduli space when an instanton shrinks to zero size. Indeed, the meaning of
the small-instanton singularity in string theory is familiar. An instanton can shrink to zero
size and escape as a−1-brane; there is a singularity where the two branches (instantons and
−1-branes) meet.

Now, we turn toB 6= 0. We find that ifB+ 6= 0, there can be no small-instanton singularity
since a state consisting of a 3-brane and a separated−1-brane is not supersymmetric. There
is an energetic barrier separating the−1-brane from the 3-branes, and hence the usual small-
instanton singularity must be absent forB+ 6= 0.

So the instanton moduli space must haveα′ corrections atB+ 6= 0. Indeed, Nekrasov and
Schwarz proposed that atB 6= 0, the moduli space of stringy instantons is equal to the moduli
space of ‘instantons on a non-commutativeR4’.

What are they? For this, we must recall the definition of non-commutative Yang–Mills
theory [6]. We start with a Poisson bracket of functions onR4:

{f, g} = θ ij ∂if ∂jg.
Hereθ is a bivector with constant coefficientsθ ij ; it will be determined in terms ofB. Now
deform thef ’s to elementŝf of a non-commutative associative algebraA with multiplication
denoted by∗ and

f̂ ∗ ĝ − ĝ ∗ f̂ = i{f, g} +O(θ2).

(One further requires that the∗ product has an expansion in powers ofθ , with each term given
by a local expression, of finite order in derivatives off andg.) There is an essentially unique
such product, up to a certain equivalence relation. It can be written explicitly as

f ∗ g(x) = exp

(
i

2
θ ij

∂

∂yi

∂

∂zj

)
f (y)g(z)

∣∣∣∣
y=z=x

.

This formula defines what is known as the Moyal bracket of functions onR4.
Once the algebraA has been defined, one imitates the familiar definitions in gauge theory.

We consider first the rank-1 case. The gauge parameterλ̂ is a function, that is, an element ofA.
The componentŝAi of the gauge field are likewise elements ofA. The gauge transformation
law is

δÂi = ∂i λ̂i + îλ ∗ Âi − iÂi ∗ λ̂,
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just like in Yang–Mills theory, but with∗ products instead of matrix multiplication. The
gauge-covariant field strength is likewise

F̂ij = ∂iÂj − ∂j Âi + iÂi ∗ Âj − iÂj ∗ Âi,
with

δF̂ij = îλ ∗ F̂ij − iF̂ij ∗ λ̂.
For the rank-N version, one simply replacesA by its tensor product with the algebra of

N × N complex matrices. Then, reinterpreting∗ as the tensor product of the∗ product as
defined above with matrix multiplication, one uses the above formulae.

Now, we can define what we mean by an instanton on a non-commutativeR4. It is simply a
non-commutative gauge field, in the above sense, for which the non-commutative field strength
F̂ obeysF̂ + = 0. Nekrasov and Schwarz showed that the moduli spaceM̂ of such objects
is given by a deformation of the ADHM equations to include a ‘Fayet–Iliopoulos’ additive
constant. This deformation has been studied mathematically [7] as a partial desingularization
of the classical instanton moduli spaceM, and also arises [8] in matrix theory in the presence
of aB-field.

It turns out that the stringy instanton moduli space is indeed the non-commutative instanton
moduli spacêM, wheneverB+ 6= 0. A detailed discussion is given in [1], and we add a few
words below. However, jumping ahead of our story a bit, non-commutative Yang–Mills is
most effective in describing the physics for very largeB, i.e.α′|B| � 1. Note that|B| → ∞
is part of the story of Conneset al [2], since they took the area of a 2-torusT2 (on which the
theory was compactified) to zero with fixed

∫
T2 B; this clearly implies that|B| → ∞. (|B| is

defined as
√
gIKgJLBIJBKL.) So the|B| → ∞ limit is quite close to the starting point of the

subject.
Also, we should not leave the subject of instantons without noting that there is something

very strange about describing stringy instantons via solutions of a non-commutative instanton
equationF̂ + = 0. If this is so for instantons in general, it must be true in particular for big
instantons, with a scale size much bigger than the string scale. However, it should be possible,
even for non-zeroB, to describe big instantons using ordinary gauge fields, obeying an equation
that differs from the classical instanton equations byα′ corrections (which can be computed
via sigma models, for instance) that preserve the ordinary Yang–Mills gauge invariance. So a
simple equation̂F + = 0 with non-commutative gauge invariance must be equivalent to a more
complicated equation with ordinary gauge invariance. Before explaining this rather surprising
fact, we will restate the problem in a more general context.

Open strings in a magnetic field

I have introduced our discussion of the role of non-commutative Yang–Mills theory by
considering instantons, because they give a very striking application, where string theory is
highly non-classical but can be described in great detail. This contrasts, say, with Calabi–Yau
theory, where a full description is way out of reach. However, now we are going to leave the
instantons behind. For the rest of this paper, we will try to derive non-commutative Yang–Mills
systematically fromopen strings in a constant magnetic field, a problem studied extensively
in the mid-1980s [9, 10]. In the bosonic case, the worldsheet action is

I = 1

4πα′

∫
d2z gIJ ∂zX

I ∂zX
J − i

2

∫
BIJ dXI ∧ dXJ .

We will be consideringopen stringvertex operators only. To evaluate their correlators, we
need the propagator

〈XI(τ)XJ (τ ′)〉
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for τ , τ ′ on the boundary. This was found long ago to be

〈XI(τ)XJ (τ ′)〉 = −α′GIJ ln(τ − τ ′)2 + i 1
2θ

IJ ε(τ − τ ′),
where

GIJ =
(

1

g + 2πα′B

)IJ
SYM

and

θIJ = 2πα′
(

1

g + 2πα′B

)IJ
ANTI

.

Here the subscriptsSYMandANTI are instructions to take the symmetric or antisymmetric
part of a matrix.

The logarithmic term in the propagator determines the anomalous dimensions of operators.
For instance, the tachyon vertex operator exp(ip ·X) has dimension12α

′GIJpIpJ , soGIJ (or
rather its inverseGIJ ) is the effective metric seen by the open strings. On the other hand, as
suggested in [3],θ determines the non-commutativity. We have indeed forτ → τ ′ with τ > τ ′

eip·X(τ) eiq·X(τ ′)→ |τ − τ ′|α′GIJ pI qJ exp
(

1
2iθIJ pI qJ

)
ei(p+q)·X(τ ′).

If we could ignore the factor|τ − τ ′|α′GIJ pI qJ , we would recognize the∗ product

eip·X ∗ eiq·X = exp
(

1
2iθIJ pI qJ

)
ei(p+q)·X.

Of course, it is completely wrong in general to ignore this factor. It is closely tied up with the
usual anomalous dimensions of operators and the whole standard worldsheet structure. String
theory just would not work without it.

The rest of this paper has two parts:

(a) What we can say in general.
(b) What we can say when we get rid of the anomalous dimensions.

GeneralB dependence of the effective action

Note first that the term in the propagator involvingθ is a piecewise-constant function ofτ and
τ ′, and hence does not contribute to correlation functions of dX/dτ or of higher derivatives
dmX/dτm,m > 1. Suppose now that we consider open strings withU(N)Chan–Paton factors.
Consider the tree-level scattering ofk gauge bosons of momentapi , polarizationsεi and Chan–
Paton wavefunctionsλi , with i = 1, . . . , k. Tree level means that the worldsheet is a disc.
The scattering amplitude is

A(λi, εi, pi)G,θ = Tr λ1λ2 . . . λk

∫
dτ ′i

〈
k∏
i=1

εi · dX
dτ

eipi ·X(τi)

〉
G,θ

.

The subscriptsG andθ mean that the amplitudes and correlation functions are evaluated as a
function ofG andθ , respectively. The vertex operators are inserted on the boundary of the
disc in a definite cyclic order; the symbol dτ ′i refers to an integral over the positions of theτi
modulo the action ofSL(2,R). The onlyθ dependence of the correlation function that appears
in the above formula for the amplitude is a factor

exp

(
− 1

2i
∑
s>r

θIJ ps,Ipr,J

)
that comes from the expectation value of the product of exponential operators. This factor,
which arises in evaluating the correlation function that appears inside the dτ ′i integral, is a
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piecewise-constant function of theτi that depends only on their cyclic ordering; this cyclic
ordering is kept fixed in evaluating the integral that gives the scattering amplitude. Hence, this
factor appears as an overall factor multiplying an otherwiseθ -independent amplitude.

Given the tree-levelS-matrix, one can, atθ = 0, find alocaleffective action that generates
it to any desired order inα′. It takes the general form

SG = 1

gst

∫
dnx
√
GTr

(
GIKGJLFIJFKL + α′ corrections

)
.

The effective action is written as the spacetime integral of a single trace of a product of gauge-
covariant fields (rather than the integral of a product of traces) since the scattering amplitude is
proportional to a single trace Trλ1λ2 . . . λk of Chan–Paton wavefunctions multiplied in cyclic
order. We write the effective action asSG to emphasize that it depends on the metricG.

Now we want to incorporate the effects of havingθ 6= 0. For this, we must incorporate
the phase factor in the scattering amplitude. This factor has the effect of replacing ordinary
multiplication of wavefunctions by the∗ product. This has the effect, for example, of replacing
the standard definition ofFIJ by the definition we gave above of̂FIJ . Theθ - andG-dependent
effective actionSG,θ is obtained fromSG by replacing everywhereF by F̂ and replacing the
matrix multiplication by a∗ product. Thus

SG,θ = 1

gst

∫
dnx
√
G
(
GIKGJLF̂IJ F̂KL + α′ corrections

)
,

with the same formula as atθ = 0, except that now everything is ‘non-commutative’.
So, non-commutative Yang–Mills theory can be used to give a simple description of the

θ orB dependence of the effective action, to all orders inα′. (This also seems to imply that at
θ 6= 0, F̂ + = 0 must be the exact instanton equation, given that atθ = 0,F + = 0 is exact. For
if at θ = 0, theF + dependence of the action is quadratic and higher order near an arbitrary
solution ofF + = 0, then atθ 6= 0, the same will hold for thêF + dependence near an arbitrary
solution of F̂ + = 0.) In this non-commutative description, the effective action has a very
complicatedα′ expansion: the same as theα′ expansion one gets in the usual commutative
description atθ = 0.

Comparison with ordinary Yang–Mills theory

On the other hand, by standard methods, such as aσ -model approach to the effective action
using Pauli–Villars regularization, one can describe the effective action via local gauge-
invariant interactions with conventional Yang–Mills gauge invariance, to all orders inθ and
α′. In this framework, the action is naturally written in terms of the ‘original’ or closed string
metric g which appeared in the worldsheet action, and theB dependence is expressed by
replacingF with F +B.

Here is a familiar example: the case ofU(1) gauge fields with possibly large, but almost
constant, field strength. The effective action is the Dirac–Born–Infeld action

S = 1

gst

∫
dnx

√
det(g + α′F + α′B).

This action is expressed in terms of standard gauge-invariant interactions for an ordinary gauge
fieldA, with conventional field strengthF . It depends on bothθ andG (org andB) explicitly,
not just via a∗ product.

This seems like a contradiction. The same effective action for open string scattering can
be described both by non-commutative Yang–Mills fields and also by standard Yang–Mills
theory! The two frameworks must therefore be equivalent (by a transformation that changes
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the form of the action). There is, in fact, a completely explicit transformation that does this,
to first order inθ (see [1] for details). To all orders inθ , the transformation is generated by an
explicit differential equation. An interesting feature of this transformation is that is does not
map the gauge group of ordinary Yang–Mills to the gauge group of non-commutative Yang–
Mills (this would be impossible, since for instance in the rank-1 case one group is Abelian and
one is non-Abelian). Rather, the transformation maps the gauge equivalence relation of one
theory to the gauge equivalence relation of the other. This is good enough.

α′ → 0 limit

So far, our path to seeing non-commutative Yang–Mills in open string physics has gone via
theS-matrix. It would be much nicer to extract the∗ product, or a more general associative
product including excited strings, directly from the OPEs of the worldsheet conformal field
theory.

As we have seen above, the obstruction to doing this is in the anomalous dimensions
of the operators. Indeed, if the dimensions of vertex operators vanished, we could obtain
an associative but, in general, not commutative algebra simply from multiplication of vertex
operators. IfV andV ′ are two vertex operators, we would define the productV ∗ V ′ simply
as limτ→τ ′ V (τ)V ′(τ ′). This would automatically be associative, since open string vertex
operators are inserted on the boundary in a definite cyclic order, but in general it would not be
commutative.

The dimensions of vertex operators spoil this naive definition. The limiting operator
product limτ→τ ′ V (τ)V ′(τ ′) generically needs some renormalization when the dimensions do
not vanish, and after making this renormalization to defineV ∗ V ′, one is unable to prove
the associative relation(V ∗ V ′) ∗ V ′′ = V ∗ (V ′ ∗ V ′′). In trying to prove this relation by
considering a product of three vertex operatorsV (τ)V ′(τ ′)V ′′(τ ′′)with τ > τ ′ > τ ′′, one runs
into the fact that the renormalization needed to define(V ∗V ′)∗V ′′ from this operator product
is different from the renormalization needed to defineV ∗ (V ′ ∗ V ′′).

Precisely for this reason, in trying in the mid-1980s to base open string field theory on an
associative algebra and on Connes’s axioms for non-commutative geometry, it was necessary
to use, not the operator product algebra directly, but amessyalgebra defined in terms of gluing
of strings [11].

Likewise, the anomalous dimensions prevent one from seeing either ordinary Yang–Mills
gauge invariance (atθ = 0) or non-commutative Yang–Mills gauge invariance (forθ 6= 0)
directly from OPEs. Atθ = 0, a standard way to make the gauge invariance manifest involves
going to long wavelength, or equivalently, takingα′ → 0 at fixed wavelength. Then one makes
a sigma-model expansion in powers of the propagator, which is of orderα′. In this expansion,
the anomalous dimensions vanish in the leading order, and in perturbing around this limit, we
can make the gauge invariance manifest.

At θ 6= 0, we can do exactly the same thing. We recall that our propagator is
−α′GIJ ln(τ−τ ′)2+θIJ ε(τ−τ ′). To eliminate the anomalous dimensions while retaining the
non-commutativity and obtaining a limit for the effective geometry seen by the open strings,
we want to takeα′ → 0 with fixedG andθ . Looking back to the formulae given earlier for
definingG andθ in terms ofg, B andα′, this can be done by takingα′ to zero, withB fixed
as a 2-form andg also going to zero. Indeed, one can takeα′ ∼ ε, gIJ ∼ ε1/2, BIJ ∼ 1.
(I am assuming thatBIJ is non-degenerate; otherwise, one makes this scaling ofg only in a
subspace in whichBIJ is non-degenerate, and leavesg fixed on the nullspace ofB.)
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In this limit, the worldsheet action reduces to the interaction with theB-field:

−i 1
2

∫
6

BIJ dXI ∧ dXJ .

This is invariant under diffeomorphisms of the worldsheet6, which perhaps is the basic reason
that this limit is so simple. Since we have takenα′ → 0, the spacetime action reduces to

SG,θ = 1

gst

∫
dnx
√
GGIKGJL Tr

(
F̂IJ F̂KL

)
,

with vanishing of theα′ corrections.
KeepingBIJ fixed while scalinggIJ to zero gives us, if we are on a torus, the small-volume

limit with fixed periods ofB. This is the limit where the relevance of non-commutative Yang–
Mills theory to physics was argued in [2]. Thus we have returned more or less to the starting
point, having hopefully learned something new along the way.
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