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1. Introduction

The asymptotic behavior of Hermite polyromials, &, (z), as n » = has
been investigated by several authors. The results previous to 1939,
among which probably the best known are those of Planchere] and
Rotach [8], are summarized in G. Szegd: Orthogonal Polyrnomials [10].
Some of the newer results are due to J. C. P. Miller[7], L. O. Heflinger
[4] and M. Wyman. Since Hermite polynomials are special parabolic
cylinder functions, attention should also be called to the results
obtained in the complex plane by A. Erdélyi, M. Kennedy and I. L.
McGregor [2] and by N.D. Kazarinoff [5].

In the present report Liouville’s method of comparing two differential
equations is used in the form in which it has been adapted to equations
with a simple transition point by R. E. Langer, and later on further
developed by T. M. Cherry and Erd€lyi so as to obtain asymptotic solu-~
tions holding uniformly over an unbounded region of z. It is shown in
section 2 that the comparison of the differential equation for Hermite
polynomials with the Airy equation (2.7) furnishes a single asymptotic
expression, (2.25), holding uniformly for all real z > 0 as n » o ; and
this asymptotic expression is also valid for fixed n 28 z + o . Because
of the symmetry of Hermite polynomials it is of course sufficient to
consider the interval 0 <z <ec,

From the representation thus obtained we derive in sections 3 and 4
simpler asymptotic forms in the oscillatory region, in the transition
region and in the monotonic region, respectively. In the transition
region tvo forms are derived, one of which is very simple but has only
a narrow range of validity, while the other is more complicated, in~
volves the Airy function, but is vaiid in a much larger neighborhood of
the transition point. This latter fnrmula is derived by the same techni-
que as used by Erd€lyi for the Laguerre polynomials, and its range of
validity overlaps the oscillatory region and the monotonic region, in
which the other two simplified f3rms hold.
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In section 3 this has been carried through for H, (N%%), N = 2n + 1,
and in section 4 the corresponding results are deduced for H [(2 n)4x].
This has been done not only in view of the need for both sets of form-
ulas, but aiso in order to see if both sets are equally good. In fact it
turned out, that there is a difference regarding the error terms in the
transition region, where the forms for H_(N %x) are slightly more advan-
tageous than the corresponding two forms for H n{(2w)xx]. Otherwise
there is no difference either in error terms or in ranges of validity.

In connection with each formula comparison is made between the
results obtained in this report and earlier known results.

I am indebted to Professor Erdélyi for suggesting this investigation
and for much helpful advice during the preparation of this report. We are
both indebted to Professor Wyman for showing us his unpublished re-
sults on Hermite Polynomials, which stimulated the present investi-
gation.

2. An asymptotic representation of H,[(2n + 1)% 2]

For the Hermite polynomials H, (z), normalized as for instance in
[3] and [10], we have

{n/a] -3
(-1)* (2z)" g2 dt
@1  H()=nl ) ek M

-T
[

F 3
and

(22)  expl-z%/2)H (2)=2"*D (2% z)

The parabolic cylinder function D, (2%2), and hence expl(-z2/2) H (2),
is a solution of the differential equation

d%
(2.3) W(2n+1~z’)uu0;

another solution whirh is lincacly independent ofﬁh(?f"z?is o Lz,

Accerding to [3] we have for acbitrary fixed »

-k g

24 D {2Ve explaz® 412 11+ O{2"%)

as zas, |argz|v Im 4,



Ao

In order to use [1, thecrem 1], we set in (2.3)
25) z=N¥x, N=2n+l=-iv, argv=n/2

and obtain

2y
—+ v - 1u=0,

(2.6)

which we shall study in the interval J:0 < x < = . Since in this interval
the equation has a transition point at x = 1, the comparison equation to
be chosen will be

d?w
(207) dg 2 hd ‘u‘ - 0

This equation has the Airy functions

w,= dile"s) r=0,11,
as particular solutions; here o= e¥"t/3,
Rith « three tires continuously differentiable funetion ¢{x) satisfy-

ing & ()£ 0 on I, we set
2.0 tm=1?V3l), wwl-gT* ¥ ix)

and thereby transforr; (2,71 intn
'8

¥
(29 e [P * 1, 211 w0

wkere the Sehwaezinn derivative {¢, 1 §s given by

52:1(‘? i P 1’5"""" "'"""*( )
“ox =y

Thow we Lage
1200 Xi"ﬂa»’k(‘,”‘f”i £ ¥ xnf;‘é Fali, 2},

-
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In order to achieve that the dominant terms for large v in (2.6) and
(2.9) coincide, we shall try to determine ¢ (x) so as to satisfy the
equation

(212) ¢ ?=2"-1

This equation has a real solution, which is aegative in 0 < x < 1, zero
atx =1 and positive for x > 1, and which is given explicitly by

(2.13) a(x)—-—(- )%= f1(1 z)wdts—-}sx(l—x’)mi-—;—cos-lx

x<1

2 1 1 -
(2.14) B(x)=3—¢>a/ ST R AR Vi TR A 1)"”-—2- cosh™!
' 2
x>1
Here 20s™' x and cosh™* x stand for the principal branches of the re«
spective functions, and fractional powers of positive values are taken
positive (everywhere in the present report).

It is easily verified that the function ¢{x) so determined is three
times continuously differentiable, and moreover that ¢ “(x) > 0 in the
whole interval I.

Next we write (2,6) in the form

£

(2.15) *-:l-I;’;--;- [v® ¢+ Lalg, 2l u = Flx)u

where

(216) Fx)=1lg, 1l

and ob!tin an estivate of Flx), holding unifsrmly in the intérval 1, By
using (2.11)) and (2,12} we find

5 x%«1 3x¥s 0
i B St 1 ¥
Figy TR ~ T e if %1
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and from (2.16), (2.10) &xnd the properties of ¢ (x) it follows that F (x) is
continuous in I. From (22.14) we derive the asymptotic expansion

(2.17) Bl)=Y%x*~ 2o (2x)— 4+ 0(x"?) as  x-» oo

In fact, this is more accurate than we need at present, but (2.17) will be

used in full at a later stage.
Since ¢° = 9B%/4, it is then obvious that

F{x)=0(x"2%} as X - o0}
80, since F (x) is contimuous in T, we may write

|(x + 1) F(x)] <4 in 0<x<w,
where A is independenx of x and v,
Thus all the conditions in [1, theorem 1] will be satisfied, if we
choose A(v) as a constant and
(2.18) g)~Q+ )" 2|1— 2%

Since

f”g(t)dtﬁ C(x"z) 80 X - wx,
x

we have inthe entire irzterval I

1
149 had Jdt = €
(219 [* gle) (1 +xz)

From the « eorem referred to it then follows, that there exiats a

solution u , oi 2.5) fox which

(2.20) u,=¥,+0 [:1: ¥, ST e a:]

oy 1
=h+h O [v(lx&‘x’)]
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holds uniformly for arg v = Jimr, 0 < 2 <o . Here ¥, is the function de-
fined in (2.11) for r = 1. In the appraisal of the error, certain difficuities
arise due to the fact that the zeros of ¥, and u, do not coincide. In
order to cope with these difficulties, amodification Y, of Y, is intro-
duced. All zeros of Ai z are negative = let ag be the largest of these, and
set 0, = — 1*/? ¢ . We may then take

Y, if 6,> %ao,
(2.2) ¥, =
(-¢")* [14i 6,1% +|Bi 6,|%}% if 6, <Ya,

From (2.3) and (2.5) it follows thaat u | may also be written

(2.22)  u =, () D, [@N¥ 21+ ey W) D_, _,[(2N)¥ ix)

1 -1
and we proceed to determine ¢, and ¢, from a comparison of (2.20) with
(2.22), keeping n fixed and making ac -+ e

Since we know that

expl- 4 %)

oqpi/2 ;174 1L +0(7*%)

(2023) ¢4£ L =
as z w0, |argz|<a,

(see e. g. [6]), we find from (2.203), choosing for instance arg{-¢*) "%
= ”/2’

TR OV NI T CHTLLE R RS SN ¢ 1

expl{ivf - 57i/12)
2R (gg By X4

P14+ O3y

Using (2.12) and {2.17) and subst ituting v = N, we obtain

) a2, expli ™ U+ Ind) =Y -
;2‘24) uiat"’tnx x® oxp g‘“ x’z& l’: z#t} H_-&Gf* 2“




7

On the right-hand side of (2.22) we use (2.4) and obtain, from the com-
parison with (2,24), that ¢,(n) =0 and

exp (4N (1 + In 4) — Ymi]
2np¥V2NVE

¢ (n)= (2N)%n

This result shows, in combination with (2.2), (2.11), (2.20) and (2.22),
that

(2.25) |H (N* x)
= (2m) V2 N"/2HY8 oxn % N(x® - 1))

x (V" V2AINY )11+ O™ (1 + 22~}

where ¢ is given by (2.18) and (2.14). The formula (2.25) holds uniformly
in 0 < x <o and for all n such that n(1 + x2) + o, except that forx <1
the error term must be modified as mentioned in connection with (2.20).

This result agrees with the asymptotic representations obtained in
[2] for the parabolic cylinder functions in complex domains. It is also in
accordance with the formula in [7, p. 69 cf. p. 74].

3. Specialized forms for H_(V* x)

In thls section we shall derive from (2.25) simpler asymptotic forms
for H (N¥x) in each of the regions (i) 0 < x < 1, (ii) a neighborhood of
x =1, and (iii) 1 < x < o,

(i) 0<x<1
In order to make use of the asymptotic form

(30) diz=rV2{2]" Y con (3]2]¥ - Lm)+ O(z]" ¥ 88 24w

we assume that V¥% & 5 weo mm 1 o, From (2,13) and (2.14) it follows
that



g

(3.2) dx) =%V (x -1+ Olx-~1) as x-1,
#0 that the assumption N¥* ¢ + —w i equivalent to

(3.3 n¥¥l-2)s e a5 R - oo,
By (3.1) we now have

con (3 NIg|¥2 - 4+ O~ 1g|¥%)

(772 AiHY 9) - TN (g

which may be reduced to

cos (N alx) ~ %n) + Oln"* (L - x)"¥?}
nVANVE(] )V

(34) BV VPLWY §)=

by using (2.12), (2.13) and (3.2).
Sirce in this case 4i (N¥® ¢) and Bi (N ¥® &) are ofthe same order of
magnitude, the modified error term in (2.25) may be inciuded in

Oln™* (1 - x)"¥2},
and, using the above expression (3.4), we obtain from (2.25)
(3.5) H (MY %)= 2%2 AV exp [N (2% - 1)1 (1 - )" V4
x lcos[Nalx)~ Lol + Oln ™2 (1 - 2)™ ¥

where alx) is given by (2,13),
It is usual to set in the interval 0 g x <1

xecsf 0282 im;

doing this ane obteina from (3.5)

Y Y= B I% eom 6)

w

TN exnll Y con Tl Hain 170

S PRI VR T PR CR T A PRIT R RO

Sem
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This holds for 0 <z < N*, as n - e and n Y*(N¥2 - 2) 4 w, correspond-
ington 6% e,

This result agrees with the first two terms in the asymptotic expan-
sion obtained by Plancherel and Rotach [8], and from the asymptotic
expansions given by these authors it is seen that the error term in (3.6)
can not be improved. Plancherel and Rotach, however, use another
normalization of Hu (z) and have, in our notation, the argument

(2n + 2)* cos 6
Numerical estimates of the error term are given by G. Saneone {9] for z
bounded, and in the interval (i) by van Veen [11], whe alsc uses the

argument (2n + 2)% cos 6.

(ii) The neighborhood of x = 1
We first asanpe that V¥ 35 0 asn » s, or by (3.2),

(3.7 n¥(x-1)>0 as n - s,
Then, by (2.12), (3,2) and

(3.8) i z=37%[T(2/3)]7 +0(2) as 20,
we find

1%
()" V2 ANV )= (?if) 172/ 4 O Hz—a1

-

=27V 37 [I(2/3)]7 1 + 016?00 - 1))}

Since the argnment of the Airy function ia this ase teads to 2z, wie
need not modify the errer toem in (2.25), o that we readily cltain

13.9) | H ()= B (V% 5)

2&3 ”3‘3
33¥ ri'”ﬁ

ArrLe exp{: W x ¥ 1)

wli - ORPP e 12 17
u— —— )
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Thie holds as 1 » o in a neighborhood of z = N* such that
hud(.".‘ -NV")-.O

A formu's with 1 much larger range of validity than (3.9), if more
complice! 3d, car be derivid from (2.25) i the following way.

From (2.2) it {=liows that
(3.10) N =2V N¥* (x - 1)+ 0n ¥ (x - 1)) as x-1
We assume now that

(3.11) n¥3(x-~1)-0 as n s

inatead cf (3.7), ~nd uae for a while the abbruviation ¢ = 2V N¥3 (x —1).
Then, by use of the wiean value theorem and (3.10), we obtain

Ai(N¥? @)= di ¢ + 4i0) O [n ¥ (x - 1)?),
where A;'(L,\ is a modification o. i ”(¢) analogous to the modification of
Y, in (2.21), Taking A7 z in the similar sense, it cen be verified that
the following relation holda for all real z
(312 4ifz)= 4i(2) 0L+ [2]%)
Thus
ALY @)= di £+ Ai OFYHx = 1)+ Oln lx — 193]

As before, we have from (3.2)

@ = =D G 27 L s Oz 1)
By substitution in (2,25) w» get the ecror terra

Ol % Mx-1Y?), O le=11%%, Az~ and O0™Y,
the first cae of which can Le eritted since

a3y - 1V @ paxltiln 2 = 18, ilx = 1Y



Heo m

(3.1 | H (z)=H (N* x)

, =9V gV NVEHYS oy [N (52 — 29)]

| wldit+ 47 t10Mnjx - 1| %D + Olz— 1) + O(n~ 1}

sty

whete ¢ = 2¥¥ A7 7(~ _ 1), This holds as n - = in a neigtherhood of
z = N¥2 such that n " *“(z = N ¥?) 5 0,

¥, in patticular, w» take z = N¥2 = O(n™V®), shon (3.13) yields the
same result as given by Szeg5[10, formula (8.22.1 !

(i11) 1<x <
We assume that N¥° ¢ > w0, or

(2.14) n¥{x-1)= o,

which can be satisfied if one of the variables n or x becs.aes arbitrarii»
large. Then we find by use o’ .2,12) and (2.23)

exp(-—%N &%)
2R N B )R

(3.15) (e Y3I4i(NY? @)= 1140~ 2 ¢™¥y

Since by (3.2) ¢ ¥ = O{(x ~ 1)"¥*] as x + 1, and by (2,14 ard (2.17)
&Y= 0(x™%) a8 x » », it follows that the error term in {3.25) may be
written as O{n~ 1 2™ ¥%(x — 1)"3%]in the whole interval1l < x <e. Thus,
we can neglect the error term in (2,25), when we substitute 3.15), and
kence we have proved

(3.1¢) H, (N¥x)
= 2O RN xp N e = L 2 8] (e B 1) 4
» 11« Ola™ 2™  {x w 1Y 39}

wiere ixbis gisen by {3L143,
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Itis usuel toset in 1 <x <ee

x = cosh O 0<f<o0,

With this snbsilmtisr (3.1€) becumes

(3.17) | H (2)=H, (N% cosh §)

= N%n exp[4N(26+ e"39)] (2 sinh 657%

x {1 + 0@"1 sinh”? gi)}
3/0

This holds for N¥® < z < o, as Y8 (z - NV2 )+ e, corresponding to
n sinh?(26/3) - e . Hence (3.17) is valid both for fixed 6 as n - w and
for fixedn ag z > o,

The result obtained here agrees with [8](cf. the remarks to (3.6)) and
with the expansion due to L. Heflinger [4), who uses the same normal-
ization as Plancherel and Rotach and in & smaller domain gives a nu-
merical upper bornd for the error term. It is seen from the reaults of
these authors that the error term in (3.17) can not be improved in that
part of the domain of validity, in whick 6+ 0, or 2~ N¥ = o (N¥),

4. Asymptotic forms for K [(2a)48]

In order to cbtain en asymptotic representation of K [@2n)* &,
corresponding to (2.25), we might proceed in a similar manner 2s in
section 2, studying instead of (2.6) the differential equation

d%u 1
. ~4n?f{f3 1 e =0
4.1) g7 n G 2n)u

This equation has 15"”5:I H {(2n)* £] as a solution, and the theorem in
{1], which was used in section 2 can be extended to hold in the present
case, although the new function ¢ will depend on n.

A much easierway, however, isto convert {2.25) by the transformation

¢ o (H
1.2 xa-j;-, é(x)mw
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where A =[(2n + 1)/2n]%. Hence

(4.3) B =k" ¢ (—h{-)

and by (2.12) it follows that ®(£) satisfies
(4.4) QO g3 _p2

By substitution of (4.2) in (2.25), we can establish the following result

4.5)| H [@n)* £]
= (2m) Y2 NF 4 (gn) VIR oypIn 3~ 4 N] (@) V2

x Ail(2n)¥2 @111 + Ol "1 (1 + £%1)

where @ is given by {4.3), (2.13) and (2.14). This holds uniformly in
0 < ¢ < = and for all n such that n(1 + £®) + &, except that for £< A
the error term must be modified ac in (2.25)

A set of asymptotic forms for a [2n)% ] corresponding to the
forms for H_(N* x) developed in section 3 can now be derived from (4.5),
altheugh the calculations are more laborious in this case.

For the sake of convenience we note that 1 < £ < 2 for every n, and
also

1 \*
(4.6) k= (1 +-é—'-‘)

=14+ %n" 4+ 0(n"% as n s
and

4.7 E=h=¢-1+00"YH a8 N
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(i) 0<é<1

From (3.2) and (4.3) it follows that

4.8) (&)= @MY (= AL+ 0(£- A as 7‘541

In order to use (3.1), let (2n)Y° $ > —c0 @8 1 > o0, oOF equivalently, as
seen from (4.7) and (4.8)

(4.9) na/s(l—f)»oo as n - oo

Then, by (3.1), (4.3), (4.4) and (2.13)

cos[N al&/h)=Y%nl+0ln~ 1~ &) V3

4 A“Y2 4. 2/3 =
(4,100 (®") Ai[(2n)%° @] ”3,/2(2n)1/e (h2_ c.“52)1/4

and for the same reason as in section 3 case (i) the modified error term
occurring in (4.5) may be included in Oln" 1 - &"¥3,
Mext, we introduce

£=coso 0<o< lanm

and observe that (4,9) is equivalent to nols e asnooo, By 12.13)
&\ 1¢f N1 ¢
gl — J= = —{1 - —-5-) 4+ —CO8 = ——
h, 2 R\ A%, 2 h

where, as n -+ v,

....E. {_é~%) =--2—h~2c050(8in20'+-2—;1—>

n Rand —— -
== —[sin2c+ hin " teoto+ Oln 2:™9]
i

and furthermore, by Taylor's formula,

1 ¢

1 1 g w3
— gt = Peotor n"207%)
2™ T2
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Hence

(4.11) Na<-;£-> =Y%YNs-Y%nsin20+ 00" a7

and in the denominator in (4.10)
(4.12) (*=-¢3¥% =(sino)® 11+ 000" %)

By substituting (4.11) and (4.12) into (4.10), and then (4.10) into (4.5),
and using

@r+1)"3=2n)4 X {1+0(n™Y as no

it is seen that

(4.13) | H (2) = H_[(2n)* cos o]

= 2% (2n)%" exp[%n cos o] (sin o) %

x {cos[(n + %o — ¥n sin 20—~ Y¥nl+ O™ o™ )

This holds for 0 < z < (2n)% asn - e end n Vor(op)¥% _ 21 o , corres-
ponding tono®+ e .

This result is in agreement with the asymptotic representation
obtained by Wyman by a contour intejration method.

(ii) The neighborhood of ¢=1
The formula analogous to (3.9) can be found most easily by intro-

ducing in (3.9) ¥ = A% £, The essumption n¥3*(x — 1)+ 0 as n + o
corresponds to

¥ (£-1)-0 as N se

es seen by (4.7), and the error verm O[n % (x - 1)] may be replaced by
OR¥3 (&= D]+ 0(n™Y?). Hence
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(4.14) | H ()= H [(2n)¥* £]
V3 V2
- mrEm Y el et U]

x 11+ 0¥ (&= )]+ 0k~ VoY

whicl holds as n » o in & neighborhood of z = (2n)* such that
Y8z - (2n)Y?150,

This result agrees with the results found by Wyman in the same
neighborhood of z = (2n)%.

Similarly, (3.13) may be converted as follows. The assumption (3.11)
is equivalent to

@.15) n¥*(£-1)-0 as oo
and
t=2Y N¥? (—}-f- - 1)
=20¥® (£~ 1)+ 0™ Y?)

. . A, a
With the notation r = 2n?*{£ ~ 1), the mean value theorem and (2.12)

show that
dit=Adir+ dir 011+ [r¥2) n~¥3)

e di 14 Ai 110G 5 0(] -1 V)

and hence

Ait=Ait11+06" V34 O(1E= 1143}



Lastly
Onlx - 1|¥9=0(n|£ - | ¥
=0(|E-1+0(™Y¥
=0@|E-1Y+ 0(™¥?)
Thus

(4.16) | H ()= H [(2n)Y* ¢]
= QW3 g VA NP2 inln 2 - % N)

x {Air+ Air [O@i¢- 1] v2) oé- 1 Y3, 0(n~ VIR

where 7= 2n¥3(£-1), This holds as n + e in & neighborhood of z=(2n)*%
such that n”¥® [z ~ (20) V%] 0.

It can be verified, that no better results than (4.14) and (4,16) could
be obtained by working from (4.5), and following the same procedure as
in the deduction of (3.9) and (3.13).

The results obtained by Wyman for Kin-VG <lz-@n)YY < Kzn"/°
are included in (4.16).

(i) 1< €<

By means of theidentity A — 1 = [2n (A + 1)]7%, it is seen that

1
A r Y. V(1Yo
S S T ey

This shows, in conjunction with (4.8), that the following assumptions
are equivalert: (2n)Y O (£)+ w0, n¥V¥ (£ E) =+ 00 or

(4.17) n¥(é~Daw

which does not necessarily imply that n - »
Proceeding now as in (iii) section 3, use of (4.3), (4.4) and {2.14)
leads to
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(4.18) (@1 V2 Ai[(2)*" 0]

exp(~N 8(£/h)]

= 2171/’(2“)1/5(63_]12)]/‘ i1+ O[n‘i 6"1/2 (5_1)—3/2]}

holding in the interval & < £< & . Next, we introduce
= cosh o D<o<m

and observe that (4.17) is equivalent o no® » «. Since this implies
that n sinh? ¢ - o and n sinh 0 - %, it follows by (2.14) that

B f v.}.i —{i..'l x....}_..!'\ -..é_:.{. —éf_. *
A/ 2 h \ At 2 | & B2
where
1 .2 ¥ 1 \*
....._5. "{F - =% h™% cosh o (-inh' O~ e
24 A 2n
n tosh o

-—é—-ﬁ-[sinh 20- l/271-“1 Coth o+ 0 Gm)J

(. Y
=—3In} cosho+ ‘sinh'a-—-—-— + %k

2n 4
[ - 1 N
2—32 In {-Cv~%n ’(linh 0’)—1+ 0(-——5——:——3—-) +%1n.—-—.
n” sink”® ¢ . 2n

1 N C-c- \
-y - - -1 . sk —————— 3
-—%0’4-—8—*" e U('lnho') +%““2n +O(n"iiﬁh' 0}

Observing that the error terms in both of these expressions may be re-
placed by Oln™® sinh™ (26/3)), we have
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-Nﬁ(—f—) =-Y%n sinh 20+ % coth o+ hNo

N 2
~Y%e™ @ (sinho) '~ YNIn—+0 <n—1 sinh_’—g>
2n 3

and bence

w9 wp|-n8(E)

2n \¥¥
=<-1-v- expl(n+24)o ~insinh 20 + %]

2
x {1 +0 (rz«1 sinh™? -f-)}

Furthermore, in the denominator of (4.18)
(4.20) (&2~ A2%¥ = (sinh 0)% 11+ O(n™* sinh~? o)}
Since the error terms in (4.5), (4.18) and (4.20) may be absorbed in

the error term in (4.19), the following result is obtained by substituting
(4.19) and (4.20) into (4.18), and then (4.18) in (4.5)

(4.21) | B ()= H [(2 n)% cosh o)

= (2n)%" exnl(n + %) o + %ne 7] (2 sinh o) %

7 2 |
X { 1+0 (n"’ sinh™? —-é-o—-)}

This holds for (2n)% < z < e as 1 ¥*[z = (2n}%] - %, corresponding to
3

no” - 0o, Hence, in particular, (4.21) is valid both f~r fixed c as n + w0
and for fixedn as 2 » o,

There is agreement between (4.21) and the result found by Wyman in
the same interval,
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