CaltechAUTHORS
  A Caltech Library Service

Development and testing of the Active Temperature, Ozone and Moisture Microwave Spectrometer (ATOMMS) cm and mm wavelength occultation instrument

Kursinski, E. R. and Ward, D. and Stovern, M. and Otarola, A. C. and Young, A. and Wheelwright, B. and Stickney, R. and Albanna, S. and Duffy, B. and Groppi, C. and Hainsworth, J. (2012) Development and testing of the Active Temperature, Ozone and Moisture Microwave Spectrometer (ATOMMS) cm and mm wavelength occultation instrument. Atmospheric Measurement Techniques, 5 (2). pp. 439-456. ISSN 1867-1381. https://resolver.caltech.edu/CaltechAUTHORS:20120328-071640695

[img]
Preview
PDF - Published Version
Creative Commons Attribution.

1858Kb

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20120328-071640695

Abstract

We present initial results from testing a new remote sensing system called the Active Temperature, Ozone and Moisture Microwave Spectrometer (ATOMMS). ATOMMS is designed as a satellite-to-satellite occultation system for monitoring climate. We are developing the prototype instrument for an aircraft to aircraft occultation demonstration. Here we focus on field testing of the ATOMMS instrument, in particular the remote sensing of water by measuring the attenuation caused by the 22 GHz and 183 GHz water absorption lines. Our measurements of the 183 GHz line spectrum along an 820 m path revealed that the AM 6.2 spectroscopic model provdes a much better match to the observed spectrum than the MPM93 model. These comparisons also indicate that errors in the ATOMMS amplitude measurements are about 0.3%. Pressure sensitivity bodes well for ATOMMS as a climate instrument. Comparisons with a hygrometer revealed consistency at the 0.05 mb level, which is about 1% of the absolute humidity. Initial measurements of absorption by the 22 GHz line made along a 5.4 km path between two mountaintops captured a large increase in water vapor similar to that measured by several nearby hygrometers. A storm passage between the two instruments yielded our first measurements of extinction by rain and cloud droplets. Comparisons of ATOMMS 1.5 mm opacity measurements with measured visible opacity and backscatter from a weather radar revealed features simultaneously evident in all three datasets confirming the ATOMMS measurements. The combined ATOMMS, radar and visible information revealed the evolution of rain and cloud amounts along the signal path during the passage of the storm. The derived average cloud water content reached typical continental cloud amounts. These results demonstrated a significant portion of the information content of ATOMMS and its ability to penetrate through clouds and rain which is critical to its all-weather, climate monitoring capability.


Item Type:Article
Related URLs:
URLURL TypeDescription
http://dx.doi.org/10.5194/amt-5-439-2012DOIUNSPECIFIED
http://www.atmos-meas-tech.net/5/439/2012/amt-5-439-2012.htmlPublisherUNSPECIFIED
Additional Information:© 2012 Author(s). This work is distributed under the Creative Commons Attribution 3.0 License. Published by Copernicus Publications on behalf of the European Geosciences Union. Received: 17 March 2011. Published in Atmos. Meas. Tech. Discuss.: 22 July 2011. Revised: 24 January 2012. Accepted: 1 February 2012. Published: 27 February 2012. This research has been funded by the National Science Foundation under grants 0723239, 0958556 and 0946411. We also greatfully acknowledge Greg Barron-Gafford at the Sustainability of semi-Arid Hydrological and Riperian Areas (SAHRA) and Russ Scott at the US Department of Agriculture USDA for providing us with access to data from their instruments in the several field experiments. Edited by: U. Foelsche.
Funders:
Funding AgencyGrant Number
NSF0723239
NSF0958556
NSF0946411
Issue or Number:2
Record Number:CaltechAUTHORS:20120328-071640695
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:20120328-071640695
Official Citation:Kursinski, E. R., Ward, D., Stovern, M., Otarola, A. C., Young, A., Wheelwright, B., Stickney, R., Albanna, S., Duffy, B., Groppi, C., and Hainsworth, J.: Development and testing of the Active Temperature, Ozone and Moisture Microwave Spectrometer (ATOMMS) cm and mm wavelength occultation instrument, Atmos. Meas. Tech., 5, 439-456, doi:10.5194/amt-5-439-2012.
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:29869
Collection:CaltechAUTHORS
Deposited By: Ruth Sustaita
Deposited On:28 Mar 2012 14:54
Last Modified:03 Oct 2019 03:45

Repository Staff Only: item control page